Claudio Franceschi University of Bologna & IRCCS Institute of Neurological Sciences Bologna, Italy

INFLAMMAGING

Patologie Mieloidi in Geriatria, Bologna 6 Maggio 2016

The arcades of the oldest university in the Western world (founded in 1080)

Experimental Gerontology

Experimental Gerontology 35 (2000) 879-896

www.elsevier.nl/locate/expgero

The network and the remodeling theories of aging: historical background and new perspectives

C. Franceschi^{a,b,*,1}, S. Valensin^{a,1}, M. Bonafè^{a,1}, G. Paolisso^c, A.I. Yashin^d, D. Monti^e, G. De Benedictis^f

^aDepartment of Experimental Pathology, University of Bologna, Bologna, Italy ^bDepartment of Gerontological Research, Italian National Research Center on Aging (INRCA), Ancona, Italy ^cDepartment of Geriatric Medicine and Metabolic Diseases, Second University of Naples, Naples, Italy ^dMax Plank Institute for Demographic Research, Rostock, Germany ^eDepartment of Experimental Pathology and Oncology, University of Florence, Florence, Italy ^fDepartment of Cell Biology, University of Calabria, Cosenza, Italy

THE "REMODELLING" THEORY OF AGING (Franceschi et al., 1995; 2000)

The phenotype of old people is the result of the capability of the body to <u>respond / adapt</u> to:

- 1. the damaging stimuli we are exposed lifelong;
- 2. the unrepaired molecular and cellular damages continuously occurring in all tissues and organs, which have a <u>signaling capacity</u>

(accumulation of damages/mutations + local and systemic adaptive responses + activation of the innate immune system)

An example of adaptation/remodelling: the Inflammatory Theory of Aging

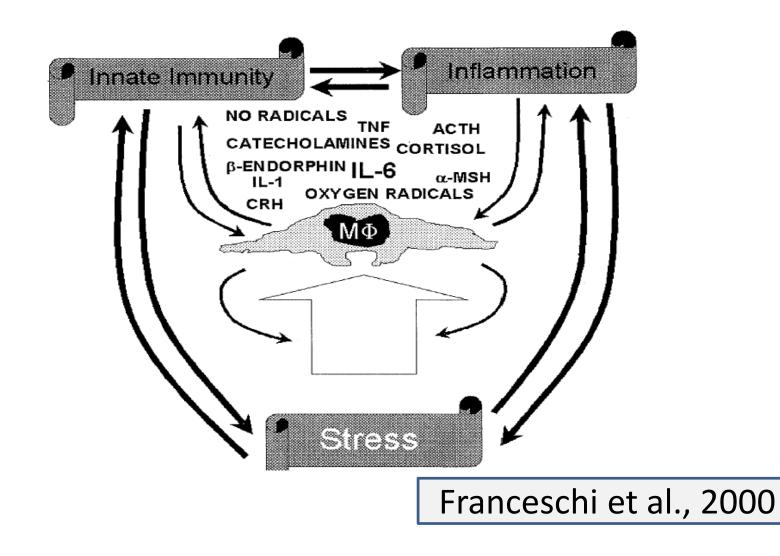
Inflamm-aging

An Evolutionary Perspective on Immunosenescence

CLAUDIO FRANCESCHI,^{*a,b,e*} MASSIMILIANO BONAFÈ,^{*a*} SILVANA VALENSIN,^{*a*} FABIOLA OLIVIERI,^{*b*} MARIA DE LUCA,^{*d*} ENZO OTTAVIANI,^{*c*} AND GIOVANNA DE BENEDICTIS^{*d*}

^aDepartment of Experimental Pathology, University of Bologna, Bologna, Italy

^bDepartment of Gerontological Research, Italian National Research Center on Aging (INRCA), Ancona, Italy


^cDepartment of Animal Biology, University of Modena and Reggio Emilia, Modena, Italy ^dDepartment of Cell Biology, University of Calabria, Calabria, Italy

"chronic", "low grade", "sterile"

Ann. N.Y. Acad. Sci., 908, 244-254, 2000

Inflammaging is based on studies on the evolution of immune response and stress from invertebrates to mammals

innate immunity, response to stressors & inflammation are <u>evolutionary conserved</u> from invertebrates to mammals, highly interconnected & <u>macrophage-centered</u>

The Inflammaging Theory of Aging

Metabolic syndrome Type 2 Diabetes

Cancer

Alzheimer PD PO Delirium

COPD

AGING INFLAMMAGING Cardiovascular diseases

Sarcopenia Frailty

OA

Depression

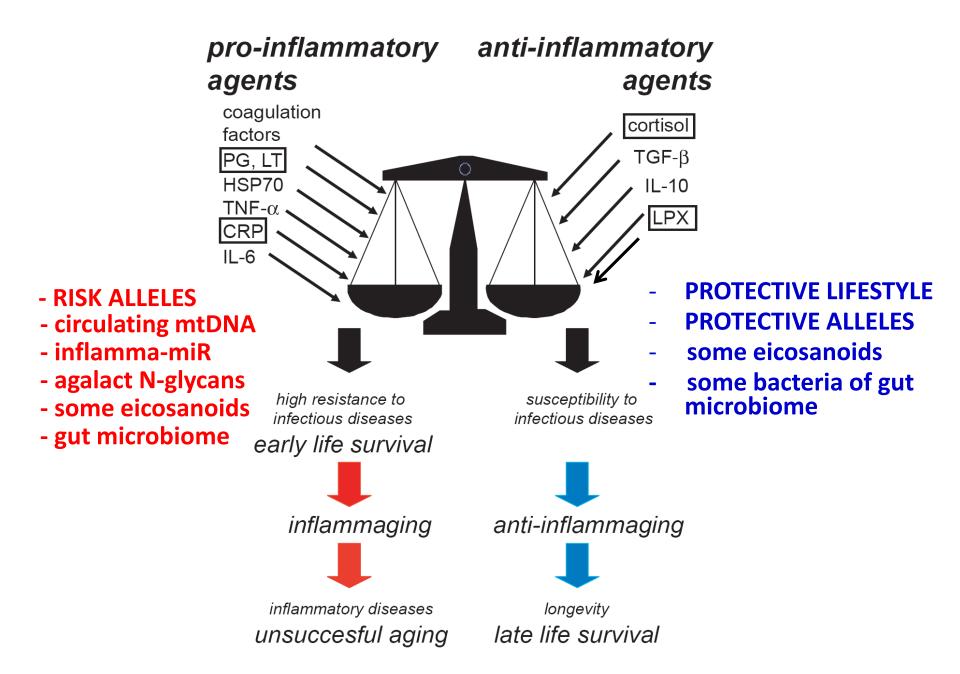
The phenotype of CENTENARIANS is an inextricable and dynamic mix of <u>accumulating damages/functional decline</u> and <u>adaptive mechanisms</u>

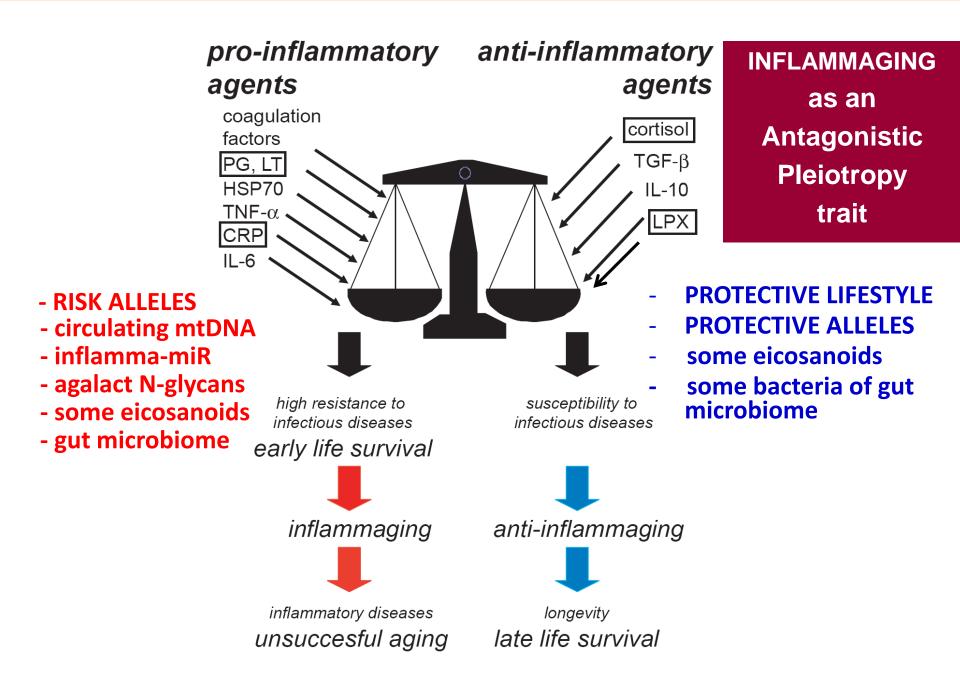
Inflammaging

60 flammag Anti-in

The phenotype of CENTENARIANS is an inextricable and dynamic mix of <u>accumulating damages/functional decline</u> and <u>adaptive mechanisms</u>

Inflammaging


Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans


Claudio Franceschi ^{a,b,c,e,*}, Miriam Capri ^a, Daniela Monti ^d, Sergio Giunta ^e, Fabiola Olivieri ^e, Federica Sevini ^b, Maria Panagiota Panourgia ^b, Laura Invidia ^a, Laura Celani ^b, Maria Scurti ^b, Elisa Cevenini ^b, Gastone C. Castellani ^{b,f}, Stefano Salvioli ^{a,b,c}

^a Department of Experimental Pathology, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy
 ^b Centro Interdipartimentale "L. Galvani", University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy
 ^c ER-GenTech laboratory, via Saragat 1, 44100 Ferrara, Italy
 ^d Department of Experimental Pathology and Oncology, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
 ^e I.N.R.C.A., Department of Gerontological Sciences, via Birarelli 8, 60121 Ancona, Italy
 ^f DIMORFIPA, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy

Mechanisms of Ageing and Development 128 (2007) 92-105

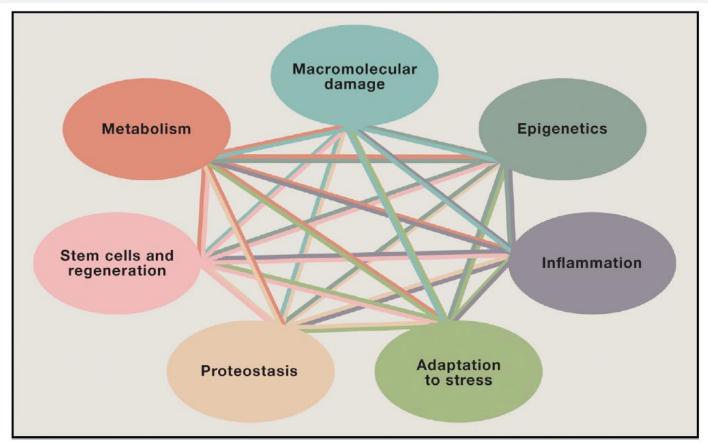
increasing levels of pro-inflammatory markers with age stimulate a corresponding augmentation in anti-inflammatory markers

Fulvia, 109 anni, Sarzana (Italy)

Centenarians are characterized by high levels of circulating pro- & antiinflammatory molecules: TGF β , Cortisol, IL-1RA, Adiponectin

It is time to put Inflammaging within the «New Geroscience»

Leading Edge
Commentary


Cell

Geroscience: Linking Aging to Chronic Disease

Brian K. Kennedy,^{1,*} Shelley L. Berger,^{2,3} Anne Brunet,^{4,5} Judith Campisi,^{1,6} Ana Maria Cuervo,^{7,8} Elissa S. Epel,⁹ Claudio Franceschi,^{10,11,12} Gordon J. Lithgow,¹ Richard I. Morimoto,¹³ Jeffrey E. Pessin,¹⁴ Thomas A. Rando,^{5,15,16} Arlan Richardson,^{17,18} Eric E. Schadt,¹⁹ Tony Wyss-Coray,^{15,16} and Felipe Sierra²⁰

Cell 159, November 6, 2014

Inflammaging within a larger, systems biology, networking perspective (striking connectedness)

THE SEVEN HIGHLY INTERTWINED PILLARS OF AGING

Kennedy et al., 2014

Advances in Geroscience: Impact on Healthspan and Chronic Disease Perspective

Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases

Claudio Franceschi^{1,2} and Judith Campisi^{3,4}

¹DIMES, Department of Experimental, Diagnostic and Specialty Medicine and CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Italy. ²IRCCS Institute of Neurological Sciences, and CNR-ISOF, Bologna, Italy. ³Buck Institute for Research on Aging, Novato, California. ⁴Life Sciences Division, Lawrence Berkeley National Laboratory, California.

Address correspondence to Claudio Franceschi, MD, DIMES, Department of Experimental, Diagnostic and Specialty Medicine and CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Via S. Giacomo 12, 40126 Bologna, Italy. Email: claudio.franceschi@unibo.it

J Gerontol A Biol Sci Med Sci 2014 June;69(S1):S4–S9

"GARBAGING" and INFLAMMAGING

- INFLAMMAGING is triggered by DAMAGE/GARBAGE,
 i.e. by a variety of "*danger signals*" which can be:
- 1. EXOGENOUS or PAMPs, *i.e.* viruses such as CMV or HIV, bacteria including the gut/oral-nasal/respiratory- & genito/urinary-tract <u>MICROBIOTA</u> and its products, parasites ("exogenous exposome")
- 2. ENDOGENOUS/SELF or DAMPs, i.e. damaged and SENESCENT CELLS, CELL DEBRIS, altered/modified proteins & lipids, heme, <u>ROS</u>, <u>extracellular mtDNA</u>, cardiolipin, AGE, agalactosylated N-glycans, extracellular ATP, uric acid, ceramides,HMGB1, resulting from organelle/cell 3D: Damage/Death/Debris ("endogenous exposome")

 Eukaryotic cells contain a plethora of **INTRACELLULAR MOLECULES** that are normally secured within the confines of organelles and the plasma membrane.

When cells are stressed/damaged or die as a result of exposure to pathogens and pathogenproducts, nutrient excess, heat, radiation, sterile cellular injury after trauma, ischemia, or toxininduced cell rupture these molecules, here collectively indicated as GARBAGE, can be actively liberated/secreted or passively released in two compartments:

1. Within the cell

2. In the extracellular milieu

In both cases they act as Alarmins or Danger-Associated Molecular Patterns (DAMPs)

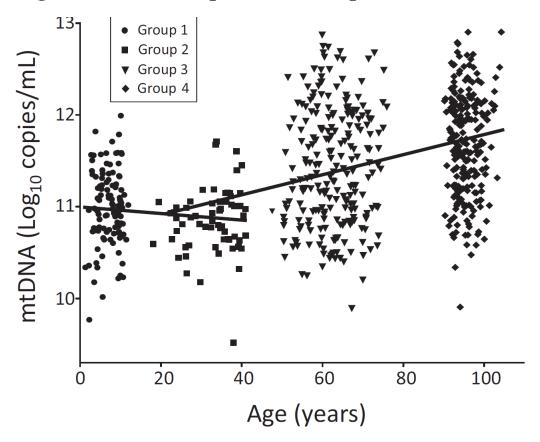
"GARBAGING" and INFLAMMAGING

THIS TYPE OF GARBAGING AND INFLAMMAGING IS PHYSIOLOGICAL AND PRODUCED ALSO **BY YOUNG BODIES**

Franceschi & Campisi, 2014

GARBAGE, DANGER SIGNALS & INFLAMMAGING

- With increasing age INFLAMMAGING is fostered by:
- <u>INCREASED EXPOSURE to exogenous PAMPs and</u>
 "danger" signals (*e.g.* altered MICROBIOTA, persistent
 CMV) related to immunosenescence
- INCREASED GENERATION of endogenous/self DAMPs and "danger" signals (*e.g.* increased number/amount of SENESCENT CELLS, <u>CELL DEBRIS, DYSFUNCTIONAL</u> <u>MITOCHONDRIA</u>)
- DECREASED EFFICIENCY OF GARBAGE DISPOSAL, i.e.
 UPS/PROTEASOMES, AUTO- and MITO-PHAGY
- INCREASED ACTIVATION of NF-kB & INFLAMMASOMES


Franceschi & Campisi, 2014

Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for "inflamm-aging"

Marcello Pinti^{*1}, Elisa Cevenini^{*2,3}, Milena Nasi⁴, Sara De Biasi⁴, Stefano Salvioli^{2,3}, Daniela Monti⁵, Stefania Benatti¹, Lara Gibellini⁴, Rodolfo Cotichini^{6,7}, Maria Antonietta Stazi⁶, Tommaso Trenti⁸, Claudio Franceschi^{2,3} and Andrea Cossarizza⁴

- Circulating mtDNA increases with age and is a powerful inflammatory stimulus contributing to inflammaging.
- The number of copies of circulating mtDNA is significantly correlated between siblings, suggesting that it is a familial/genetic trait.

Age-related increase of circulating mtDNA plasma level in the different age groups. Data are generated from <u>831 samples</u>, and are expressed as log₁₀ mtDNA copies/mL of plasma.

Linear Regression for log 10 mt DNA by age

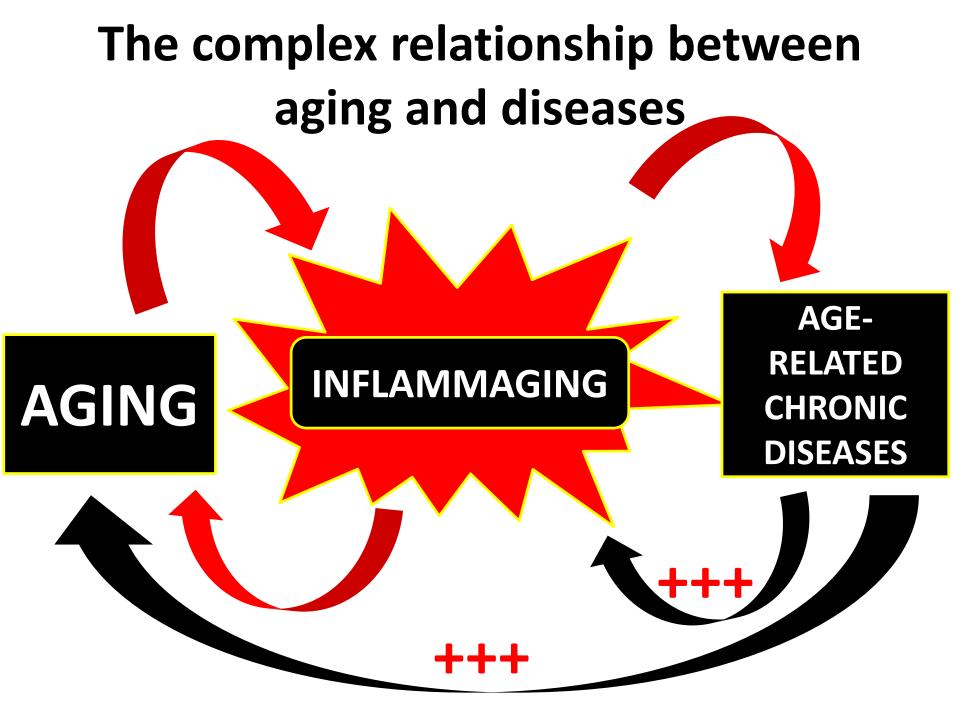
Groups	Number of obs.	R-squared	Beta Co eff.	Age p	95 9	% CI
Group 1 and 2	171	0.0215	-0.0045	0.055	-0.0091	0.0001
Group 2, 3 and 4	4 516	0.1590	0.0115	< 0.001	0.0092	0.0138

SELF GARBAGE misplaced cell components – cell debris

INFLAMMAGING

NUTRIENTS METRECESSIS

TES


MICROBIONES

GARBAGE, DANGER SIGNALS & INFLAMMAGING

This perspective assumes that there is a <u>CONTINUUM</u> between:

- young and old bodies
- aging physiology and pathology
 Inflammaging would represent
 the progressive impairment with age
 of the physiological garbage disposal.

Franceschi & Campisi, 2014

INFLAMMAGING & age-related diseases

HYPOTHESIS:

All/most age-associated diseases can be conceptualized as "segmental" accelerated aging syndromes, involving/affecting (for genetic and/or lifestyle reasons) specific organs/pathways (more than others), where the aging process and inflammaging propagated faster

Aging and the blurring of the distinction between self and not self

INFLAMMAGING and AGE-RELATED DISEASES can largely be conceptualized as the result of a low grade, progressive/slow, systemic, lifelong AUTO-INFLAMMATORY PROCESS

- driven by a peculiar type of chronic stimulation,

- triggered by external and internal EXPOSOMES
- favored by the functional decline of immune responses, *i.e.* by what Roy Walford called *"immunosenescence"*.

"IMMUNOBIOGRAPHY" & the "Liquid Immunological Self"

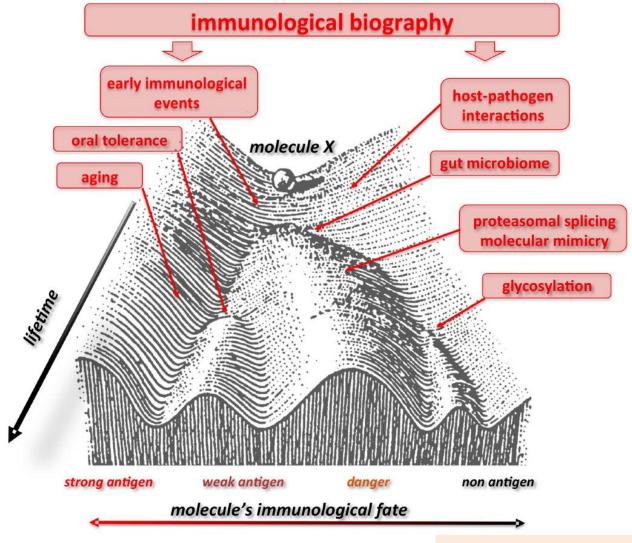
frontier	's in
IMMUN	OLOGY

HYPOTHESIS AND THEORY ARTICLE published: 09 April 2014 doi: 10.3389/fimmu.2014.00153

Towards a liquid self: how time, geography, and life experiences reshape the biological identity

Andrea Grignolio¹*[†], Michele Mishto^{2,3†}, Ana Maria Caetano Faria⁴, Paolo Garagnani⁵, Claudio Franceschi^{1,5,6,7} and Paolo Tieri⁸*

¹ Interdepartmental Center "Luigi Galvani" for Bioinformatics, Biophysics and Biocomplexity, University of Bologna, Bologna, Italy


² Centro Interdipartimentale di Ricerca sul Cancro "G. Prodi", University of Bologna, Bologna, Italy

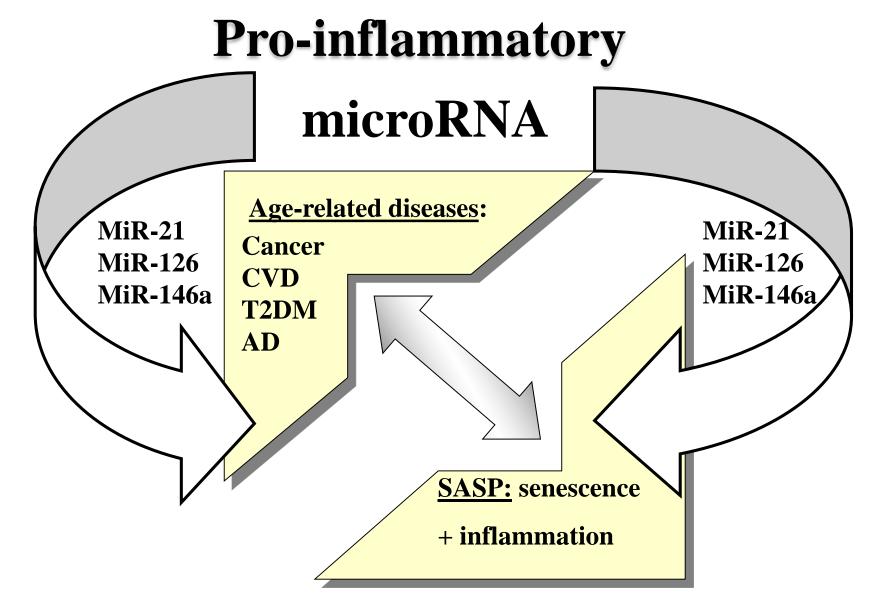
- ³ Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany
- ⁴ Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- ⁵ Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- ⁶ IRCCS of Neurological Science, Bologna, Italy

⁷ Institute of Organic Synthesis and Photoreactivity, National Research Council, Bologna, Italy

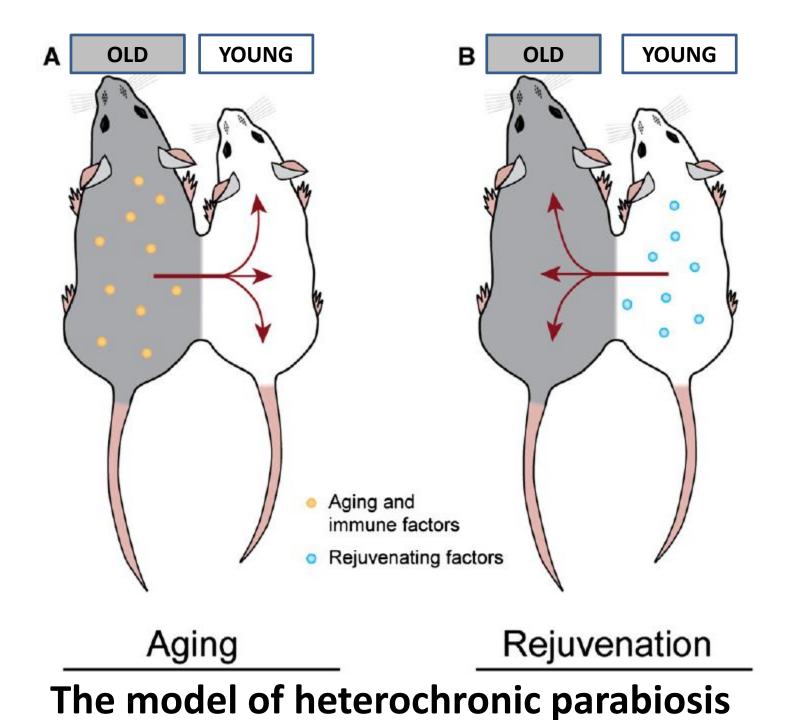
Aging and the blurring of self/non-self discrimination

Waddington landscape of the "liquid immunological self"

Grignolio et al., 2014

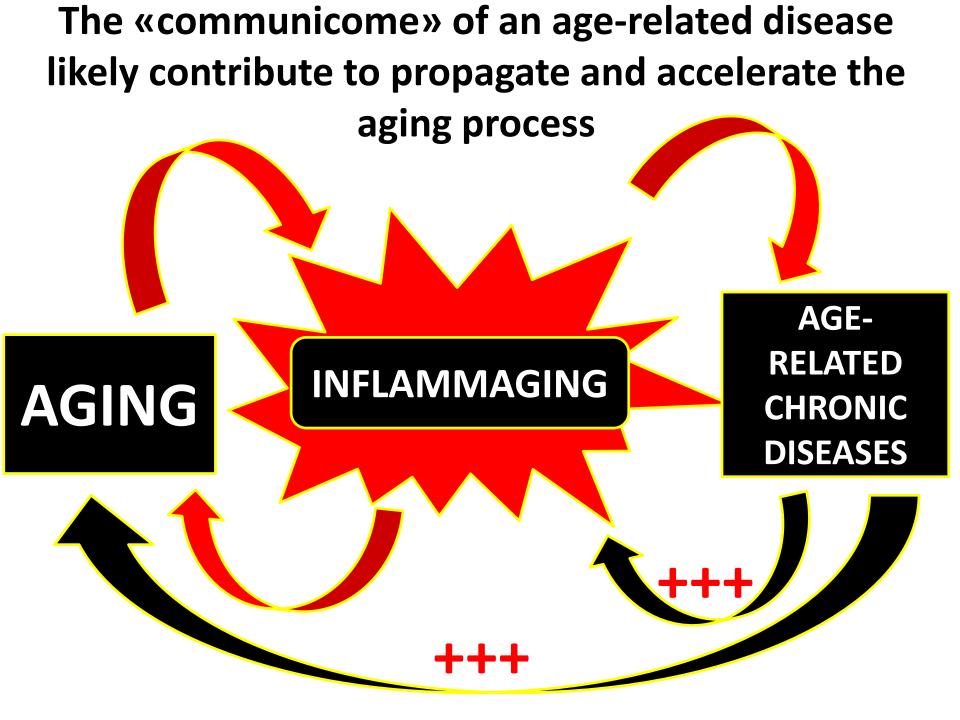

"inflammaging is a fire"

- There is evidence that:
- The aging phenotype is maintained by the aged micro/macro-environment.
- Inflammaging can propagate from cells to cells (and from organs to organs ?)


Circulating inflamma-miR

MicroRNAs linking inflammaging, cellular senescence and cancer Olivieri F, Rippo MR, Monsurro V, Salvioli S, Capri M, Procopio AD and Franceschi C

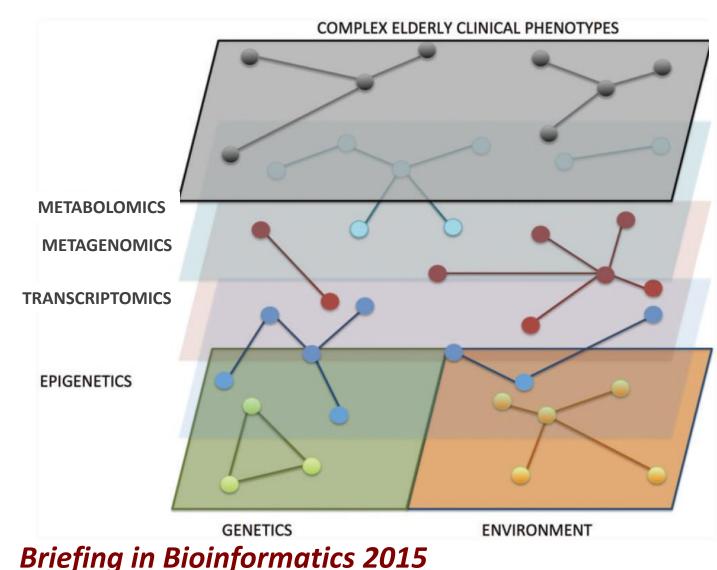
Aging Research Reviews, 2013

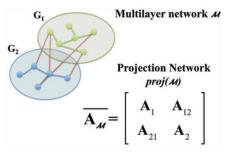


Circulating Inflamma-miRs

A PROPAGATING VIEW OF AGING & INFLAMMAGING

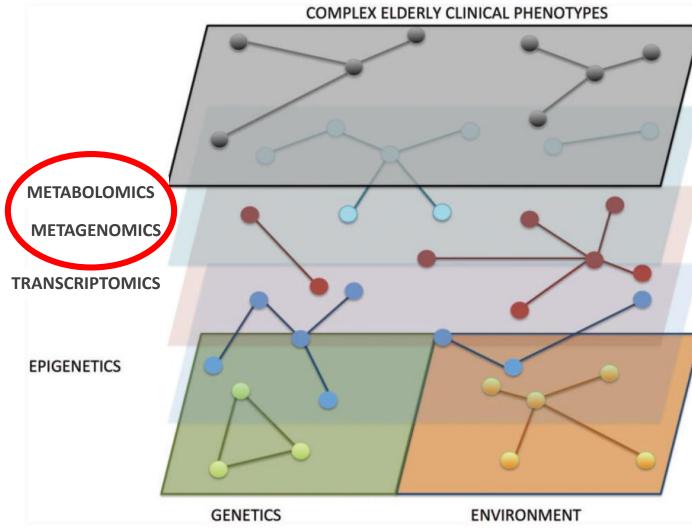
- UNIBO-studied candidate stimuli present in the blood (circulating) which could maintain and propagate aging and inflammaging:
- circulating mtDNA
- agalattosylated N-glycans
- inflamma-miR
- gut microbiota products and metabolites
- lipid metabolites

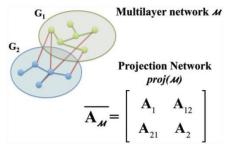

Briefings in Bioinformatics, 2015, 1–14


Systems medicine of inflammaging

Gastone C. Castellani^{*}, Giulia Menichetti^{*}, Paolo Garagnani, Maria Giulia Bacalini, Chiara Pirazzini, Claudio Franceschi, Sebastiano Collino, Claudia Sala, Daniel Remondini, Enrico Giampieri, Ettore Mosca, Matteo Bersanelli, Silvia Vitali, Italo Faria do Valle, Pietro Liò and Luciano Milanesi

"INFLAMMAGING is a unifying Biomedical Hypothesis particularly attractive for Systems Medicine as it is multiscale, multi-organs and propagating among multiple spatial and temporal scales. INFLAMMAGING can be mapped onto a **MULTILAYER NETWORK** capable to model and quantify the endogenous and exogenous interactions"


A SYSTEMIC APPROACH TO AGING/INFLAMMAGING



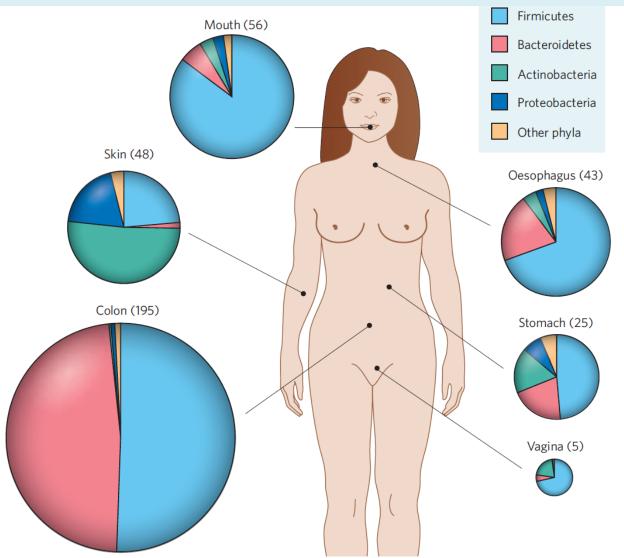
A MULTIPLEX is a set of networks or layers with common nodes. Each layer corresponds to a given OMIC. Intra and inter-layers links are treated with the new concept of **MULTI-LINKS** are (correlation and causal relationships). The basal layer is divided into **GENETICS** and ENVIRONMENT to quantify their relative role in a given phenotypical trait

A SYSTEMIC APPROACH TO AGING/INFLAMMAGING


A MULTIPLEX is a set of networks or layers with common nodes. Each layer corresponds to a given OMIC. Intra and inter-layers links are treated with the new concept of **MULTI-LINKS** are (correlation and causal relationships). The basal layer is divided into **GENETICS** and ENVIRONMENT to quantify their relative role in a given phenotypical trait

Briefing in Bioinformatics 2015

The complex, systemic nature of INFLAMMAGING


Cevenini et al., Curr Opin Clin Nutr Metab Care 2012

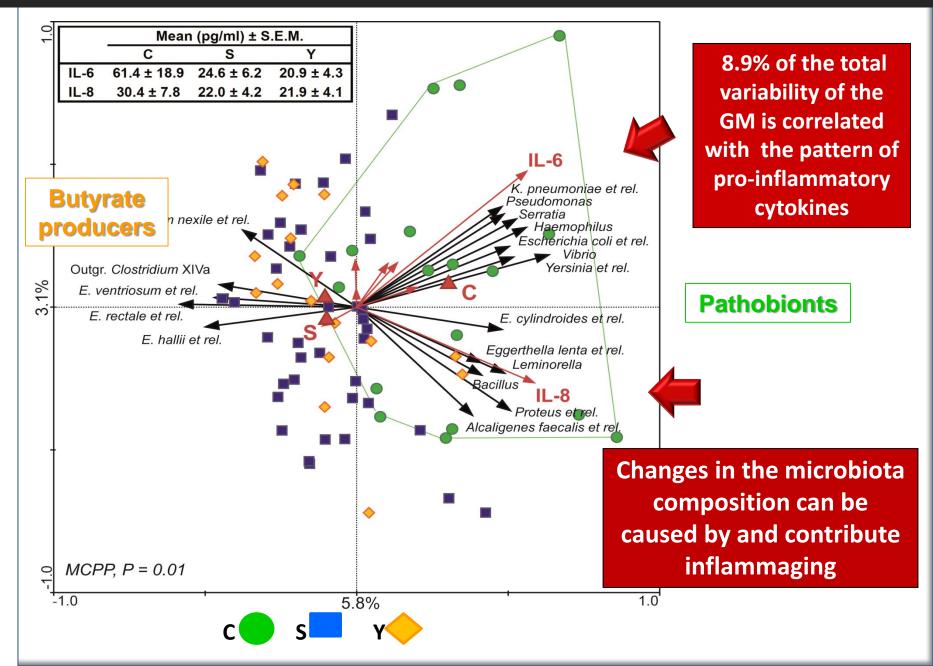
The complex, systemic nature of INFLAMMAGING

Cevenini et al., Curr Opin Clin Nutr Metab Care 2012

Invisible Partners bacteria in the different body sites

Invisible Partners bacteria in the different body sites

- 90% of bacteria reside within the gastrointestinal tract which harbors more than 500 different bacterial species, and about 10¹¹ bacteria per gram of luminal content.
- The human gut microbiome is functional and exerts both local and long-distance effects involving hormonal intermediates, metabolites, and immunologic messengers.
- Host-microbe interactions thus have the potential to influence carcinogenesis and to promote the onset of others age-related diseases through mechanisms such as chronic inflammation, induction of genotoxic responses, alteration of the microenvironment, and metabolism


Through Ageing, and Beyond: Gut Microbiota and Inflammatory Status in Seniors and Centenarians

Elena Biagi¹*, Lotta Nylund^{2,3}, Marco Candela¹, Rita Ostan⁴, Laura Bucci⁴, Elisa Pini⁴, Janne Nikkïla³, Daniela Monti⁵, Reetta Satokari², Claudio Franceschi⁴, <u>Patrizia Brigidi¹</u>, Willem De Vos^{3,6}

1 Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy, 2 Functional Foods Forum, University of Turku, Turku, Finland, 3 Division of Microbiology and Epidemiology, Department of Basic Veterinary Medicine, University of Helsinki, Helsinki, Finland, 4 Department of Experimental Pathology and CIG-Interdepartmental Center L. Galvani, University of Bologna, Bologna, Italy, 5 Department of Experimental Pathology and Oncology, University of Florence, Florence, Italy, 6 Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands

PLoS One 2010

CENTENARIAN MICROBIOTA AND INFLAMMATION

Research Paper

Functional metagenomic profiling of intestinal microbiome in extreme ageing

Simone Rampelli ¹, Marco Candela ¹, Silvia Turroni ¹, Elena Biagi ¹,Sebastiano Collino², Claudio Franceschi ³, Paul W O'Toole ⁴, and Patrizia Brigidi ¹

By Illumina shotgun sequencing of the fecal microbial DNA from the centenarians, elderly and young people, we generated a total of 214.6 million paired-end reads, with an average of 23.8 million reads per subject.

Metagenome function analysis

- We found an age-related reduction of the pathways involved in Short Chain Fatty Acids (SCFA) production via proteolytic fermentation.
- Genes involved in SCFA production, showed an inverse association with aging.

Rampelli et al., AGING 2013

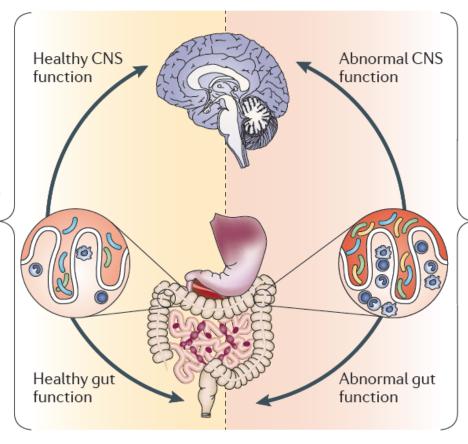
SCFA contribute to intestinal homeostasis

SCFA such as acetate,n-propionate, and n-butyrate:

- are end products of bacterial anaerobic fermentation of **dietary fibers**;
- are secreted in high amounts by commensals bacteria (*e.g.* clusters IV and XIV of Clostridia);
 can be found at high concentrations in the large intestine (*e.g.* 20mM n-butyrate in colonic lumen);
- are an important energy source
- have strong anti-inflammatory properties

Butyrate is mainly produced by clusters IV and XIV of Clostridia and contributes to the maintenance of intestinal homeostasis:

- Acts as an **energy source** for normal colonic epithelial cells (throphic effect)
- Upregulates histone H3 acetylation at regulatory regions of Foxp3 gene facilitating the differentiation of CD4+ T cells into Treg cells
- Induces **TGF-beta secretion** by epithelial cells
- Triggers the production of cytoprotective cytokine IL-18 and stimulate IL-10 and retinoic acid production by dendritic cells and macrophages
- Suppresses the proliferation of cancerous epithelial cells

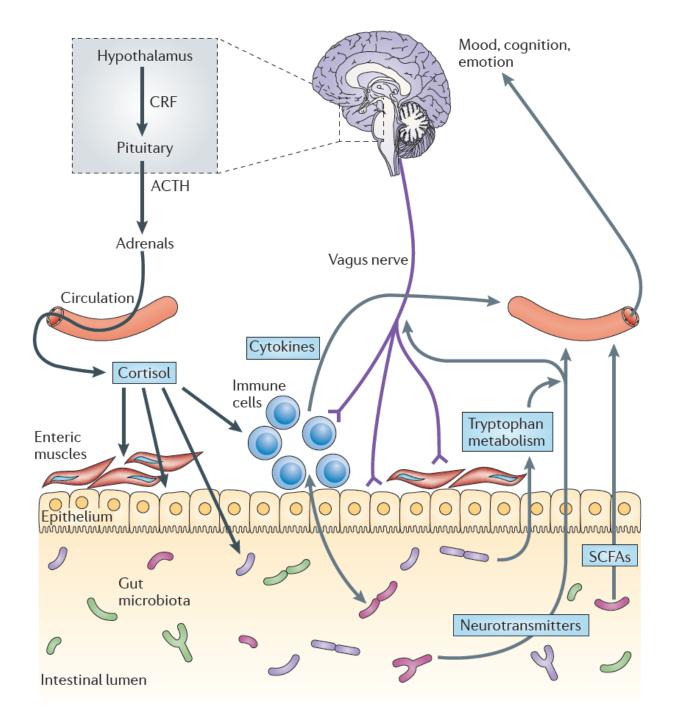

Aging Microbiome, Inflammaging and tryptophan metabolism

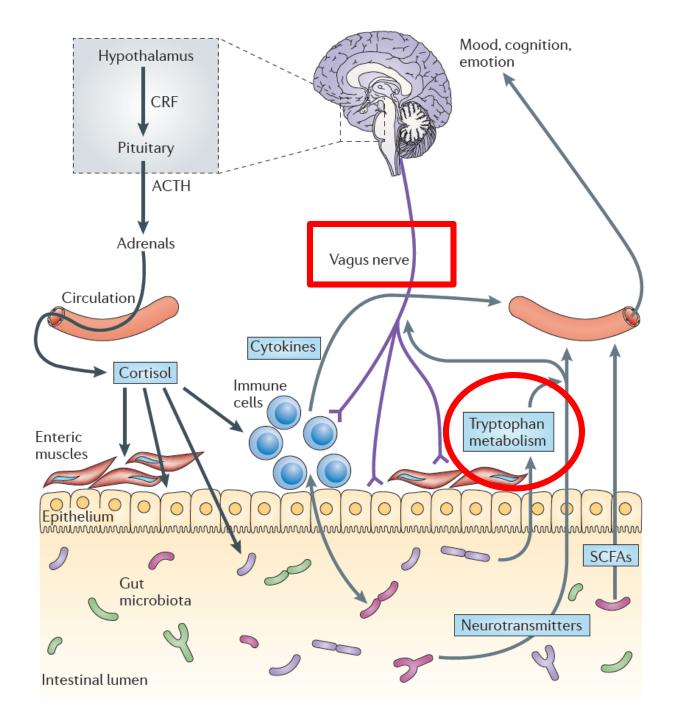
- We observed an age-related increase of genes involved in the tryptophan metabolism pathway
- This observation is in agreement with the reduction of tryptophan in the plasma of 100+
- Reduced plasma tryptophan levels are related to increase of immune activation.
- The increased consumption of tryptophan by the gut microbiota, affects its bioavailability within the host, and can contribute to inflammaging.

Rampelli et al., AGING 2013

Healthy status

- Normal behaviour, cognition, emotion, nociception
- Healthy levels of inflammatory cells and/or mediators
- Normal gut microbiota

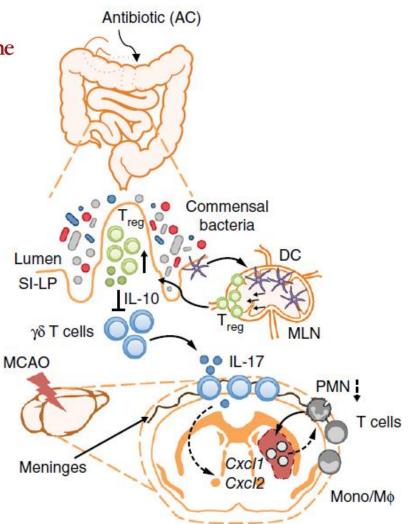



Stress/disease

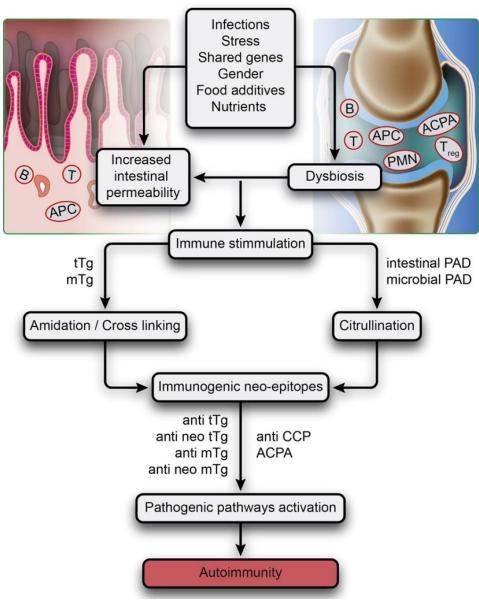
- Alterations in behaviour, cognition, emotion, nociception
- Altered levels of inflammatory cells
- and/or mediators
- Intestinal dysbiosis

The gut-brain axis

Cryan and Dinan, 2012



medicine


Commensal microbiota affects ischemic stroke outcome by regulating intestinal $\gamma\delta$ T cells

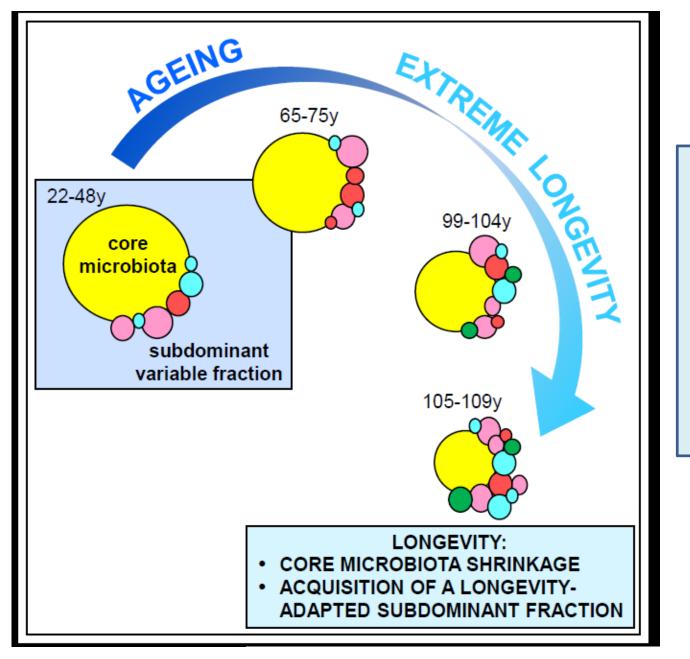
Corinne Benakis^{1,5}, David Brea^{1,5}, Silvia Caballero^{2,3}, Giuseppe Faraco¹, Jamie Moore¹, Michelle Murphy¹, Giulia Sita¹, Gianfranco Racchumi¹, Lilan Ling⁴, Eric G Pamer^{2–4}, Costantino Iadecola¹ & Josef Anrather¹

Commensal gut bacteria impact the host immune system and can influence disease processes in several organs, including the brain. However, it remains unclear whether the microbiota has an impact on the outcome of acute brain injury. Here we show that antibiotic-induced alterations in the intestinal flora reduce ischemic brain injury in mice, an effect transmissible by fecal transplants. Intestinal dysbiosis alters immune homeostasis in the small intestine, leading to an increase in regulatory T cells and a reduction in interleukin (IL)-17–positive $\gamma\delta$ T cells through altered dendritic cell activity. Dysbiosis suppresses trafficking of effector T cells from the gut to the leptomeninges after stroke. Additionally, IL-10 and IL-17 are required for the neuroprotection afforded by intestinal dysbiosis. The findings reveal a previously unrecognized gut-brain axis and an impact of the intestinal flora and meningeal IL-17⁺ $\gamma\delta$ T cells on ischemic injury.

The gut-joint axis

A. Lerner, T. Matthias / Autoimmunity Reviews 14 (2015) 1038–1047

Gut microbiota and extreme longevity


Biagi Elena^{1,*}, Franceschi Claudio^{2,3,4}, Rampelli Simone¹, Severgnini Marco⁵, Ostan Rita^{2,3}, Turroni Silvia¹, Consolandi Clarissa⁵, Quercia Sara¹, Scurti Maria^{2,3}, Monti Daniela⁶, Capri Miriam^{2,3}, Brigidi Patrizia¹, Candela Marco^{1,*}.

Biagi et al., Curr Biol in press

- We highlighted the presence of a core microbiota of highly occurring, symbiotic bacterial groups (mostly belonging to the Ruminococcaceae, Lachnospiraceae and Bacteroidaceae families), that represented the majority of the intestinal ecosystem in terms of relative abundance in all samples, but with a cumulative percentage decreasing along with age.
- The ageing microbiota is characterized by an increasing contribution of subdominant species, as well as a rearrangement in their co-occurrence network.

	Aver				
Bacterial group	Group Y	Group E	Group C	Group S	Trajectory
Coprococcus	8.4	5.4	4.9	3.3	И
Roseburia	7.9	4.6	2.3	2.4	ĸ
Faecalibacterium	8.6	7.6	4.5	2.6	ĸ
Uncl. Lachnospiraceae	6.1	5.9	4.9	4.6	K
Oscillospira	0.9	2.1	3.2	3.6	7
Odoribacter	0.08	0.2	0.5	0.3	↗
Butyricimonas	0.03	0.07	0.2	0.1	7
Eggerthella	0.07	0.1	0.1	0.3	7
Akkermansia	1.1	2.3	2.6	4.0	↗
Anaerotruncus	0.01	0.03	0.05	0.1	7
Bilophila	0.05	0.08	0.1	0.1	7
Christensenellaceae	0.5	1.1	2.7	3.3	ァ
Synergistaceae	0	0.2	0.6	0.9	7

Table 1. Age-related trajectory of bacterial groups contributing to the sample separation.

Another example of age-related re-modelling

Biagi et al., Curr Biol in press

Metabolic Signatures of Extreme Longevity in Northern Italian Centenarians Reveal a Complex Remodeling of Lipids, Amino Acids, and Gut Microbiota Metabolism

Sebastiano Collino¹*, Ivan Montoliu², François-Pierre J. Martin¹, Max Scherer¹, Daniela Mari^{3,4}, Stefano Salvioli^{5,6}, Laura Bucci^{5,6}, Rita Ostan^{5,6}, Daniela Monti⁷, Elena Biagi⁸, Patrizia Brigidi⁸, Claudio Franceschi^{5,6}, Serge Rezzi¹

1 Proteomics and Metabonomics, Nestlé Institute of Health Sciences SA, Campus EPFL, Quartier de l'innovation, Lausanne, Switzerland, 2 Applied Mathematics, NESTEC SA, Nestlé Research Center, Lausanne, Switzerland, 3 Department of Medical Sciences, University of Milan, Milan, Italy, 4 Geriatric Unit Ca' Grande Foundation Maggiore Policlinico Hospital, Milan, Italy, 5 Department of Experimental Pathology, University of Bologna, Bologna, Italy, 6 Interdepartmental Centre L. Galvani, University of Bologna, Bologna, Italy, 7 Department of Experimental Pathology and Oncology, University of Florence, Florence, Italy, 8 Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy

PLOS ONE March 2013 | Volume 8 | Issue 3 | e56564

A total of 457 individuals:

- N= 143 centenarians
- N= 220 offspring of centenarians
- N= 73 offspring of non long-lived parents
- N= 21 young subjects

Research Paper

Serum profiling of healthy aging identifies phospho- and sphingolipid species as markers of human longevity

Ivan Montoliu¹, Max Scherer², Fiona Beguelin², Laeticia DaSilva², Daniela Mari^{3,4}, Stefano Salvioli^{5,6}, François-Pierre J. Martin², Miriam Capri^{5,6}, Laura Bucci^{5,6}, Rita Ostan^{5,6}, Paolo Garagnani^{5,6}, Daniela Monti⁷, Elena Biagi⁸, Patrizia Brigidi⁸, Martin Kussmann^{2,9,10}, Serge Rezzi², Claudio Franceschi^{5,6}, and Sebastiano Collino²

¹NESTEC SA, Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland;

²Nestlé Institute of Health Sciences SA, Campus EPFL, Molecular Biomarkers Core, Quartier de l'innovation, CH-1015 Lausanne, Switzerland;

³Department of Medical Sciences, University of Milan, Milan, Italy;

⁴Geriatric Unit IRCCS Ca' Grande Foundation Maggiore Policlinico Hospital, Milan, Italy;

⁵Department of Experimental, Diagnostic and Specialty Medicine Experimental Pathology, University of Bologna, Via S. Giacomo 12, 40126 Bologna, Italy;

⁶Interdepartmental Centre "L. Galvani" CIG, University of Bologna, Piazza di Porta S. Donato 1, 40126 Bologna, Italy;

⁷Department of Clinical, Experimental and Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;

⁸Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;

⁹Faculty of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland;

¹⁰Faculty of Science, Interdisciplinary NanoScience Center (iNANO), Aarhus University, Aarhus, Denmark;

DNA methylation profile of 105+

Semi-supercentenarians (105+), their Offspring and

age- and sex-matched Controls

Illumina Infinium HumanMethylation450 BeadChip

	Milano **	Bologna *	Calabria ***	TOTAL	Mean Age (± std)	Male (N)	Female (N)
105+	29	33	20	82	105.5 ± 1.7	18	64
Offspring	28	22	13	63	69.8 ± 7.2	22	25
Controls	17	16	14	47	71.6 ± 8.0	26	37
TOTAL	74	71	47	192			

* PI: Prof. Claudio Franceschi, DIMES, UNIBO

 ** PI: Prof. Daniela Mari, DIP. DI SCIENZE CLINICHE E DI COMUNITA', UNIVERSITÀ DI MILANO
 ***PI: Prof. Giuseppe Passarino, DIP. DI BIOLOGIA, ECOLOGIA E SCIENZE DELLA TERRA, UNIVERSITÀ DELLA CALABRIA

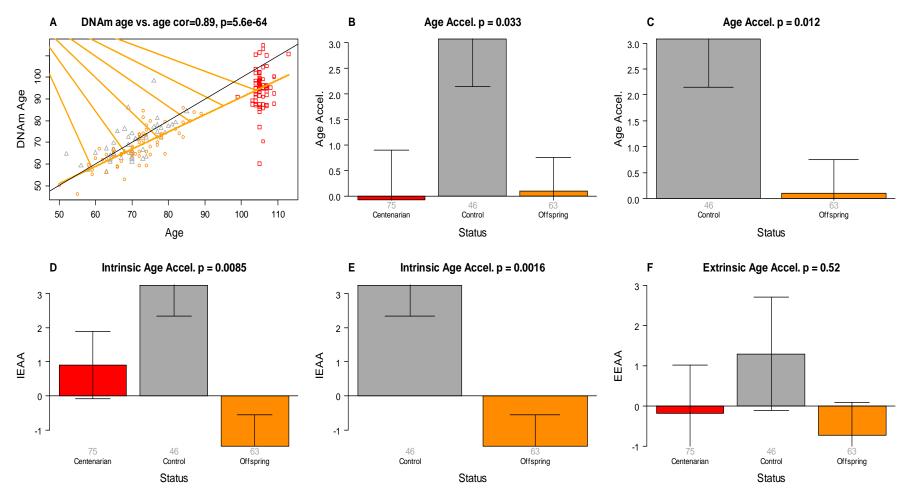
DATA ANALYSIS:

Paolo Garagnani, Chiara Pirazzini, Steve Horvath

www.impactaging.com

Research Paper

Decreased epigenetic age of PBMCs from Italian semisupercentenarians and their offspring


Steve Horvath^{1,2*}, Chiara Pirazzini^{3,4*}, Maria Giulia Bacalini^{3,4,5}, Davide Gentilini⁶, Anna Maria Di Blasio⁶, Massimo Delledonne^{5,7}, Daniela Mari^{8,9}, Beatrice Arosio^{8,9}, Daniela Monti¹⁰, Giuseppe Passarino¹¹, Francesco De Rango¹¹, Patrizia D'Aquila¹¹, Cristina Giuliani¹², Elena Marasco^{3,4}, Sebastiano Collino¹³, Patrick Descombes¹⁴, Paolo Garagnani^{3,4,15,§}, and Claudio Franceschi^{3,4,16,17,§}

THE EPIGENETIC CLOCK

Using data of more than 8000 samples present in 82 databases on DNA methylation data obtained by Illumina platforms (Infinium 450K and 27K) Steve Horvath (UCLA) identified in the whole genome 353 CpGs whose methylation level is a **MULTI-TISSUES PREDICTOR OF AGE** which allows to estimate EPIGENETIC AGE VERSUS CHRONOLOGICAL AGE *i.e.* the DNA METHYLATION AGE (DNAm Age)

Steve Horvath DNA methylation age of human tissues and cell types *Genome Biology* 2013, 14:R115 Correlation between DNAm age and chronological age = 0.97, error = 2.9 years

Measures of epigenetic age acceleration/deceleration

Horvath et al., AGING 2015

105+ and their offspring age more slowly than expected based on their chronological age

According to this model, semi-supercentenarians are on average 8.7 years younger than expected based on chronological age, and offspring of 105+ are 5.2 years younger (p=0.00051) than **age-matched controls** even after adjusting for sex and blood cell counts.

Thanks for your attention

BOLOGNA/UNIBO: the arcades of the oldest university in the Western world (founded in 1080)