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Gene transfer and cell expansion for
engineering of anti-tumor T cells:
ready for everyone?

Ettore Biagi, MD PhD, Ass. Prof., Molecular Therapy Unit,
Center for Cell and Gene Therapy “Stefano Verri”,
“Matilde Tettamanti” Research Lab, Hem-Onc Department,
San Gerardo Hospital, Monza (ltaly)
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CAR: Breakthrough of the Year 2013
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Chimeric Receptors for Immunotherapy of Acute Leukemias

Acute Lymphocytic leukemia (ALL) and Acute Myeloid leukemia (AML) in children and
adults: still associated with a very poor prognosis

The RADAR

a-Tumor mouse mAb

An extracellular domain
recognizing tumor-

CHIMERIC ANTIGEN
RECEPTORS

@ ()
@

associated antigens
derived from mAb

CARs

TCR complex
| or

¢

An intracellular signaling
domain triggering T cell
activation

\\ww“ﬁ//////z

s

¢¢

The BAZOOKA

modified from Chekmasova AA, Brentjens RJ
(2010), Discov Med, 9(44):62-70




Outcome of childhood and adult BCP-ALL patients

Children in AIEOP-BFM ALL2000 frontline protocol
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- 20% of young patient relapse (mostly high-risk
pts). Cure rate after relapse is approximately
25% to 40%.

- refractory ALL (never achieving a CR) in
children or adults has a dismal prognosis and
these patients do not benefit from HSCT.

- relapsed or refractory (r/r) ALL patients, both
pediatric and adult, have significant unmet
medical needs.

Eckert C et al., Leukemia 2015;29:1648-55 ,I‘Y




Ongoing Clinical Studies using
CAR T cells for hematologic malignancies

Table 2. Ongoing clinical trials using allogeneic CAR T cells for hematologic malignancies, as of May 2014

Disease Target antigen (CAR Patient age Vector Sponsor Clinical
signaling domain) Trial.gov ID
ALL CD19 (4-1BB-CD30) =18 Years Lentivirus University of Pennsylvania NCT01551043
ALL® CD19 (CD3Y) <19 Years Retrovirus Memorial Sloan Kettering NCT01430390
cancer center

ALL, CLL, NHL® CD19 (CD3Y) Pediatric and adult  Retrovirus Baylor College of Medicine NCT00840853

ALL, NHL® CD19 (CD3Y) 1-75 Years Transposon ~ MD Anderson Cancer Center NCT01362452

ALL, NHL 1-65 Years NCT01497184

NHL, CLL CD19 (CD3Y) 18-75 Years Retrovirus National Cancer Institute NCT01087294

ALL, DLBCL, MCL, NHL, CD19 (CD3Y) 18-75 Years Lentivirus Fred Hutchinson Cancer NCT01475058

cLLe Research Center

ALL® CD19 (CD3Y) <18 Years Retrovirus University College, London NCT01195480

ALL, CLL, NHL CD19 (CD137-CD3L 5-90 Years Retrovirus Chinese PLA General Hospital NCT01864889
and CD30)

AML CD33 (CD137-CD3( NCT01864902
and CD30)

Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CAR, chimeric antigen receptor; CLL, chronic lymphocytic leukemia; DLBCL,
diffuse large B-cell lymphoma; MCL, mantle cell lymphoma; NHL, non-Hodgkin’s lymphoma. “Epstein-Barr virus (EBV)-specific donor-derived cytotoxic
T lymphocytes (CTLs). Trivirus-specific donor-derived CTLs (against cytomegalovirus (CMV), EBV and adenovirus). “Donor-derived cord blood T cells.
“Donor-derived CMV- or EBV-specific CD62L " Tem. *EBV-specific CTLs.

Research Center

MF, CTCL CD30 18-70 Years Retrovirus University of Cologne NCT01645293
ALL, CLL, NHL CD19 (CD137-CD3( and CD3Y) 5-90 Years Retrovirus Chinese PLA General Hospital NCT01864889
AML CD33 (CD137-CD3( and CD3L) 5-90 Years NCT01864902
MM CD138 (CD137-CD3¢ and CD3Y) 18-80 Years NCT01886976
ALL, NHL CD20 (4-1BB-CD3Y) 18-90 Years NCT01735604
MCL CD19 (CD137-CD3¢ and CD3() 50-80 Years NCT02081937
AML, MDS, Lewis-Y (Anti-Lewis-Y-CD28-CD3() =18 Years Retrovirus Peter MacCullum Cancer NCT01716364
MM Center

Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CAR, chimeric antigen receptor; CLL, chronic lymphocytic leukemia; CTCL,
cutaneous T-cell lymphoma; HL, Hodgkin’s lymphoma; MCL, mantle cell lymphoma; MDS, myelodysplastic syndrome; MF, mycosis fungoides; MM, multiple
myeloma; NHL, non-Hodgkin’s lymphoma. *Autologous Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes (CTLs). ®Central memory-enriched CD8* T
cells.
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CANCER IMMUNOTHERAPY

CD19-Targeted T Cells Rapldly Induce Molecular
Remissions in Adults with Chemotherapy-Refractory
Acute Lymphoblastic Leukemia

Renier J, Brentjens,**! Marco L. Davila,'" Isabelle Riviere,"***" Jae Park,’ Xiuyan Wang,>*
Lindsay G. Cowell,® Shirley Bartido,” Jolanta Stefanski,* Clare Taylor,* Malgorzata Olszewska,*
Oriana Borquez-Ojeda,* Jinrong Qu,* Teresa Wasielewska,* Qing He,* Yvette Bernal,'

Ivelise V. Rijo,® Cyrus Hedvat,® Rachel Kobos,” Kevin Curran,” Peter Steinherz,” Joseph Jurcic,'
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BRIEF REPORT

Chimeric Antigen Receptor-Modified T Cells
for Acute Lymphoid Leukemia

Stephan A. Grupp, M.D., Ph.D., Michael Kalos, Ph.D., David Barrett, M.D., Ph.D,,
Richard Aplenc, M.D., Ph.D., David L. Porter, M.D., Susan R. Rheingold, M.D.,
David T. Teachey, M.D., Anne Chew, Ph.D., Bernd Hauck, Ph.D.,

J. Fraser Wright, Ph D., Michael C. Mnlone M.D., Ph.D,,

Bruce L. Levine, Ph.D.. and Carl M. June, M.D.




CARs as innovative clinical option

'he NEW ENGLAND JOURNAL of MEDICINE

University of Pennsylvania,
Philadelpia

ORIGINAL ARTICLE

Chimeric Antigen Receptor T Cells
for Sustained Remissions in Leukemia

Shannon L. Maude, M.D., Ph.D., Noelle Frey, M.D., Pamela A. Shaw, Ph.D.,
Richard Aplenc, M.D., Ph.D., David M. Barrett, M.D., Ph.D.,
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NCI, Bethesda
T cells expressing CD19 chimeric antigen receptors for acute

lymphoblastic leukaemia in children and young adults:
a phase 1 dose-escalation trial

Daniel W Lee, James N Kochenderfer, Maryalice Stetler-Stevenson, YongzhiK Cui Cindy Delbrook, Steven A Fddman, Terry ) Fry, Rimas Orentas,
Marianna Sabatino, NraliN Shah Seth M Steinberg, Dave Stroncek. Nick Tschernia Constance Yuan, Hua Zhang, Ling Zhang, Steven A Rosenberg.
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Investors have demonstrated significant interest in CAR / TCR

Significant Investments in CAR / TCR Therapies
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July 2012: S20M investment in CAR therapy @ UPENN
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PERSPECTIVE
@ L( Assembly line immunotherapy
il

Bruce L. Levine Carl H. June

Bruce L. Levine and Carl H. June explore how to make engineered
immune cells that can eradicate cancer widely available.

Many scientists have raised legitimate concerns about the perceived
complexity of this type of therapy and its broad applicability...
impossible to commercialize?

BY MAKING USE OF EXISTING
EQUIPMENT AND FACILITIES,
AND BY AUTOMATING

PRODUCTION, IT WILL BE
POSSIBLE TO MAKE THESE
THERAPIES WIDELY AVAILABLE

Developing engineered T-cell therapies in large numbers will be challenging,
but it is justified given their power to treat cancer. ,IY




Limitations and challenges of CAR T-cell approaches

Manufacturing challenges Clinical challenges

Complex manufacturing Non-response and relapse
Regulatory complexities, impacting Early relapses, despite high levels of
product development, logistics and initial complete remissions’
timelines .
/ ety and toxicity
Current
- CART Ly of Gratft Host Di
Gene transfection related scale-up Challenges orfsratt versus Host Uisease

HD)

Cellular stress associated with non-viral

transfection hinders cell expansion and Many patients unable to get access to

scale-up manufacturing optimal CAR therapy
Viral transfection methods may impose Inability to generate sufficient
commercial scale-up hurdles autologous PBMCs for optimal dosing

*Immunologically the reasons for the lack of optimal response are poorly understood
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Complex manufacturing: HURDLES ON THE WAY TO CLINIC...

1. Extracting T cells: A patient is hooked
up to a machine akin to a centrifuge that
separates out white blood cells, including
T cells, and returns red cells and platelets

- B to the patient. The resulting pink bag of
{ cellsis sent to the manufacturing facility
Chemotherapy for reprogramming.
e [ )

5. Treatment: The reprogrammed
T cells are infused back into the
patient’s blood. Once in circulation.

they search for and destroy cancer

-
\

~

) cells expressing the antigen

4. Patient preparation: w targeted by the CAR. 2. Reprogramming: At the 1 V | R A L
The patient is given manufacturing facility. a viral vector .
chemotherapy to lower S inserts into T cells the genes carrying
his or her white blood cell { the instructions for a chimeric
count. thus increasing the g antigen receptor. or CAR. The CAR D ES I G N A N D
chance that the immune . consists of an antibody domain that
system will accept the c \ /" can recognize specific cancer cells: a
modified T cells. L ancer.ce ) hinge and transmembrane domain G M P

that tethers the antibody to the cell:

and costimulatory and essential

activity domains. which together P RO D U CTI O N

signal the cell to divide.

8
il
CAR protein -

Target-binding domain:

antibody derived

Hinge

— Costimulatory

{
{

Viral vector

' domain =
2 LA R G E —S CA L E G M P 3. Manufacturing: To elicit a powerful %
* response in the patient. oncologists need to BE;S'S;::IS r'/
return many more of the reprogrammed domain

T cells than they drew out. Reprogrammed
T cells are “expanded” in a bioreactor with
the help of magnetic beads coated with two
antibodies, anti-CD3 and anti-CD28, that

TRANSDUCED-CELL
MANUFACTURING  jacseaerde et
AND QC ON FINAL IMP magnetic beads are washed out.
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Production of viral vectors

Current downside of viral vectors for CAR expression:
- Time-consuming (6 to 9 months)
- Skilled trained staff
- High Costs (600 th. up to 1 mil $) associated with a GMP-compliant production
run of vector .
é 0.45-uym

00—

Transfectionin Viral Harvest &l L_IZP
Supernatant
10-Layer Trays ' )
Pellet Benzonase
ﬁ Resuspension ‘ Treatment
Filland High-Speed Ultraﬁltratiogn,
Finish Centrifugation Diafiltration

from Ausubel L.J. (2012), Bioprocess Int, 10(2), 32-34
- Muultiple and complex steps of manipulations using suitable cell lines to

produce lentiviral vectors
- Large volume of viral sup to be harvested and finally ultrafiltered

and filled and finished ’[Y
- Complex QC testing on final cell product (Recombinant viral particles)




Work-flow for gene-engineered T-cell production

B EmEmy
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Leukapheresis: autologous, allogeneic, how many cells? How good?
T-cell selection: truly necessay? How easy and expensive?

Transduction: how? viral? Non viral?
Expansion: how easy? How long?

Final Formulation: cryopresevation! Transport! Bedsite infusion!
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Expansion and transduction

Biosafety/
QC release tests

Effector/Memory phenotype

In vitre CTL assay

In vive antitumor activity in

SCID Beige mice

Hollyman et al, J. immunother, 2005




Bioreactors for Viral Production, Transduction and
for large Cell Expansion in suspension

Simplified approach
Less human handling
Fully automatic

Easily adaptable
Sterile

Authomatized cell final
batching

7. COSTS‘!‘!;;
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Devices facilitating the clinical-grade manufacturing
of engineered T cells

= T I
.
v
.

4

cuniw\cs" Plus
Instrumont

CTS
Motion Biomactor

froazers
.
QC (Flow MACSQuant®
cytometry-based) Analyzer

CliniMACS

Prodigy®

Tnnsducﬂon

(vnsh)

Formuldlon
(ooncontrlb)




Closed viral transduction and expansion method

CliniMACS Prodigy TS730%

2043 Automated Lentiviral Transduction of T Cells with Cars Using the Clinimacs Prodigy
Gene Therapy and Transfer
Program: Oral and Poster Abstracts (ASH 2015)

Ulrike Mock*, PhD, Andrew Kaiser, PhD, Martin Pule, PhD, Adrian Thrasher, MD, PhD and Waseem Qasim, MBBS PhD
Cancer Institute, University College London, London, United Kingdom

CANCER INSTITUTE, UCL, London, United Kingdom

Research & Development, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany




Limitations and challenges of CAR T-cell approaches

Manufacturing challenges

Complex manufacturing

Regulatory complexities, impacting
product development, logistics and
timelines

Clinical challenges

Non-response and relapse

Early relapses, despite high levels of
initial complete remissions”

ty and toxicity

Current

Gene transfection related scale-up

Cellular stress associated with non-viral
transfection hinders cell expansion and
scale-up manufacturing

Viral transfection methods may impose
commercial scale-up hurdles, due to
complexity, time consuming manipulations
and high costs

CAR-T
Challenges

of Graft versus Host Disease
D)

Many patients unable to get access to
optimal CAR therapy

Inability to generate sufficient
autologous PBMCs for optimal dosing

*Immunologically the reasons for the lack of optimal response are poorly understood
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NON VIRAL DNA PLASMID-BASED METHODS

Characteristics:

Non-immunogenic Genomic insertion preferences of integrating vector systems

90+

3

Largely inexpensive to purify

~
<

Random

MLV

HIV1

ASV

S8 (close to random)

Tol2 (prefers 5'-regions of genes)
piggyBac (prefers transcription units)

o
=

No hard constraints on sequences

7
?
7
2
7
7
?
7

No risk of contamination by infect

W
<

~
<

% of integrations in genes
s 8

Random pattern of integration ‘

e
o

>

Disadvantages: - ,
modified from lzsvak Z. (2010), BioEssays, 32, 756-767

Low rates of integration of transgenes

Low rates of delivery to target-cell nuclei

Needs “help” to get in to the nucleus (transposase and nucleofection)
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Transposons: an “easy” alternative to viral vectors for gene therapy

(collaboration with L. Cooper, MD Anderson, Houston, TX, USA)
Sleeping Beauty (SB) transposon

The 1™ plasmid contains CAR gene oS ~ %
enclosed by SB IR/DR seguences (&) 2 |

» R ks
) B :
i 3 4
) a5
» 9 .
’, '8 LAY
- =5
W
- a Ty e

modified from Koseki H. (2008),
Riken Research, 3, 7

n{%‘b%&/

A 274 plasmid contains the SB11
Transposase that cuts IR/DR allowing

integration

.1' Electroporation (GMP-grade Amaxa
Nucleofector) uses an electrical pulse to create

temporary pores in cell membranes ,Iy




OPTIMIZATION:
NUCLEOFECTOR

AMAXA Nucleofector™ technology

VARIABLES:
- VOLTAGE

- BUFFER

- DNA AMOUNT

- TARGET CELLS AMOUNT

y 4




Clinical grade expansion of CIK cells modified by SB system

Effector T lymphocytes with acquired NK-like cytotoxicity,
produced in vitro under GMP conditions from PBMC in 21 days using only OKT3 antibody, IFN-g, IL-2.

enriched in CD3*CD56*CD1d-unrestricted NKT-T cells, which arise from CD3*CD56" CIK cell progenitors
(Rambaldi Leukemia 2014)

PBMC
IEN- OKT-3 IL-2 300 U/mL
Y IL-2 every 3 dd
CIK-CAR
Day 0 Day +1 Day +4 Day +21
Peripheral Blood Stimulation and expansion process completed in < 3 weeks

Mononuclear Cells
(PBMC) cells coming Transfection performed within this period to create CIK-CAR cell population

from a 50mL blood
sample, derived from
a donor or the patient

* a non MHC-restricted NK-like cytotoxicity, negligible alloreactivity and minimal GVHD

* intrinsic capability of reaching leukemia-infiltrated tissues
(Linn Journal of Biomed and Biotech 2010, Sangiolo Journal of Cancer 2011)

Clinical experience with allogeneic CIK cells: feasible (even from the washouts of the bags
containing the CB unit), safe and well tolerated  (Rambaldi A, Biondi A, Biagi E, Leukemia 2014) ﬂ




Immunotherapy for AML and ALL by a non-viral gene transfer

Clinical-grade modification of CIK Cells With CAR by non-viral SB gene transfer

Q . Q 7 Transgene
HD-Derived PBMC P

Nucleofection - ‘/ﬁ CAR
—) S o0y
< IFN-y OKT3+IL-2

Day 0 IL-2 H Expansion

- = Day 21
e
Infusion <:I %H @ J

“
Cryopreservation

-8

Diagram of the SB transposon and transposase constructs used in this study

MNDU3/p anti-CD123 3" generation CAR
scFvCD123 CD28 [OX40 [TCREZ [PA IR/DR >
Pizzitola I , Biagi E, Leukemia 2014,

Tettamanti S, Biagi E, BJH, 2013

|

IR/DR

MNDU3/p anti-CD19 3" generation CAR Giordano G, Biagi E, Blood, 2011
scFvCD19 CD28 |0X40 [TCRT |PA IR/DR > Marin, V, Biagi E Haematologica, 2010
Marin V, Biagi E, Exp Haem, 2007

Tyl ’[y

|

IR/DR

CMV/p SB11 transposase




Significant potential manufacturing advantages

Simplified Reduced Regulatory Overcomes Cellular Reduced
Approach Complexity Stress Mutagenesis Risk
* No need for * Less regulatory e Technology rescues » Safer compared to
apheresis; 50mL complexities for non-  cells from cellular viral vectors that may
donor blood or cord  viral transfection stress, generally display undesired
blood sample suffices processes caused by non-viral insertion-site
for PBMCs transfection methods preferences
« Single-step cell * Potentl.ally less o * Viral transfection has
stimulation method expensive and .Iess * Approach qpnmlzes an increased
complex handling cell expansion for probability to
* No purification step procedures commercial scale-up deregulate targeted
needed manufacturing

genes expression

Our unique manufacturing process provides a simple, efficient, and effective alternative
to viral-vector based CAR-T technologies
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CARS in ALL: state of the art and future perspectives

B-ALL

CD19 CAR preliclinal

C.F. Magnani (PostDoc)
C. Capuzzello (PostDoc)
C. Mezzanotte (fellow)

ﬁmg CAR biological stuQ

L

C.F. Magnani (PostDoc)

BAFF-R
N. Turazzi (PhD st.)
C.F. Magnani(PostDoc)
V. Rossi (Biotec st.)
C. Brusadelli (Med st.)

CAR

Product development

G. Dastoli

ALL: Magnani/Biagi
AML: Tettamanti/Biagi

Non-viral gene transfer

SB100 (TRANSPOSONS)

C.F. Magnani (PostDoc)

C. Mezzanotte
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Pre-clinical evaluation of CD19.CAR CIK cell therapy

The impact of clinical-grade production
process on the functionality of CD19.CAR CIK
cells

Efficacy of the treatment in patient-derived
xenograft model of ALL

General toxicity and biodistribution




Expansion and phenotype of CIK cells modified by SB system

Proliferation of CIK cells nucleofected in the absence of DNA, with GFP, and
with transposon encoding CD123.CAR or CD19.CAR

CD123.CAR

100+
801
60
404
20

CD123.CAR

% positive cells

0

o
-E 100
z 80 F1 33.97
5 %
S 20
0

FI226.74 o \,ona

/ o GFP
@—® -5 CD123.CAR

DO D1 D4 D7 D11D14D18D21
Days

] No DNA
P<0.0001 Il cD123.CAR

100+
80
60
40
20+

% positive cells

cD3'cD56  cD3'cD8’  CD3'cD4’

] No DNA
B cp123.cAR

P=0.0029

[

nave CM  EM  EMRA n=14

CD19.CAR

CD19.CAR

1001
80+
60
40
204

% positive cells

F1 197.26

i

DO D1 D4 D7 D11D14D18D21

Days

CD56/CD8/CD4 and memory phenotype of CD3* CIK cells

1l.

100+
801
60
401
20

% positive cells

CD3*CD56* C

[Mrm

D3*CD8*

P=0.0149

-o- No DNA

o GFP
- CD19.CAR

100 F1 32.56
&0
40
2Q
0

] No DNA
Il cpio.cArR

CD3*CD4*

il

naive CM

EM
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Expansion and phenotype of CIK cells modified by SB system

Modification of CIK cells determined overtime by flow cytometry
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SB encoding CARs redirects CIK cells towards leukemia

Cytotoxic activity determined by apoptosis detection
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hCD45*CD19" cell number/ml

Anti-leukemic effector function of CD19.CAR CIK cells in
Patient-Derived Xenograft model (dose dependent)
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Biodistribution and Toxicity in GLP
conditions: 1 single dose 15x106 CARCIK-CD19 CAR+,

2 months study
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CARCIK-CD19 Development: action plan
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Sistema Socio Sanitario

Cell and non-viral gene therapy factory //.‘ Ospedale Regione

“« ™ 7 San Gerardo Lombardia
Stefano Verri” ASST Monza- Ospedale San Gerardo ASST M
onza
GMP MANUFACTURING OF PTG-CARCIK-CD19 In collaboration with Gaipa G. and Verri's
DAY staff
. DAY
§ Plasmids: Collection donor PB
w Day0 CD19.CAR/pTMND - - )
'E U3 and pCMV-SB11 'FICOH centrifugation
(E.’J Non-viral modification: Donor-derived PBMC »| Irradiated Donor- Aernia Tl
> Electroporation of PBMC with derived PBMC AAA
E plasmids by 4D-Nucleofector™ o Irradiation ALLEGATO 2
< T at 60 Gy sc[zigm?s:z%;ﬁg:gs\gzﬁzzéoiszlENDA OSPEDALIERA S. GERARDO DI MONZA-
& del sito: LABORATORIO PER LA TERAPIA CELLULARE E
(72} . . < GENICA STEFANO VERRI - VIA PERGOLESI, 33 ,
Stimulation: 20052 MONZA(MB)
Day 1 Electroporated PBMC A ——
stimulated with irradiated et
PBMC +IFN-Y Attivitg PAl;torizzate o
|Attivita' di Produzione (Parte 1)
Addition OKT3 ;;g;lh 7 ,:‘Tr'R\L/IITA‘ DI PRODUZIONE PER MEDICINALI
Day 4-18/28 and IL-2 ] [Prodotti sterlll
1.1.1 Preparati in asepsi
u CIK Ce" expanSion R Prodolklmedt:‘lr;:l biolog Lli;mdlplmlnvome
‘2’ in fresh medium + IL-2 v " P?“"é:‘d’”i,g.,h
< 1314 Prodotti per terapia genica
|U—J Drug Substance:
o . Donor-derived CIK-CAR.CD19 1114 quuigi di pic‘mlovollz::::" é'o'.i prodoti per(:;rapia o_e;bularceperlerapm genica;
7 Day18/28 Sampling for cells 313 Prtot o i o Lo Sl St ik
o QC testing
D
(14
(=)
Harvesting and
centrifugation
'—
o
oo
- ..
& Day 18/28 Resupspenspn in
o freezing medium v
g Drug Product:
(74 Donor-derived CIK-CAR.CD19
8 Freezing cells




Summary results of two Large GMP production runs of
PTG-CARCIK-CD19 (third run still ongoing)

120,00 60,00
% Cell Viability % CD3+/CD56+
100,00 - 50,00
==—batch # 203
80,00 A
40.00 ——batch # 205
0000 1 o patoh # 203 30,00 /
4000 1 s patch # 205 20,00 /\
20,00 / \ /
10,00
day 0 ‘ day 1 ‘ day 7 ‘day 14Ljay 18‘day 23 0,00 : : : : :
cell viability day 0 day 1 day 7 day 14day 18 day 23
70,00
o | %CD3+/CAR+ -~
50,00 //./
40,00 /
30,00 / /‘/4g
20,00 / N ——batch # 203
10,00 / —#—batch # 205
0,00 : : : : x !
day0 day1 day7 day 14 day 18 day 23




Composition of PTG-CARCIK-CD19 Drug Product
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Release criteria for PTG-CARCIK-CD19

TEST SPECIFICATION

Sterility - Bacterial and Sterile
fungal*
Absence of endotoxin™* < 0.5 EU/mL
Mycoplasma* Absent
Viability = 80%
Immunophenotype:
CD3+/CAR + = 20% of the CD3* cells
CD3+/CD56+ = 30% of the CD3* cells
Cytotoxicity (Apoptosis/ = 25% lysis of the CD19* cell

Necrosis) lines (E:T ratio 5:1)

Vector Copy Number (Q-
PCR)

<5

SB11 Detection
(Q-PCR)

Under limit of detection




...Cells as “Biological Drugs”...




From cell therapy to non viral gene therapy...
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Conclusions and Future Directions

Limitations and challenges of CAR T-cell approaches: the implementation of
manufacturing, transfection method and clinical feasibility will increase the
availability of these therapies

* Non-viral CIK-CAR approach may provide therapeutic
benefit to a broader patient population than CAR-T
approaches

* CIK-CAR manufacturing process as a simple, efficient
and effective alternative to viral-vector CAR-T cells

* CIK-CAR cells exhibited stable CAR expression,
efficient cell expansion, tumor cell killing

* CD19.CIK-CAR platform as a phase 1 proof of concept
within 1 year (sponsored research agreement)

Conclusions

e AML targeting: Insertion of iCasp9 suicide gene in
Other platform CD123.CAR//CD33.CAR construct; additional new

target antigens (TIM-3); affinity mutants
e CLL targeting: to apply non-viral platform to CD23.CAR

7 4i




CARS in AML: state of the art and future perspectives

AML

-

(In vitro / in vivo)
S. Arcangeli (PhD. Student)

M.C. Rotiroti (PhD. Student)

STRATEGY

M.C. Rotiroti (PhD student)

S. Tettamanti (PostDoc) M.C. Rotiroti (PhD. Student) V. Perriello (MD)
IRB-Bellinzona Varani’'s Lab \ S. Tettamanti (PostDoc) ) \ S. Tettamanti (PostDoc) )

CB-CAR-CIK
cells

B-CLL

CAR non viral genetic
manipulation of CB
derived CIK cells

S. Tettamanti (PostDoc)

OPGXXIIIl- Rambaldi A., Introna
M., Golay J.

Combined
Immunotherapy of CAR
CD23-targeting and
Lenalidomide

S. Arcangeli (PhD. Student)
S. Tettamanti (PostDoc)
HSR-Ghia’s Lab
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How Sleeping Beauty works: the SAFETY issues

Transposase

e RN -

Identification of pattern of transposon
insertion near cancer genes

A L]

Q-PCR analysis of Integration analysis
expression of transposase ,IY

Assessment of loss of expression of
episomal transposase at day 21




Safety profile of gene therapy by SB: transposase evaluation
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Safety profile of gene therapy by SB: Integration analysis

LAM-PCR and Next-generation Sequencing (collaboration with Montini E., TIGET)
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Representation of the distribution of the integrations into the genome

Spreadex gels

TSS % of the sequence reads per integration site Gene Ontology
ﬁ Biological process
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The integration sites (IS) are distributed along the whole genome with comparable frequency,
without preferences for gene dense regions and gene promoters and no common integration
sites (CIS) — safety ﬂ




