ACUTE MYELOID

Updates of the WHO classification 2017: impact on the diagnosis of acute myeloid leukemia

Dr. Claudio Agostinelli Haematopathology Unit, Sant'Orsola University Hospital, Bologna

October 27, 2017

A	cute myeloid leukemia (AML) and related neoplasms	
	AML with recurrent genetic abnormalities	Blast
	AML with t(8;21)(q22;q22.1); <i>RUNX1-RUNX1T1</i>	Acute
	AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); <i>CBFB-MYH11</i>	Acu
	APL with <i>PML-RARA</i>	Mix
	AML with t(9;11)(p21.3;q23.3); <i>MLLT3-KMT2A</i>	MP
	AML with t(6;9)(p23;q34.1); <i>DEK-NUP214</i>	MP
	AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM	
	AML (megakaryoblastic) with t(1;22)(p13.3;q13.3); <i>RBM15-MKL1</i>	IVIP
	Provisional entity: AML with BCR-ABL1	
	AML with mutated NPM1	
	AML with biallelic mutations of CEBPA	
	Provisional entity: AML with mutated RUNX1	
	AML with myelodysplasia-related changes	
	Therapy-related myeloid neoplasms	
	AML, NOS	
	AML with minimal differentiation	
	AML without maturation	
	AML with maturation	
	Acute myelomonocytic leukemia	
	Acute monoblastic/monocytic leukemia	
	Pure erythroid leukemia	
	Acute megakaryoblastic leukemia	
	Acute basophilic leukemia	
	Acute panmyelosis with myelofibrosis	
	Myeloid sarcoma	
	Myeloid proliferations related to Down syndrome	
	Transient abnormal myelopoiesis (TAM)	
	Myeloid leukemia associated with Down syndrome	

astic plasmacytoid dendritic cell neoplasm					
cute leukemias of ambiguous lineage					
Acute undifferentiated leukemia					
Mixed phenotype acute leukemia (MPAL) with t(9;22)(q34.1;q11.2); BCR-ABL1					
MPAL with t(v;11q23.3); <i>KMT2A</i> rearranged					
MPAL, B/myeloid, NOS					
MPAL, T/mveloid, NOS					

WHO classification AML and related neoplasms (4th edition, 2017)

AML with recurrent cytogenetic abnormalities

WHO classification AML and related neoplasms (3th edition, 2008)

•AML with recurrent genetic abnormalities

AML with t(8;21) (q22;q22) (*RUNX1-RUNX1T1*) AML with inv(16)(p13.1q22) or t(16,16)

(p13.1;q22) (*CBFB-MYH11*) Acute promyelocytic leukemia with

t(15;17)(q24.1;q21.1) (*PML-RARA*)

AML with t(9;11)(p22;q23) (*MLLT3-MLL*) AML with t(6;9)(p23;q34) (*DEK-NUP214*)

AML with inv(3)(q21q26.2) or t(3;3) (q21;q26.2) (*RPN1-EVI1*)

AML (megakaryoblastic) with t(1;22) (p13;q13) (*RBM15-MKL1*)

Provisional entity: AML with mutated NPM1

Provisional entity: AML with mutated CEBPA

•AML with myelodysplasia-related changes

- •Therapy-related myeloid neoplasms
- •AML, not otherwise specified
- AML minimally differentiated
- AML without maturation
- AML with maturation
- Acute myelomonocytic leukemia

Acute monoblastic and monocytic leukemia

Acute erythroid leukemia

Acute mégakaryocytic leukemia

Acute basophilic leukemia

Acute panmyelosis with myelofibrosis

•Myeloid sarcoma

•Myeloid proliferations related to Down syndrome

•Blastic plasmacytoid dendritic cell neoplasm

From Swerdlow et al WHO 2017. At least 8 distinct categories of mutations in AML					
	Before 2008: Cytogenetic and molecular genetic analysis	2008-12: NGS approaches	From2013: The Cancer Genome Atlas project		
	Class I Activated signalling e.g. FLT3, KIT, RAS mutations	Class I Activated signalling e.g. FLT3, KIT, RAS mutations	Class 1: transcription factor fusions e.g(t8;212, and t(15;17)		
			Class 2: Nucleophosmin1 NPM1 mutations		
			Class 3: tumour suppressor genes e.g <i>TP53, PHF6</i> mutations		
Functional		Class II Transcrpition and differentiation e.g. e.g(t8;212, and t(15;17)	Class 4:DNA methylation related genes <i>e.g. TET2, IDH2, IDH1, DNMT3A</i>		
groups	Class II Transcrpition and differentiation e.g. e.g(t8;212, and t(15;17) <i>CEBPA</i> mutations		Class 5:Activating signalling genes e.G <i>FLT3, KIT, RAS</i> mutations		
		CEBPA mutations	Class 6: Chromatin modifying genes e.g. <i>ASXL1, EZH2, KMT2A</i> fusions, <i>KMT2A-PTD</i>		
		Epigenetic modifiers (so called Class III) e.g. TET2, DNMT3A and AsXL1	Class 7: Myeloid transcription factor genes e.g CEBPA, RUNX mutations		
			Class 8: Cohesin complex genes e.g. <i>STAG2, RAD21, SMC1, SMC2</i> mutations		
			Class 9: Spliceosome-complex genes e.g. SRSF2, U2AF1, ZRSR2 mutations		

Acute myeloid leukemia (AML) and related neoplasms	
AML with recurrent genetic abnormalities	Blasti
AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1	Acute
AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11	Acu
APL with <i>PML-RARA</i>	Mix
AML with t(9;11)(p21.3;q23.3); <i>MLLT3-KMT2A</i>	MD
AML with t(6;9)(p23;q34.1);DEK-NUP214	
AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM	MP
AML (megakaryoblastic) with t(1;22)(p13.3;q13.3);RBM15-MKL1	MP
Provisional entity: AML with BCR-ABL1	
AML with mutated NPM1	
AML with biallelic mutations of CEBPA	
Provisional entity: AML with mutated RUNX1	
AML with myelodysplasia-related changes	
Therapy-related myeloid neoplasms	
AML, NOS	
AML with minimal differentiation	
AML without maturation	
AML with maturation	
Acute myelomonocytic leukemia	
Acute monoblastic/monocytic leukemia	
Pure erythroid leukemia	
Acute megakaryoblastic leukemia	
Acute basophilic leukemia	
Acute panmyelosis with myelofibrosis	
Myeloid sarcoma	
Myeloid proliferations related to Down syndrome	
Transient abnormal myelopoiesis (TAM)	
Myeloid leukemia associated with Down syndrome	

astic plasmacytoid dendritic cell neoplasm cute leukemias of ambiguous lineage Acute undifferentiated leukemia Mixed phenotype acute leukemia (MPAL) with t(9;22)(q34.1;q11.2); *BCR-ABL1* MPAL with t(v;11q23.3); *KMT2A* rearranged MPAL, B/myeloid, NOS MPAL, T/myeloid, NOS

WHO classification AML and related neoplasms (4th edition, 2017)

AML with mutated NPM1

- NPM1^m usually in exon 12
- One of most common recurrent genetic lesion in AML: 27-35% of adult AML, 2-8% of childhood AML 45-64% of AML with normal karyotype
- Abnormal karyotype identified in 5-15% of NPM1 mutated AML cases: +8, +4, -Y, del(9q) and +21 most frequent
- Distinct GEP with up HOX genes
- Association with myelomonocytitc and monocytic leukaemia (80% of monocytic AML NPM1^m)

ABERRANT CYTOPLASMIC EXPRESSION OF NPM IN AML (NPMc+ AML)

Falini et al NEJM 2005 Jan 20;352(3):254-66.

Blastic plasmacytoid dendritic cell neoplasm

Cytoplasmic nucleophosmin is not detected in blastic plasmacytoid dendritic cell neoplasm

Fabio Facchetti,¹ Stefano A. Pileri,² Claudio Agostinelli,² Maria Paola Martelli,³ Marco Paulli,⁴ Adriano Venditti,⁵ Massimo F Martelli,³ and Brunangelo Falini³

NPM1c+ in two or more lineages

Multilineage dysplasia in the presence of *NPM1* mutation

- 25% de novo AML NPM1^m
- Usually cases with normal karyotype
- blasts usually CD34-
- do not result in a worse prognosis

Mutant nucleophosmin (*NPM1*) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations

Konstanze Döhner, Richard F. Schlenk, Marianne Habdank, Claudia Scholl, Frank G. Rücker, Andrea Corbacioglu, Lars Bullinger, Stefan Fröhling, and Hartmut Döhner, for the AML Study Group (AMLSG)

Coexistence of FLT3-ITD is associated to a poorer prognosis at least in yunger patients

Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden *FLT3*-ITD mutation and concomitant *NPM1* mutation: relevance to post-remission therapy

Marta Pratcorona,¹ Salut Brunet,² Josep Nomdedéu,² Josep Maria Ribera,³ Mar Tormo,⁴ Rafael Duarte,⁵ Lourdes Escoda,⁶ Ramon Guàrdia,⁷ M. Paz Queipo de Llano,⁸ Olga Salamero,⁹ Joan Bargay,¹⁰ Carmen Pedro,¹¹ Josep Maria Martí,¹² Montserrat Torrebadell,¹ Marina Díaz-Beyá,¹ Mireia Camós,¹³ Dolors Colomer,¹ Montserrat Hoyos,² Jorge Sierra,² and Jordi Esteve,¹ on behalf of the Grupo Cooperativo Para el Estudio y Tratamiento de las Leucemias Agudas Mieloblásticas

AML with <u>biallelic</u> mutation of CEBPA

- Biallelic mutation confer good
 prognosis
- GEP CBPA^{bm} ≠ CBPAsm
- 4-9% of AML
- Usually de novo AML
- AML with or without maturation
- Subset abnormal karyotype: del(9q) do not influences prognosis
- 25% multylineage dysplasia no prognostic impact
- 70% normal karyotype

2010

AML with <u>biallelic</u> mutation of CEBPA

- Biallelic mutation confer good
 prognosis
- GEP CBPA^{bm} ≠ CBPAsm
- 4-9% of AML
- Usually de novo AML
- AML with or without maturation
- Subset abnormal karyotype: del(9q) do not influences prognosis
- 25% multylineage dysplasia no prognostic impact
- 70% normal karyotype

2010

AML with mutated RUNX1 (provisional entity)

- Gene located at 21q22
- Encodes the alpha subunit of the core binding factor
- Mutation in 4-16% of AML
- More frequent in older male patients
- RUNX1^m frequent in prior history of MDS, MDS/ MPN; or prior exposure to RT or alkylating agents: excluded diagnosis
- cases associatted with CEBPA^{bm} or NPM1 mutations: AML with CEBPA^{bm} or AML with NPM^{1m}
- variable morphology and phenotype
- Frequent associated KMT2A-PTD, or ASXL1 mutations
- Poor response to therapy with shortened survival

AML with recurrent cytogenetic abnormalities (translocations)

- AML with recurrent cytogenetic abnormalities
- many balanced transl. and inv. recognized but not represent new disease category (uncommon, >paediatric pts)
- Refine APL with PML-RARA fusion
- AML with BCR-ABL1 (provisional entity)

Translocation	Gene Fusions	Frequency in Children /Frequency in Adults	Age Group Predilection	Comments/ Prognosis		Chrom Higher
t(1;22)(p13.3;q13.1)	RBM15(OTT)- MKL1(MAL)	0.8%/0%	Infants	AMKL – FAB M7/ Intermediate	:	(5)
t(7;12)(q36.3;p13.2)	MNX1-ETV6	0.8%/<0.5%	Infants	+19 seen as secondary abnormality		t(10;11)(p12;q23
				Adverse		t(6;11)(q27;q23.3
t(8;16)(p11.2;p13.3)	KAT6A- CREBBP	0.5%/<0.5%	Infants and children	Can spontaneously remit in infancy; intermediate prognosis in later childhood	ł	t(5;11)(q35.3;p15
t(6;9)(p23;q34.1)	DEK-NUP214	1.7%/1%	Older children; rare in infants	Adverse; 65% with <i>FLT3</i> -ITD		inv(16)(p13.3q24
11q23.3	KMT2A (MLL) translocated	25%/5-10%	Infant 50%	Prognosis dependent on the partner gene	5	t(11;12)(p15.5;p1
t(9;11)(p21.3;q23.3)	KMT2A- MLLT3	9.5%/2%	Children	Intermediate	:	

Chromosomal Translocations with Higher Prevalence in Pediatric AML than in Adult AML (Swerdlow et Blood 2016)

t(10;11)(p12;q23.3)	KMT2A- MLLT10	3.5%/1%	Children	Include subtle and cryptic <i>KMT2A</i> rearrangements/ Adverse			
t(6;11)(q27;q23.3)	KMT2A- MLLT4	2%/<0.5%	Children	Adverse			
t(1;11)(q21;q23.3)	KMT2A- MLLT11	1%/<0.5%	Children	Favorable			
	Cryptic Chromosomal Translocations						
t(5;11)(q35.3;p15.5)	NUP98-NSD1	7%/3% 16% of <i>FLT3-</i> ITD patients	Older children and young adults	Adverse; 80% with <i>FLT3</i> -ITD. In combination associated with induction failure			
inv(16)(p13.3q24.3)	CBFA2T3- GLIS2	3%/0%	10% of Infants, 20% of FAB M7	Adverse			
t(11;12)(p15.5;p13.5)	NUP98- KDM5A	3%/0%	Children <5 years 10% of FAB M7	Intermediate			

AML with recurrent cytogenetic abnormalities

- AML with recurrent cytogenetic abnormalities
- many balanced transl. and inv. recognized but not represent new disease category (uncommon, >paediatric pts)
- Refine APL with PML-RARA fusion
- AML with BCR-ABL1 (provisional entity)

APL PML-RARA

Rare cases lacking classic t(15;17)(q24.1;q21.2) with PML-RARA transcripts
complex cytogenetic rearrangements involving chr 15,17 and additional chr
submicroscopic insertion of RARA in PML

included in APL *PML-RARA* as cryptic or masked t(15;17)(q24.1;q21.2)

No morphological differences

AML with recurrent cytogenetic abnormalities

- AML with recurrent cytogenetic abnormalities
- many balanced transl. and inv. recognized but not represent new disease category (uncommon, >paediatric pts)
- Refine APL with PML-RARA fusion
- AML with BCR-ABL1 (provisional entity)

AML with BCR-ABL1

- de novo AML <1% of AML
- genetic profile: t(9;22)(q34.1;q11.2) or BCR-ABL1 fusion
- <u>no evidence before or after therapy of CML</u>
- excluded cases of: mixed phenotype AL, therapy related myeloid neoplasms, AML with other recurrent abnormalities, late acquisition of BCR-ABL1 fusion in pre-existing AML
- Clinics: adults, M>F leukocytosis with blast predominance anaemia and thrombocytopenia
 < splenomegaly and PB basophilia compared to basts crisis of CML

AML with BCR-ABL1

- Difficult to distinguish from myeloid blast crisis of chronic myelogenous leukaemia
- Frequent loss of CDKN2A and/or IKZF1 (ICAROS) (absent in CML blast crisis)
- Deletion of antigen receptors, particularly IGH and TRG, specific for de novo disease (reported in B-ALL but not in CML blast crisis)
- Important to recognize due to presence of targeted (TKI) therapy

AML with myelodisplasia-related changes

Diagnostic criteria:

≥20% blood or BM blasts
 one of the following:

 history of MDS, MDS/MPN, MDS-related cytogenetic changes multilineage dysplasia (≥50% dysplastic cells in 2 or more lineages)

 absence of both the following:

-prior cytotoxic or RT therapy for unrelated disease

-recurrent cytogenetic abnormalities described in AML

multilineage dysplasia ≥50% dysplastic cells in 2 or more lineages

AML with myelodisplasia-related changes

Diagnostic criteria:

≥20% blood or BM blasts
 one of the following:

 history of MDS, MDS/MPN, MDS-related cytogenetic changes multilineage dysplasia (≥50% dysplastic cells in 2 or more lineages

 absence of both the following:

-prior cytotoxic or RT therapy for unrelated disease

-recurrent cytogenetic abnormalities described in AML

AML with myelodisplasia related changes

Revised criteria for AML with myelodysplasia related changes:

- Excluded cases with NPM1 mutated or CEBPA biallelic mutation in absence of MDS-related cytogenetic abnormalities (no prognostic impact of multilineage dysplasia)
- MDS-related cytogenetic abnormalities: del(9q) alone in cases with NPM1^m and CEBPA^{bm}, in absence of MDS-related cytogenetic abnormalities, has no prognostic impact

MDS-related cytogenetic abnormalities

- Complex caryotype (≥3 abnormalities)
- Unbalanced abnormalities loss of chr 7 or del(7q) del(5q) or t(5q) isochr. (17q) or t(17p) loss of chr. 13 or del(13q) del(11q) del(12p)/t(12p) idic(X)(q13)
- Balanced abnormalities +(11;16)(q23.3;p13.3)+(3;21)(q26.2;q22.1)t(1;3)(p36.3;q21.2)t(2;11)(p21;q23.3)t(5;12)(q32;p13.2)t(5;7)(q32;q11.2)t(5;17)(q32;p13.2)t(5;10)(q32;q21.2)t(3;5)(q25.3;q35.1)

AML not otherwise specified

AML with minimal differentiation

AML without maturation

AML with maturation

Acute myelomonocytic leukemia

Acute monoblastic/monocytic leukemia

Pure erythroid leukemia

Acute megakaryoblastic leukemia

Acute basophilic leukemia

Acute panmyelosis with myelofibrosis

• Only a single change:

move erythroid/myeloid type of acute erythroid leukemia to the MDS sectio or other AML types

Acute erythroid leukaemia (WHO 2008)

predominant erythroid population.

In WHO 2008 two subtypes based on the presence or absence of a myeloid component:

M6a: erythroleukaemia (erythroid/myeloid type)

M6b: pure erythroid leukemia

M6b: pure erythroid leukemia ≥80 of erythroid precursors in the entire nucleated cell population

AML-M6a erythroleukaemia (erythroid/myeloid type)

50% or more erythroid precursors in the entire nucleated cell population

20% or more myeloblasts in the nonerythroid cell population (the myeloblasts are calculated as a % of the non-erythroid BM cells)

MPO

Glycoforin-C

Pure erythroid leukemia (Who 2017)

- "AML committed exclusively to the erythroid lineage (>80% of the bone marrow cells are erythroid with > 30% proerythroblasts) without significant myeloblastic component"
- Myeloblasts are counted as % total cells and M6a were moved to:
 -other AML categories , if ≥20% (often AML-MRC)
 -MDS, if blasts ≤20%

M6b: pure erythroid leukemia ≥80 of erythroid precursors in the entire nucleated cell population

Pure erythroid leukemia (Who 2017)

- "AML committed exclusively to the erythroid lineage (>80% of the bone marrow cells are erythroid with > 30% proerythroblasts) without significant myeloblastic component"
- Myeloblasts are counted as % total cells and M6a were moved to:
 -other AML categories , if ≥20% (often AML-MRC)
 -MDS, if blasts ≤20%

Summary

- New cytogenetic subgroups
- many rare balanced transl. and inv. recognized
- AML with BCR-ABL1
- Refine APL with PML-RARA fusion
- New and revised mutation subgroups
- Revised criteria AML-MRC
- MLD in the setting of specific mutation
- MDS-related cytogenetic abnormalities revised
- AML-NOS: erythroid/myeloid type removed

