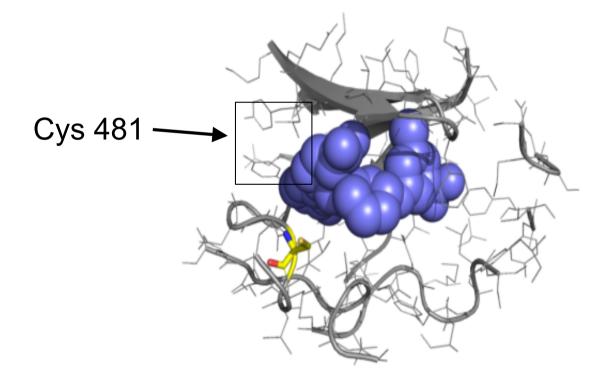


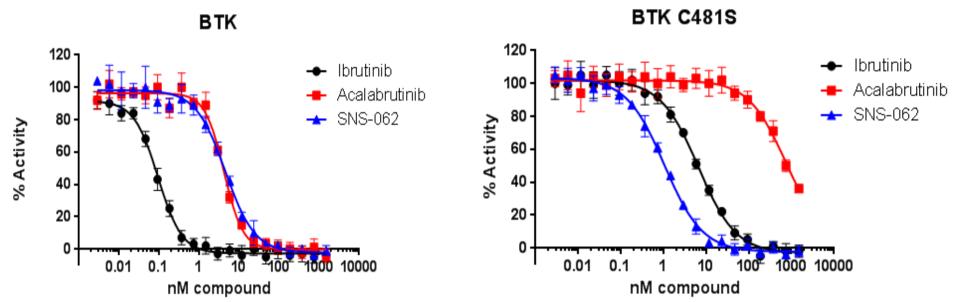
Next Generation BTK Inhibitors: Acalabrutinib


Jennifer R Brown, MD PhD Director, CLL Center Dana-Farber Cancer Institute Associate Professor Harvard Medical School November 14, 2017

Two Classes of Next Gen BTK Inhibitors

- Covalent binding to Cys481:
 - Acalabrutinib
 - BGB-3111
 - Tirabrutinib (GS-4059, ONO-4059)
- Designed to target the Cys481X resistance mutations:
 - SNS-062
 - ARQ-531
 - LOXO-305 (RXC-005)

SNS-062 Activity Does Not Require C481


 Co-crystallization of SNS-062 with the kinase domain of BTK (BTK-KD) shows that SNS-062 binds BTK through non-covalent interactions

SNS-062 does not bind EGFR, which may translate to lower potential for diarrhea and skin rashes

Sunesis, Whistler Meeting 2016

SNS-062 Activity is Unaffected by C481S Mutation

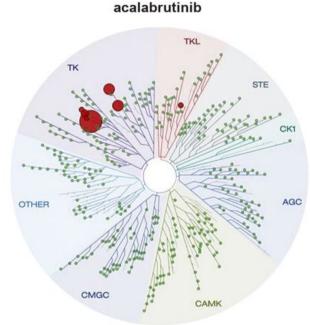
IC ₅₀ (nM), [ATP] = 50 mM	WT BTK	C481S BTK	Fold Change
SNS-062	4.6	1.1	0.2
Ibrutinib	0.1	6.6	66
Acalabrutinib	4.2	707	168

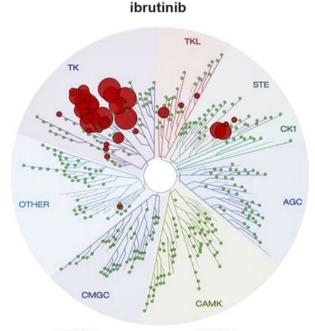
Can We Make a Better BTK Inhibitor?

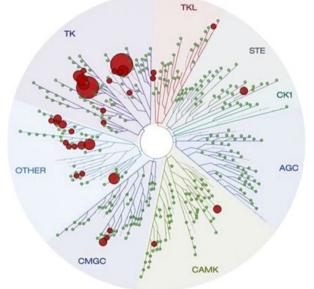

Kinase Inhibition Profile of Ibrutinib

Kinase	IC ₅₀ , nM	Btk selectivity, fold
ВТК	0.5	
BLK*	0.5	1
BMX*	0.8	1.6
CSK	2.3	4.6
FGR	2.3	4.6
BRK	3.3	6.6
HCK	3.7	7.4
EGFR*	5.6	11.2
YES	6.5	13
ErbB2*	9.4	18.8
ITK*	10.7	21.4
JAK3*	16.1	32.2
FRK	29.2	58.4
LCK	33.2	66.4
RET	36.5	73
FLT3	73	146
TEC*	78	156
ABL	86	172
FYN	96	192
RIPK2	152	304
c-SRC	171	342
LYN	200	400

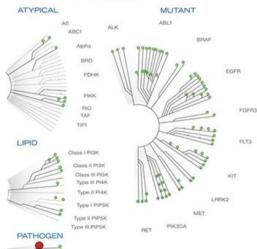
2nd-Generation Btk Inhibitors: Acalabrutinib (ACP196)

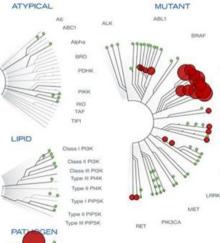

2nd-Generation Btk Inhibitors: Acalabrutinib (ACP196) Kinase Inhibition IC₅₀ (nM) In Vivo Potency

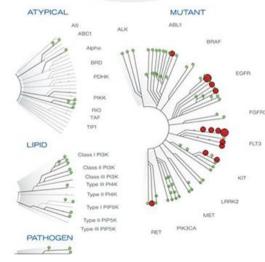

Kinase	ACP-196	ibrutinib
Btk	5.1	1.5
Тес	93	7.0
BMX	46	0.8
Txk	368	2.0
ERBB2	~1000	6.4
EGFR	>1000	5.3
ltk	>1000	4.9
Jak3	>1000	32
Blk	>1000	0.1

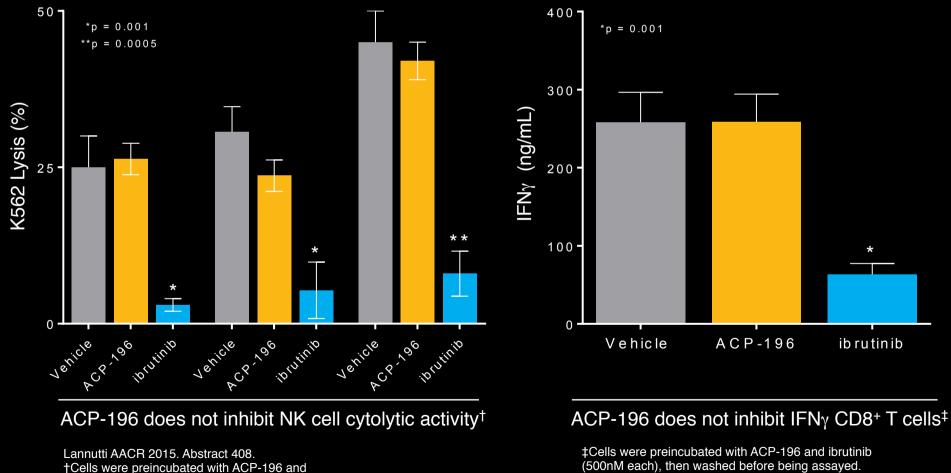


Covey AACR 2015. Abstract 2596.


Competitive Binding Assays on Kinases (DiscoverX)



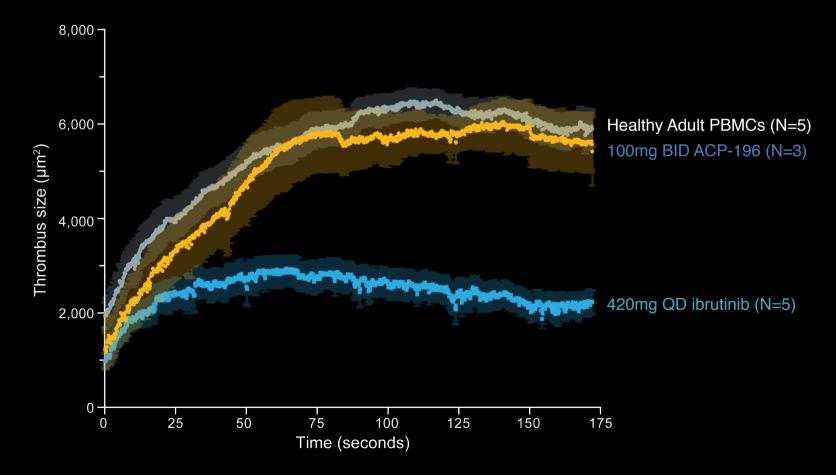

CC-292


FGFR3

FLT3

Selectivity Profile: Reduced ITK

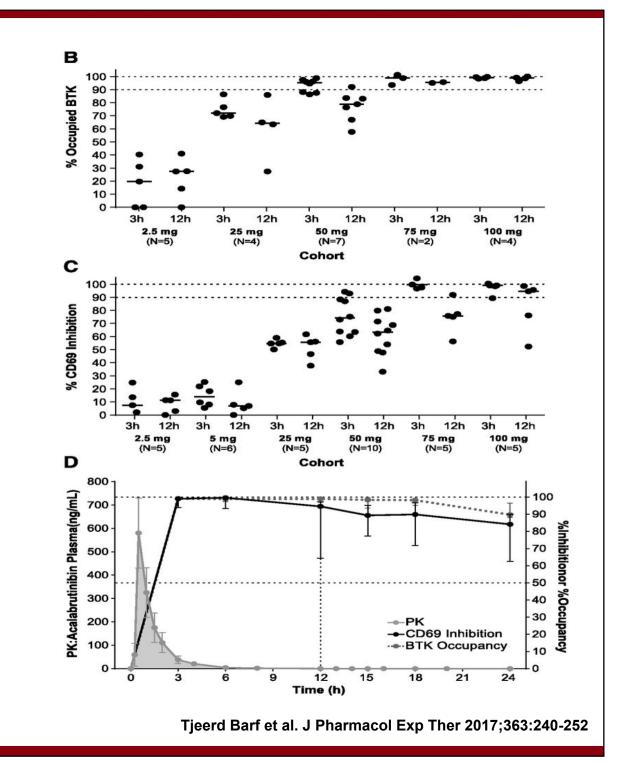
Non ADCC-mediated NK cell lysis; CD8⁺ T cell IFNγ production



ibrutinib (500nM each), then washed before being assayed.

CD8⁺ T cells were stimulated with anti-TCR Ab to produce IFN γ .

Platelet Aggregation (R/R Pts with CLL)

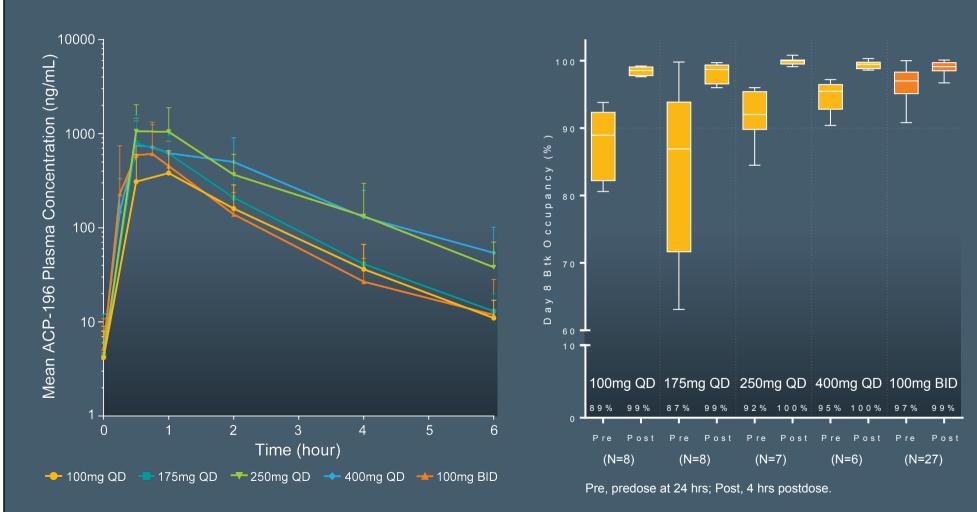

ACP-196 does not inhibit platelet mediated thrombosis

In vivo murine thrombosis model. Chen, et al. Blood. 2014.

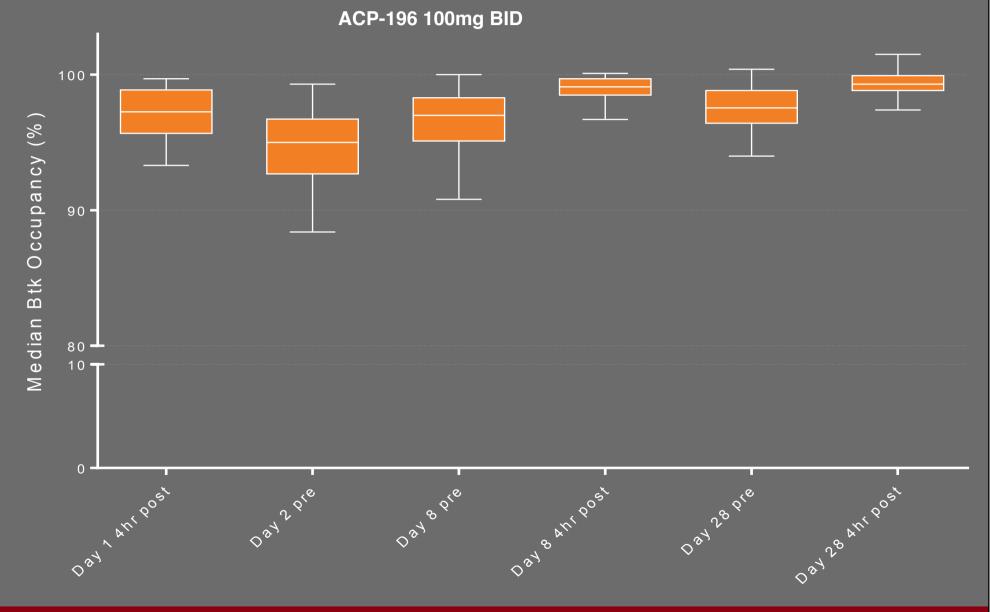
PK versus PD after Acalabrutinib Dose in Healthy Volunteers

Α

ACE-CL-001: Study Design

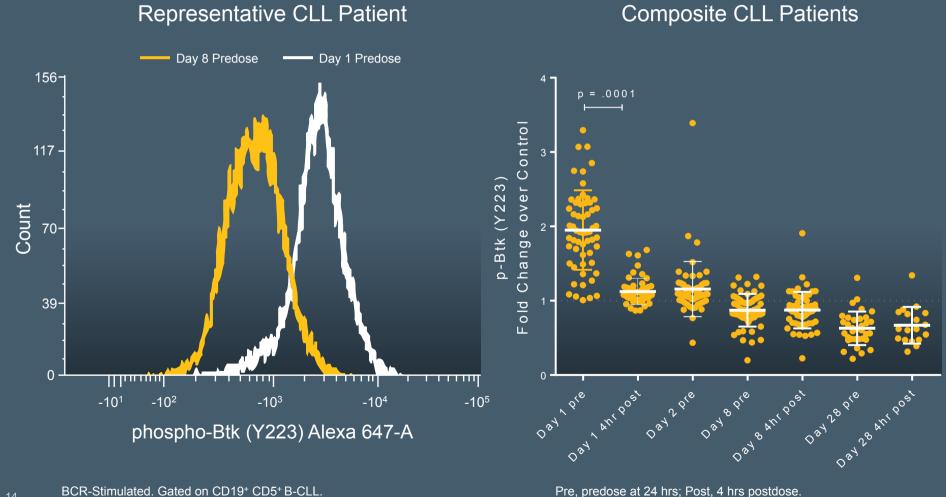

- Relapsed/Refractory CLL
- ECOG PS ≤ 2
- Prior exposure to Btk inhibitors <u>not</u> allowed
- Prior exposure to PI3Kδ, BCL-2 inhibitors allowed
- Pancytopenia, prior BMT allowed

ACP-196 Cohorts	N=61
Dose Escalation, 6-8 patien	ts
100mg QD	9†
175mg QD	8
250mg QD	7
400mg QD	6
Dose Expansion (Phase 2)	
100mg BID	31

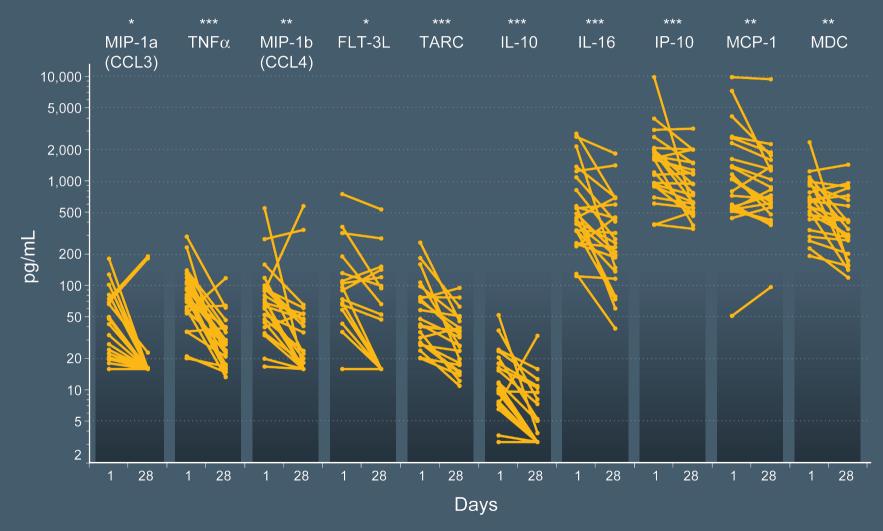

[†]1 patient discontinued prior to the 28 day DLT review.

Pharmacokinetics/Pharmacodynamics

1 hour half-life; Rapid oral absorption; Full Btk occupancy



ACP-196 Twice-Daily Dosing: Complete & Continuous Btk Coverage



Phospho-Btk Inhibition (R/R Pts with CLL)

Complete inhibition of Btk signaling

Cytokines Relevant to BCR Signaling & Tumor Homing Significantly Decrease

*P<0.05; **P<0.01, ***P<0.001. P-values based on Wilcoxon Signed-Rank test; n = 23.

Adverse Events (Median 14.3 Mos F/U)

Reported in ≥5% patients

Adverse Events (Treatment-Related), n (%)	Grade 1-2	Grade 3	N=61
Headache	12 (20)		12 (20)
Increased tendency to bruise	7 (12)	_	7 (12)
Petechiae	7 (12)	_	7 (12)
Diarrhea	6 (10)		6 (10)
Ecchymosis	5 (8)	_	5 (8)
Reported in ≥20% patients			
Adverse Events (Treatment-Emergent), n (%)	Grade 1-2	Grade 3	N=61
Headache	26 (43)	_	26 (43)
Diarrhea	23 (38)	1 (2)	24 (39)
Increased weight	15 (25)	1 (2)	16 (26)
Pyrexia	12 (20)	2 (3)	14 (23)
Upper respiratory tract infection	14 (23)		14 (23)
Fatigue	11 (18)	2 (3)	13 (21)
Peripheral edema	13 (21)	_	13 (21)

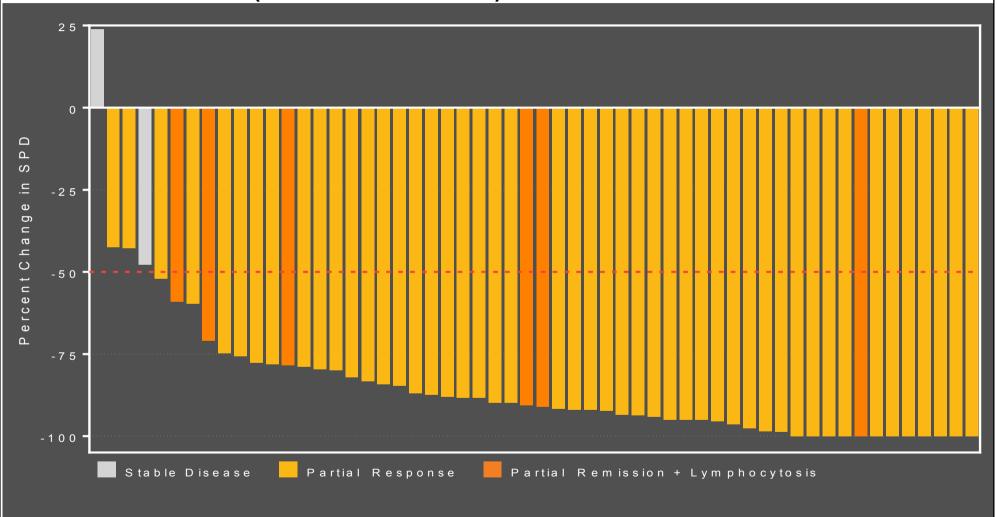
Serious Adverse Events

Reported in all patients

Serious Adverse Events (Treatment-Related), n (%)	Grade	N=61
Febrile neutropenia	4	1 (2)

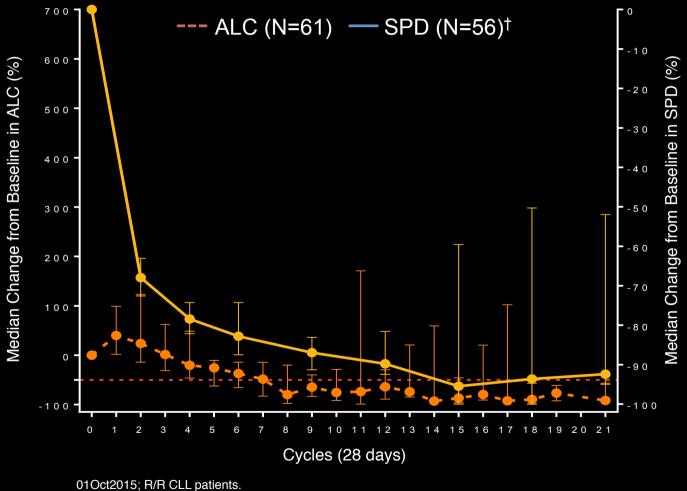
Reported in ≥2 patients

Serious Adverse Events (Treatment-Emergent), n (%)	Grade	N=61
Pneumonia	3-4-5 ⁺	6 (10)
Autoimmune hemolytic anemia	3	2 (3)
Pyrexia	2-3	2 (3)


01Oct2015; R/R CLL patients.

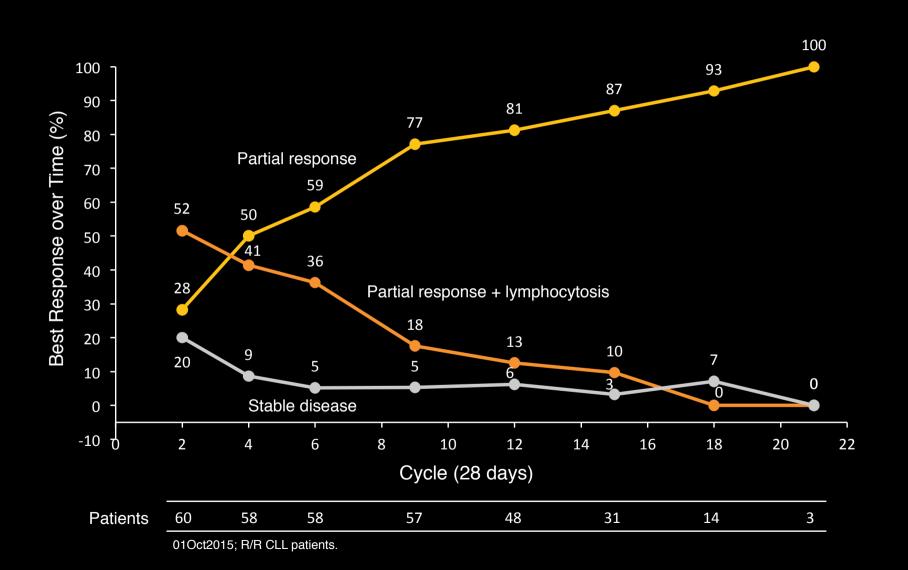
[†]1 fatal pneumonia, unrelated.

No atrial fibrillation or major bleeding events

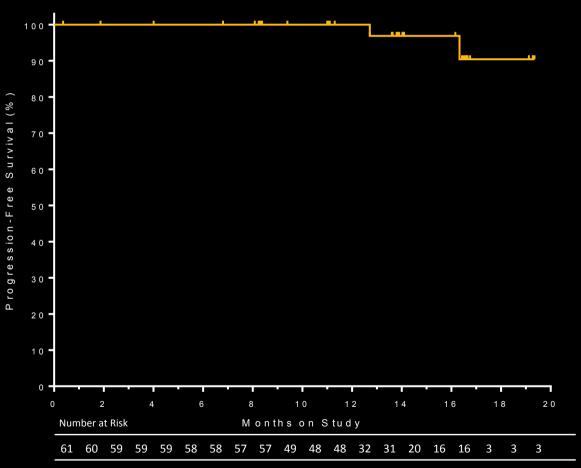

Acalabrutinib Nodal Response (CT Scan)

ORR 95% (85% PR + 10% PR-L) at 14.3 mo F/U

01Oct2015; R/R CLL patients; Median 14.3 months of follow-up. 4/61 patients had no baseline lymphadenopathy; 1 patient discontinued prior to first assessment.


Change in ALC/SPD Over Time

[†]4/61 patients had no baseline lymphadenopathy;


1 patient discontinued prior to first assessment.

Best Response Over Time

Progression-Free Survival

2 reported K-M events⁺

01Oct2015; R/R CLL patients; N = 61. Median 14.3 months of follow-up. [†]1 fatal pneumonia; 1 CLL Progression.

ACE-CL-001: ASH Update

Efficacy: ORR 85%, +PR-L, 93% 18 mo PFS: 88%, 17p 78% 81% remain on therapy

<u>Safety</u>: N=610, median 1 prior regimen, median 14.2 mos on therapy

Atrial fibrillation 2.3% Major hemorrhage 2.5% (5 GI, 3 CNS) Gr3+ infections, 16.2% (PJP, 2 aspergillus, 1 crypto)

ACE-CL-001: Acalabrutinib Ibrutinib Intolerant Cohort

Ibrutinib-Intolerant CLL Cohort (N = 33)^a

Inclusion criteria

- Confirmed CLL and intolerance to ibrutinib as determined by the investigator^b
- Age ≥18 years
- ECOG PS ≤2

Exclusion criteria

- Central nervous system involvement of lymphoma
- Significant cardiovascular disease^c

Primary objective

- Safety, including frequency, severity, and attribution of AEs <u>Secondary objectives</u>
- ORR, duration of response, PFS

Baseline Patient Characteristics

Characteristic	N = 33
Median age, y (range)	64 (50-82)
Rai stage III-IV ^a , n (%)	17 (52)
Bulky disease ≥5 cm, n/N (%)	10/32 (31)
Median no. of prior therapies (range)	4 (2-13)
Ibrutinib as last prior therapy, n (%)	30 (91)
Median duration of prior ibrutinib treatment, mo (range)	11.5 (1-62)
Median time from ibrutinib end to acalabrutinib start, d (range)	47 (3-331)
Baseline Cytopenias	
ANC ≤1500/μL	4 (12)
Hemoglobin ≤11.0 g/dL	9 (27)
Platelets ≤100,000/μL	13 (39)
Genomic Status	
Del11q	10/32 (31)
Del17p	12/32 (38)
Unmutated IGHV	25/31 (81)
	Awan F, et al. ASH 2016

Patient Disposition

Disposition, n (%)	
Treated	33 (100)
Discontinued treatment	9 (27)
Progressive disease	3 (9)
Adverse event ^a	3 (9)
Physician decision ^b	1 (3)
Other ^c	2 (6)
On treatment	24 (73)

^aStroke (hemorrhagic) and fungal infection led to death (n = 1 patient each); metastatic endometrial cancer (n = 1).

^bConcurrent hemophilia.

^cIncrease in BTK C481S mutation frequency in peripheral blood and central nervous system involvement (n = 1 patient each).

Median time on treatment: 12.2 months (range, 0.2-23.6 months)

Awan F, et al. ASH 2016

AEs on Ibrutinib (≥2 Patients) (Investigator Assessed; N=33)

Adverse Event, n (%)	Grade 1	Grade 2	Grade 3	Unknown	Total
Rash	3 (9)	1 (3)	2 (6)	0	7 (21)
Arthralgia	1 (3)	2 (9)	2 (6)	0	6 (18)
Diarrhea	1 (3)	1 (3)	2 (6)	1 (3)	5 (15)
Fatigue	2 (6)	1 (3)	1 (3)	0	4 (12)
Hemorrhage	2 (6)	0	1 (3)	1 (3)	4 (12)
Myalgia	1 (3)	1 (3)	1 (3)	0	3 (9)
Atrial fibrillation	0	2 (6)	0	0	2 (6)
Erythema nodosum	0	2 (6)	0	0	2 (6)
Hematoma	1 (3)	1 (3)	0	0	2 (6)

Multiple occurrences of the same AE for a given patient were counted once for each Preferred Term. Patients may have experienced ≥1 AE.

Resolution of ibrutinib-related AEs was not required prior to study entry.

Awan F, et al. ASH 2016

Recurrence of Prior Ibrutinib-Related

AEs

Grade Change in Severity on Acalabrutinib vs on Ibrutinib

Adverse Event	Increased	Decreased	Unchanged
Arthralgia (n = 1)		$2 \rightarrow 1$	
Atrial fibrillation (n = 1)			$2 \rightarrow 2$
Contusion (n = 1)	$1 \rightarrow 2^{a}$		
Diarrhea (n = 2)		2 → 1	
		$3 \rightarrow 1$	
Ecchymosis (n = 1)		2 → 1ª	
Fatigue (n = 3)	1 → 2ª	2 → 1	$1 \rightarrow 1$
Muscle spasms (n = 1)			$1 \rightarrow 1$
Myalgia (n = 1)			$1 \rightarrow 1$
Peripheral edema (n = 1)			$1 \rightarrow 1$
Panniculitis (n = 1)		3 → 2 ª	
		2 \ 4*	$1 \rightarrow 1$
Rash (n = 3)		3→1*	1 → 1 ª

^aDetermined by investigator as related to acalabrutinib.

- A total of 12 of 33 (36%) patients experienced a recurrent AE.
 - 14 of 16 events either decreased or were unchanged in severity with acalabrutinib
- No patients discontinued acalabrutinib because of a prior ibrutinib-related AE.

Additional Safety Outcomes

- Grade \geq 3 AEs in \geq 2 patients:
 - Thrombocytopenia (n = 3; 9%)
 - Anemia, neutropenia, pneumonia and hypertension, and parasthesia (n = 2; 6%)
- SAEs occurred in 11 patients (33%)
 - One SAE occurred in ≥2 patients: pneumonia (n = 2, 6%)
- 2 atrial fibrillation events were reported
 - The grade 2 event was a recurrence of previous atrial fibrillation on ibrutinib
 - The grade 3 event occurred in setting of pseudomonal infection and pleural effusion and resolved after 2 days
- 2 grade 5 events: stroke and disseminated systemic fungal infection (both deemed unrelated to study drug).

Investigator-Assessed Responses in Evaluable Patients^a

Best Response ^b , n (%)	N = 29 ^c
CR	1 (3.4)
PR	15 (51.7)
PRL	7 (24.1)
SD	6 (20.7)
ORR (CR + PR), n (%)	16 (55.2)
95% CI	35.7-73.6
ORR (CR + PR + PRL), n (%)	23 (79.3)
95% CI	60.3-92.0

^aEfficacy-evaluable patients had at least 1 response assessment after first dose of study drug and had measurable disease at baseline; 2 patients discontinued study before response assessment; 2 patients did not have measurable disease at baseline.

^cIncludes 200 mg QD (n = 2) and 100 mg BID (n = 27)

- All evaluable patients achieved at least SD
- Median time to PRL or better: 1.9 months (95% CI, 1.9-2.0).
- 81% of responding patients have a duration of response (PRL or better) ≥12 months.
- Median PFS has not been reached.

Awan F, et al. ASH 2016

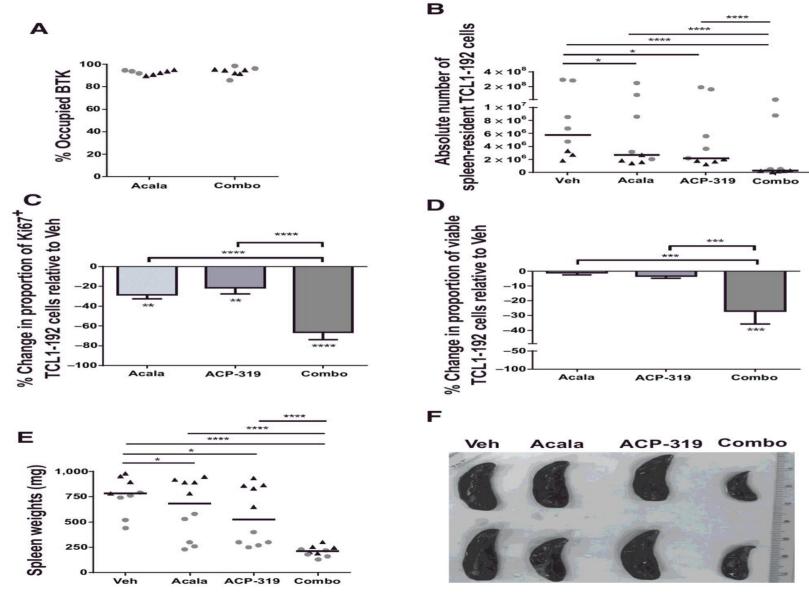
ACE-CL-001: Acalabrutinib for Richter's

- ACE-CL-001 is an ongoing, multinational, phase 1/2 study designed to evaluate acalabrutinib monotherapy in patients with CLL/SLL.
- Multiple disease cohorts were enrolled: relapsed/refractory, treatment-naïve, ibrutinib-intolerant, and RT/prolymphocytic leukemia.
- Previously reported ORR with acalabrutinib monotherapy (100 mg BID):
 - R/R: 95% (85% PR, 10% PRL; n = 60)¹
 - TN: 97% (87.5% PR; 10% PRL; n = 72)²

 Data are presented for 29 patients with RT or other transformations for safety and 21 evaluable patients with RT for efficacy.

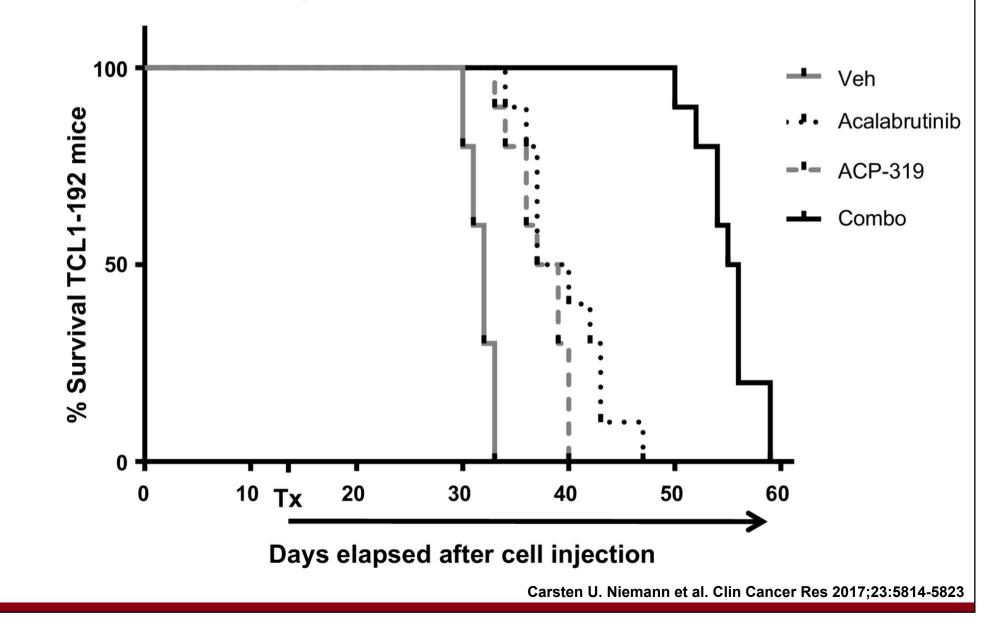
- All patients were treated with acalabrutinib 200 mg BID.
- Data cutoff: 01 September 2016

¹Byrd JC, et al. N Engl J Med. 2016;374(4):323-332. ²Byrd JC, et al. ASCO 2016 [poster presentation].

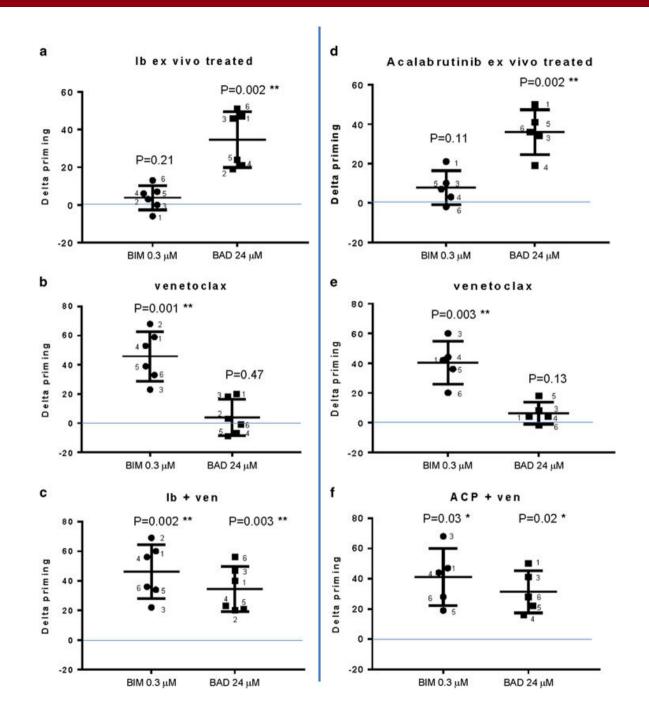

Response in RT

- ORR 38.1% (n=8; 95% CI 18.1-61.6)
- Median time on treatment 3.4 months (range, 1.7-12.0 mos)
- Median DOR: 5.2 months (range, 0.3 6.5+ months)
 - 3 of 8 responders remain on treatment (DOR: 3.9+, 5.1+^a, and 6.5+ months)
 - DOR in 3 responders with prior ibrutinib: 0.6+^a, 1.5, and 1.8 months
- Median PFS: 2.1 months (range, 0.03+-8.3+ months)

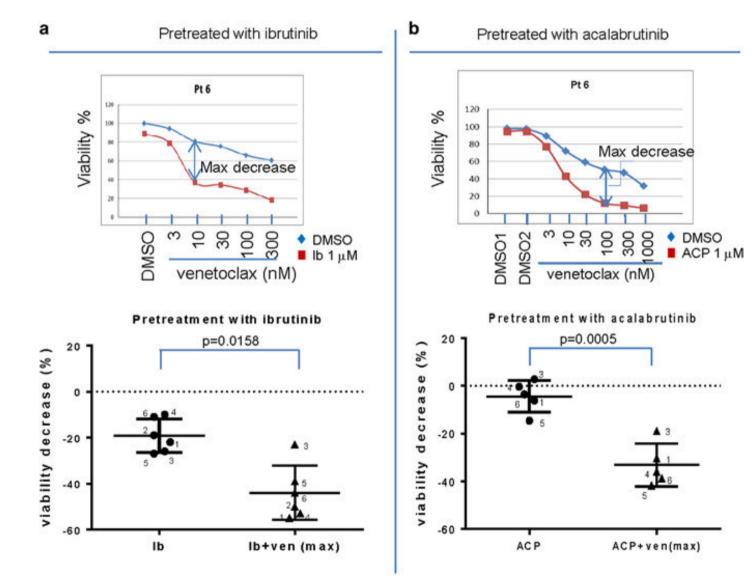
Summary: Acalabrutinib


- Potent and more specific BTK inhibitor that binds covalently to Cys481, does not inhibit ITK or EGFR, and has less activity against TEK
- Clinical data demonstrate very high BTK occupancy at 100 mg BID, with 95% ORR. PFS to be updated at ASH, 88% at 18 mos
- Evidence for similar, possibly fewer toxicities than ibrutinib
- ORR 38.4% in RT, but median DOR 5 mos

Impact of Acalabrutinib, ACP-319, or Their Combination on Tissue-Resident TCL1-192 Cells

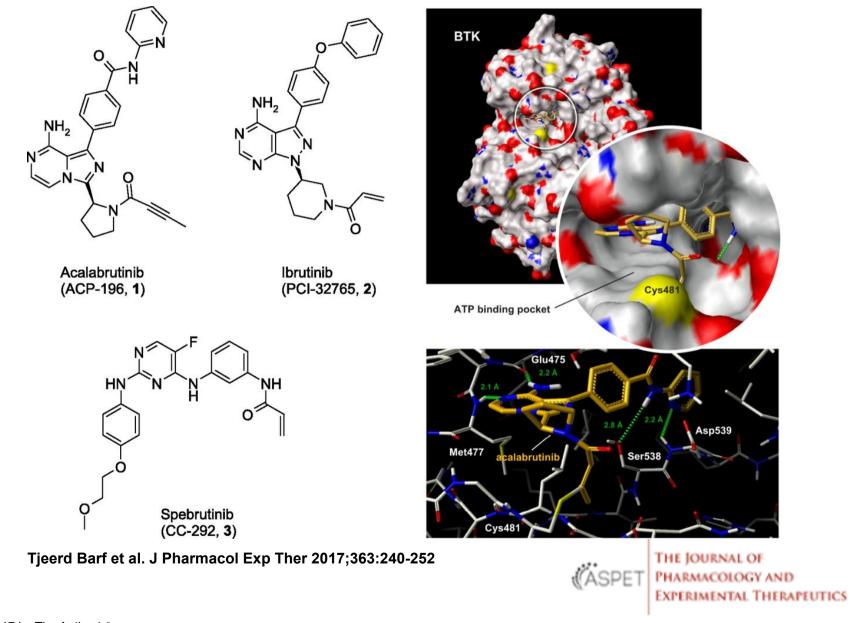


Carsten U. Niemann et al. Clin Cancer Res 2017;23:5814-5823


Acalabrutinib + ACP-319 Improves Survival of Mice Injected with TCL1-192

Similar Ex Vivo Effects with Ibrut vs Acala

Similar Effects on Viability Together with Venetoclax


CLL Registration Trials

Untreated older patients:
Acala vs acala-obin vs obin- chl

- Relapsed refractory with del 17p or 11q:
 - -Acala vs ibrutinib

(Left) Chemical structures of clinical irreversible binding BTK inhibitors.

Copyright © 2017 by The Author(s)

RT: Time on Treatment

