Nuovi scenari in Ematologia

NAPOLI 1 dicembre 2017

PALAZZO ESEDRA

Leucemia Linfatica Cronica (LLC)

L'approccio terapeutico

Maria Rosaria Villa U.O.C. Ematologia P.O. Ascalesi ASLNA1Centro

DISCLOSURE

Nome: Maria Rosaria

Cognome: Villa

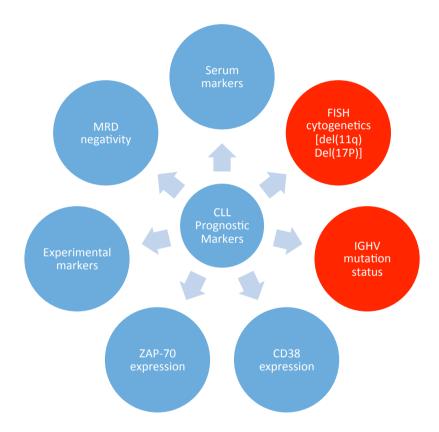
Impiego nell'industria farmaceutica negli ultimi 5 anni: NO

Interssi finanziari nel capitale di un'industria farmaceutica: NO

Altri rapporti con l'industria farmaceutica: NO

Novel Targ	Session III Novel Targeted Therapies Chairmen: P. Ghia, E. Montserrat		Session IV Newer Agents Chairmen: J.R. Brown, P.L. Zinzani				
2.00 pm	Ibrutinib J.A. Burger	8.30 am	Next-generation BTK inhibitors: - Acalabrutinib I.R. Brown				
2.15 pm	General discussion		- BGB-3111 C. Tam				
2.30 pm	Idelalisib S. O'Brien	9.00 am	General discussion				
2.45 pm	General discussion	9.15 am	Other PI3K inhibitors:				
3.00 pm	Venetoclax P. Hillmen		- Duvelisib S. O'Brien - TGR-1202				
3.15 pm	General discussion		A.R. Mato - Pilaralisib				
3.30-4.30 pm	Round Table J.A. Burger, P. Hillmen, S. O'Brien		J.R. Brown				
		10.00 am	General discussion				

AGENDA

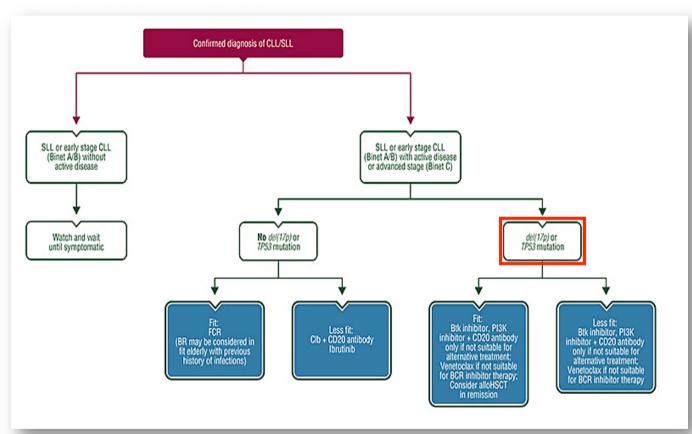

- Treatment decisions
- Patients with del 17p/TP53 mutations
- Complex Karyotype/NOTCH1
- IGHV mutational status
- Outcomes in 1 line and R/R

AGENDA

- Treatment decisions
- Patients with del 17p/TP53 mutations
- Complex Karyotype/NOTCH1
- IGHV mutational status
- Outcomes in 1 line and R/R

Treatment decisions

- A large number of biological, genetic and molecular markers of prognosis in CLL have been identified¹
 - Of these, IGHV mutation status and del(11q) are among the most well-studied¹
- Recent evidence indicates that testing for IGHV mutation status and del(11q) should be performed as standard for all patients with newly-diagnosed CLL patients¹
 - As these are consistent and robust prognostic markers, independent of clinical stage, which provides complementary information on PFS and OS¹
- ESMO guidelines recommend analysis for the detection of del(11q) and of IGHV mutation status as 'desirable' before the start of therapy^{2,3}

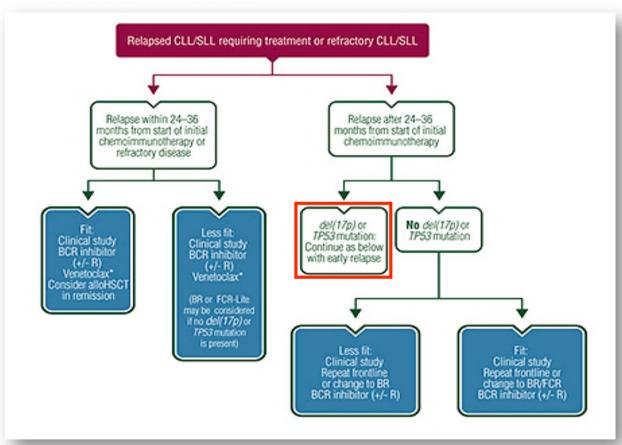


- 1. Parikh S, et al. Semin Oncol 2016; 43(2): 233-40.
- 2. Strati P, et al. Blood 2015; 126(4): 454-462.
- 3. Eichhorst B, et al. Ann Oncol 2015; 26(Suppl 5): v78-v84.

Welcome to the EUROPEAN SOCIETY FOR MEDICAL ONCOLOGY,

the leading European professional organisation for medical oncology.

Frontline CLL


- ESMO guidelines recommend analysis for the detection of del(11q) and of IGHV mutation status as 'desirable' before the start of therapy
- Only patients with del(17p) and/or TP53 mutation are highlighted as needing specific regimens

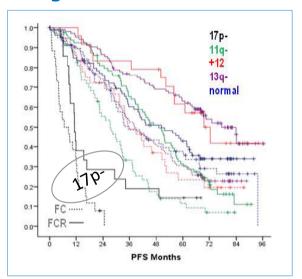
Published: 27 June 2017. Authors: ESMO Guidelines Committee

Welcome to the EUROPEAN SOCIETY FOR MEDICAL ONCOLOGY,

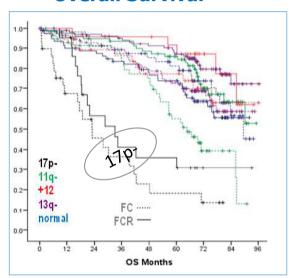
the leading European professional organisation for medical oncology.

Relapsed CLL

- Current ESMO treatment guidelines do not recommend treatments according to IGHV or del(11q) mutational status
- Only patients with del(17p) and/or TP53 mutation are highlighted as needing specific regimens


Published: 27 June 2017. Authors: ESMO Guidelines Committee

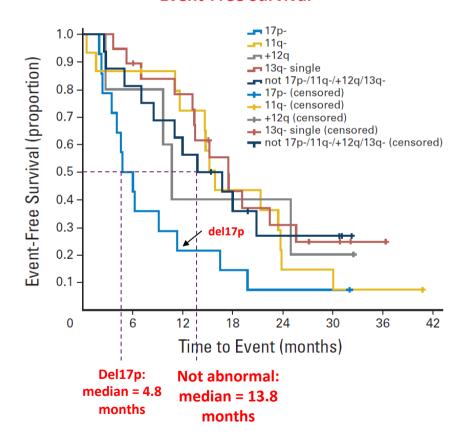
AGENDA


- Treatment decisions
- Patients mutations
- Complex Karyotype
- IGHV mutational status
- Outcomes in 1 line and R/R

Background: Updated results from CLL8 trial (FC vs FCR): By FISH

Progression Free Survival

Overall Survival

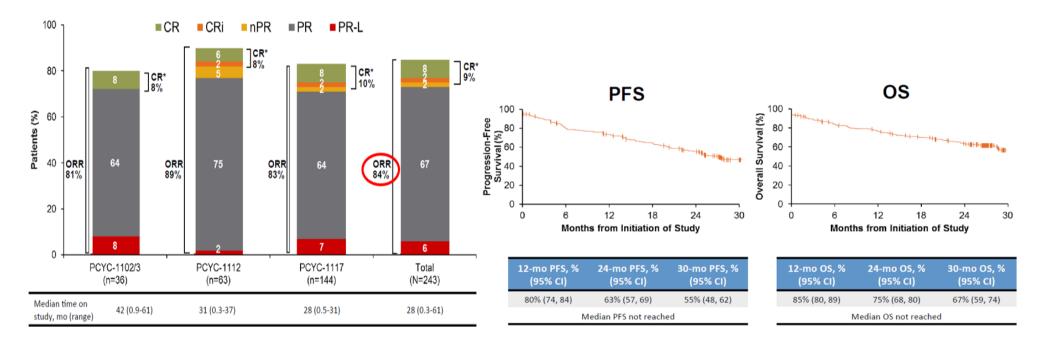


Del17p: patients treated with FC /FCR PFS less than 12 months!3

Patients with **TP53 aberrations** respond less well to treatment than do those without this high-risk genetic lesion, resulting in **early relapse** and **inferior survival**^{1,2}

BR is Less Effective in Relapsed or Refractory CLL With Del17p

Event-Free Survival



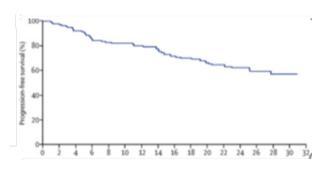
Multicenter, phase 2 study 78 patients

Cytogenetics by FISH	Overall Response Rate
Not abnormal	62.5%
Del17p	7.1%*
Del11q	92.3%
12q trisomy	100.0%
Del13q	75.0%

^{*}P = 0.006 vs not abnormal.

CLL R/R patients with del17p patients treated with ibrutinib

Of patients with CR/CRi (n=23), 81% maintained response at 30 months

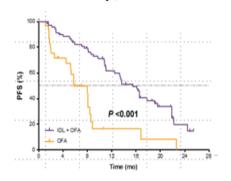

With a median (range) study duration of 28 (0.3-61+) months, median PFS and OS were not reached

Jones et al., EHA 2016

New agents in R/R patients with del 17p/TP53 mutations

IBRUTINIB

Ibrutinib in R/R patients with del17p/TP53 mutation (the RESONATE-17™ Study)

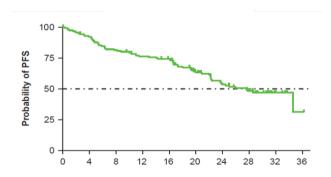


PFS @ 2 yrs= 63%

O'Brien et al., Lancet Oncol. 2016

IDELALISIB

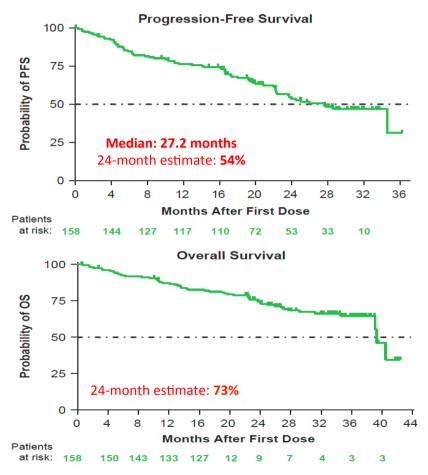
Idelalisib+Ofatumumab vs Ofatumumab in R/R patients with del17p/TP53 mutation



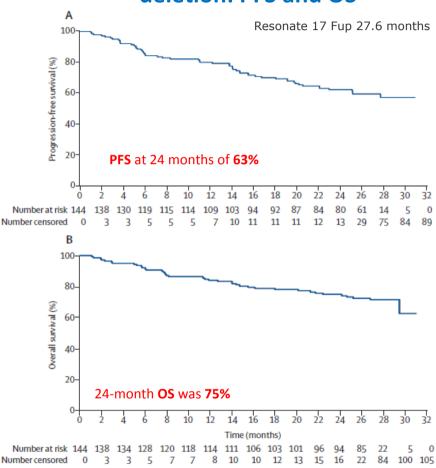
Med. PFS= 15.5 months

Jones et al. Lancet Hematology 2017

VENETOCLAX


Venetoclax in R/R patients with del 17p CLL

Med. PFS= 27.2 months

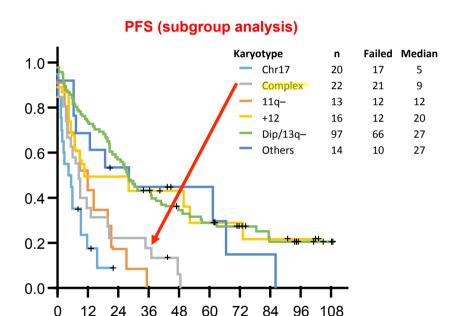

Stilgenbauer et al., iwCLL 2017, abstract 420

Venetoclax in R/R CLL with 17p deletion: PFS and OS

Stilgenbauer et al., Presented at EHA 2017 (abstract S771, oral presentation)

Ibrutinib in R/R CLL with 17p deletion: PFS and OS

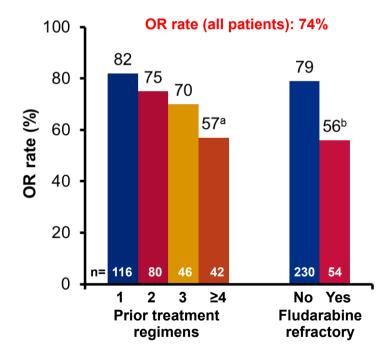
Susan O'Brien et al. Published online September 13, 2016 http://dx.doi.org/10.1016/S1470-2045(16)30212-1


AGENDA

- Treatment decisions
- Patients with del 17p/TP53 mutations
- Complex Karyotype/NOTCH1
- IGHV mutational status
- Outcomes in 1 line and R/R

FCR: Complex Karyotype

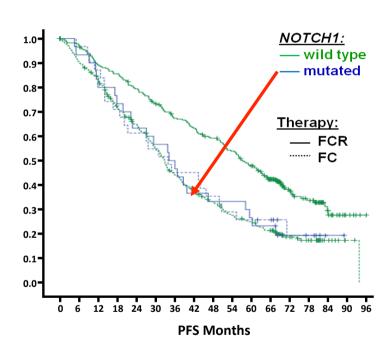
sensitivity without Chr17 abnormalities - benefits patients with ≤3 prior treatments


Phase II, single-arm trial in patients with relapsed/refractory CLL (N=284)

Median PFS Time (months) All patients: 20.9 months

Chr17 abnormalities: 5 months HR 4.6 (95% CI: 2.5, 8.2) p<0.001

Badoux XC, et al. Blood 2011; 117:3016-3024.


p-0.001 vs. not F. refractory.

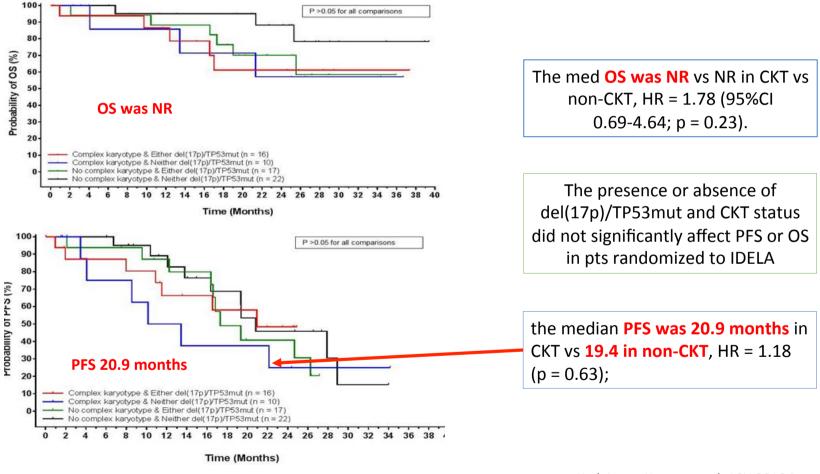
Characteristics of F. refractory.

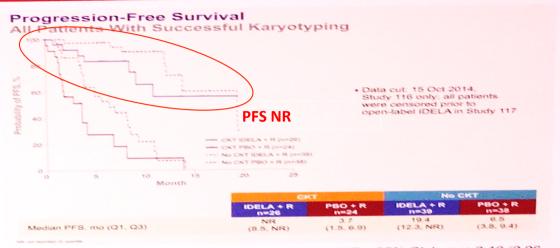
The property of the propert

FCR: NOTCH1 mutations

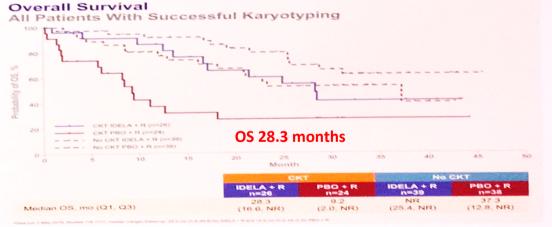
GCLLSG CLL8

Stilgenbauer S et al. Blood 2013


GCLLSG CLL11

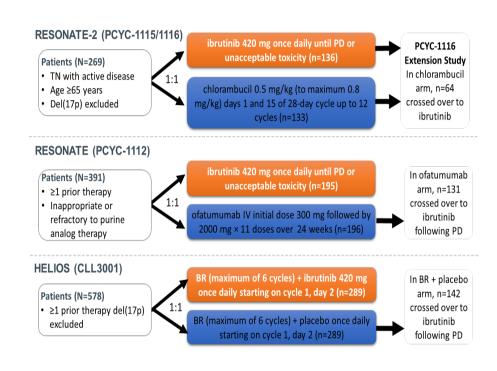

Estenfelder S et al. Blood 2016 128:3227

Rossi D., iwCLL 2017 (invited oral presentation)

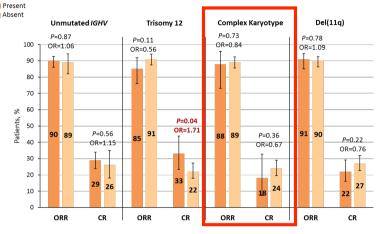

Idelalisib in pts with Complex Karyotype status

Karl-Anton Kreuzer et al. ASH 2016 Poster

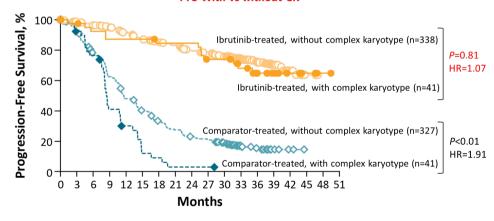
IDELA + R vs PBO + R unadjusted hazard ratios (HRs; 95% CIs) were 0.16 (0.06, 0.40; p <0.001) and 0.10 (0.04, 0.25; p <0.001) for CKT and no CKT, respectively


- IDELA + R vs PBO + R unadjusted HRs (95% CIs) were 0.43 (0.19, 0.94; p=0.03) and 0.57 (0.27, 1.20; p=0.13) for CKT and no CKT, respectively
- CKT vs no CKT for IDELA + R unadjusted HR (95% CI) was 1.97 (0.87, 4.48; p=0.10)

Patients with Complex Karyotype (CK) treated with Idela+R

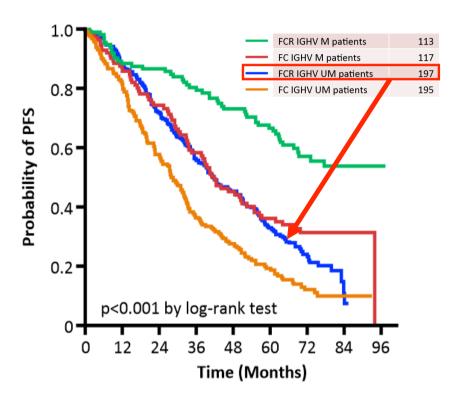

- Retrospective exploratory analysis of Study 1116 (Idelal+R vs R)
- Update on the OS data at ASH 2016
- Now with median FU 25 months
- Continues to show no significant adverse effect of CK in Idela-treated patients (HR 1.97, p=0.10), with the caveat of limited sample size

Ibrutinib in Complex Karyotype Present


Median follow-up 36.4 months (95% CI 35.8-37.1)

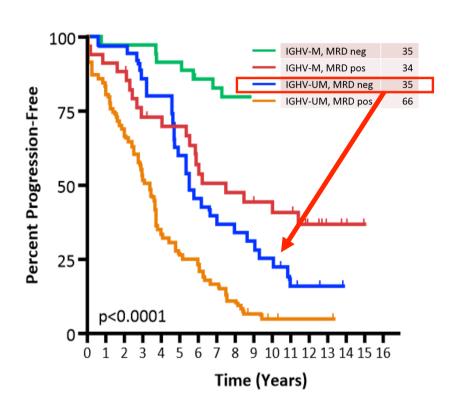
Genomic Risk Factors are not Associated With Inferior Response Rates in Ibrutinib-Treated Patients

PFS With vs without CK


- In ibrutinib-treated patients, PFS at 36 months:
 - 65% with presence of complex karyotype vs 72% with absence of complex karyotype

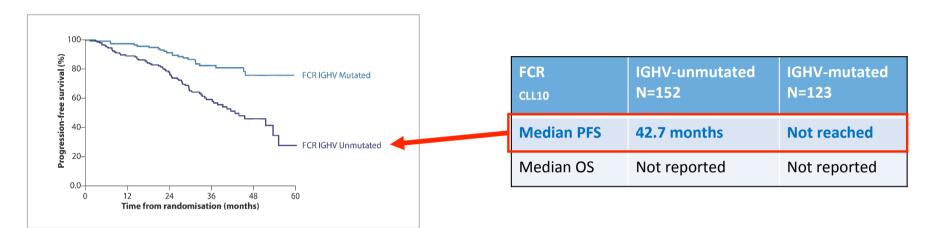
Thomas J. Kipps – iwCLL New York 2017

AGENDA


- Treatment decisions
- Patients with del 17p/TP53 mutations
- Complex Karyotype/NOTCH1
- IGHV mutational status
- Outcomes in 1 line and R/R

PFS by IGHV after front-line FCR: FCR300 and CLL8 trials

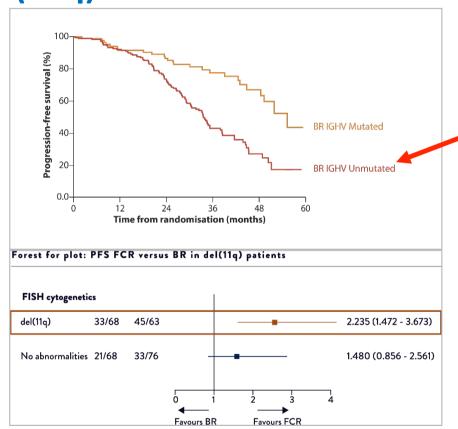
IGVH mutated
54% Prog-free @ 13 yrs
curve plateaued beyond 10.4 yrs


Thomson et al., Blood 2015

IGVH mutated >50% Prog-free @ 6yrs

Fisher et al., Blood 2015

FCR PFS by unmutated IGHV or del(11q): CLL 10


FISH cytogenet	ics							
del(11q)	33/68	45/63		_				2.235 (1.472 - 3.673)
No abnormalitie	s 21/68	33/76	_	-		_		1.480 (0.856 - 2.561
			0 1		2	3	4	

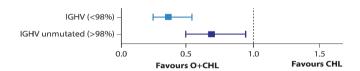
FCR CLL10	Del(11q) present N=68	All patients N=282
Median PFS	37.8 months	55.2 months
Median OS	Not reported	Not reported

Eichhorst B, et al. Lancet Oncol 2016; 17(7): 928-42.

Frontline CLL

CLL 10: BR PFS by unmutated IGHV or del(11q)

BR CLL10	IGHV-unmutated N=183	IGHV-mutated N=87
Median PFS	33.6 months	55.4 months
Median OS	Not reported	Not reported

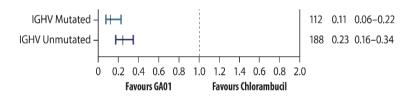

BR CLL10	Del(11q) present N=63	All patients N=279
Median PFS	25.3 months	41.7 months
Median OS	Not reported	Not reported

Eichhorst B, et al. Lancet Oncol 2016; 17(7): 928-42.

CLL 11: Chl + Ofatumumab efficacy by IGHV mutational status

Frontline CLL

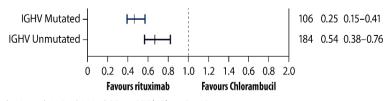
Treatment Effect on PFS by IGHV status - (HR, 95% CI)



O+Clb vs Clb Complement-1	IGHV-unmutated N= 114 vs 113	IGHV-mutated N= 87 vs 90
Reduction in risk of PD or death with O+Clb vs Clb	HR for PFS is improved with O status But there is a trend suggesting patients with unmutated IGHY (Forrest Plot on right)	

Hillmen P. et al. Lancet 2015: 385: 1873-83.

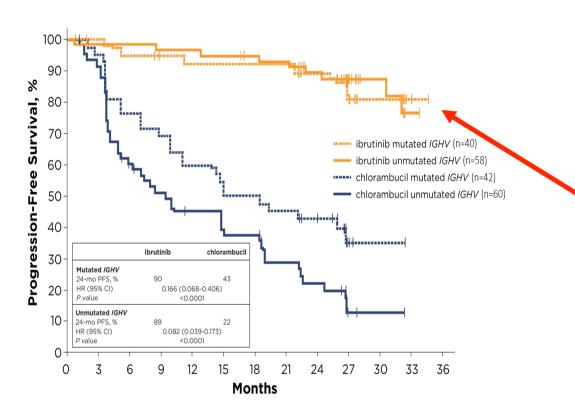
CLL 11: Chl + Obinutuzumab PFS is decreased by unmutated IGHV


Treatment Effect of G+Clb vs Clb on PFS by IGHV status - (HR, 95% Cl)

G+Clb vs Clb	IGHV-unmutated N= 129 vs 58	IGHV-mutated N= 76 vs 36
PFS, HR (95% CI)	0.23 (0.16-0.34)	0.11 (0.06-0.22)
Reduction in risk of PD or death with G+Clb vs Clb	77%	89%

CLL: Chl + Rituximab PFS is decreased by unmutated IGHV

Treatment Effect of R+Clb vs Clb on PFS by IGHV status - (HR, 95% Cl)

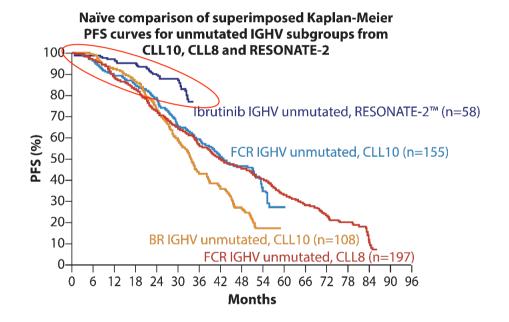


Goede V, et al. N Engl J Med 2014; 370(12): 1101-10.

R+Clb vs Clb	IGHV-unmutated N= 126 vs 58	IGHV-mutated N= 70 vs 37
PFS, HR (95% CI)	0.54 (0.38-0.76)	0.25 (0.15-0.41)
Reduction in risk of PD or death with R+Clb vs Clb	46%	75%

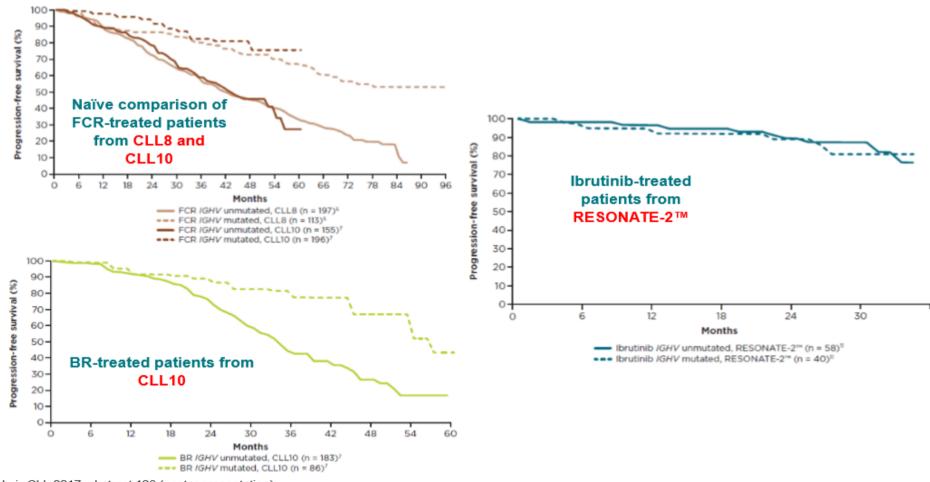
Ibrutinib PFS benefit is maintained in presence of unmutated IGHV

Ibrutinib vs Clb RESONATE-2	IGHV-unmutated N=58 vs 60	IGHV-mutated N=40 vs 42		
PFS, HR (95% CI)	0.082 (0.039-0.173) P<0.0001	0.166 (0.068-0.406) P<0.0001		
Reduction in risk of PD or death with Ibrutinib vs Clb	92%	83%		


Barr P et al. Oral presentation at ASH 2016

Ibrutinib PFS benefit vs FCR and BR in presence of unmutated IGHV

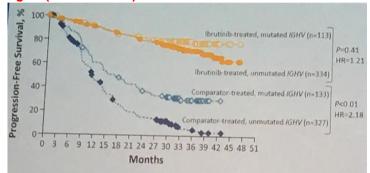
Frontline CLL


Ibrutinib vs BR and FCR	IGHV- unmutated	IGHV- mutated
30-month PFS rates	s:	
CLL8 FCR (N= 197)	64%	84%
CLL10 FCR (N= 155) BR (N= 190)	65% 59%	87% 83%
RESONATE-2 Ibrutinib (N= 58)	87%	81%

N in the above table denotes the number of patients with unmutated IGHV

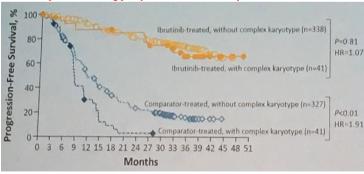
Ghia P et al. Poster 188 presented at XVII iwCLL 2017.

Progression-free survival by IGHV: front-line CIT and ibrutinib



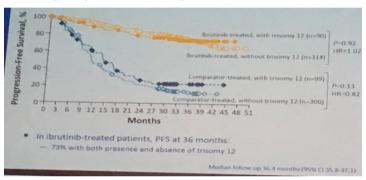
Ghia et al., iwCLL 2017; abstract 128 (poster presentation)

100 - Outcome of ibrutinib-treated patients with CLL/SLL with high-risk prognostic factors in an integrated analysis of 3 randomized phase 3 studies

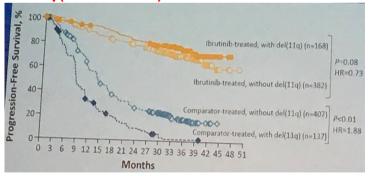

Genomic abnormalities del 17p and del11q, as well as unmut IgHV, are prognostic factors for poor outcomes to chemoimmunotherapy for pts with CLL/SLL This is a pooled analysis on 3 phase III studies (RESONATE, RESONATE, HELIOS) to assess outcomes based on genomic abnormalities (FU: 36,4 months)

IgHV (mut vs unmut)

PFS@36m: 70% unmut vs 77% mut


Complex cariotype (with vs without)

PFS@36m: 65% with CK vs 72% without CK


Kipps et al. ICML 2017; Abstract 100 (Oral presentation)

Trisomy 12 (with vs without)

PFS@36m: 73% in both groups

Del11q (with vs without)

PFS@36m: 74% with del11q vs 68% no del11q

AGENDA

- Treatment decisions
- Patients with del 17p/TP53 mutations
- Complex Karyotype/NOTCH1
- IGHV mutational status
- Outcomes in 1 line and R/R

1L CLL

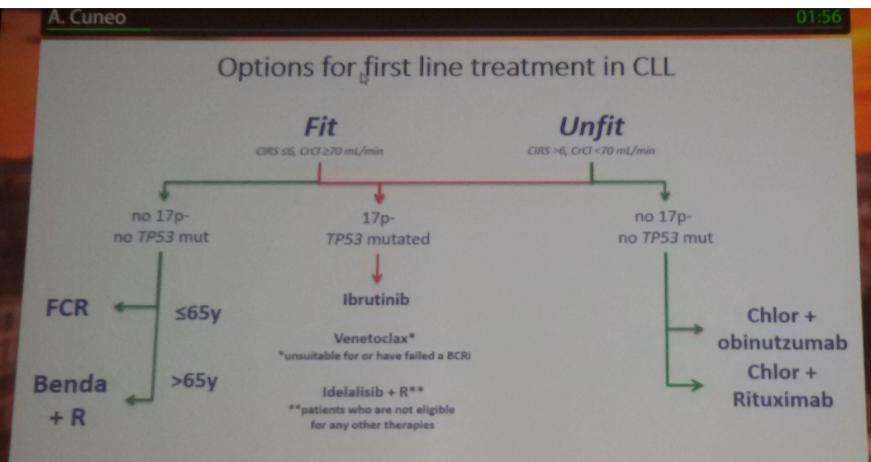
		FCR			BF	₹		Chl-Obi	IBRU	TINIB
All Patients	FCR N=408	FCR N=404	FCR N=282	BR N=279	BR (elderly) N=70	BR (elderly) (n=279)	BR (elderly) N=121	CHL-OBI (elderly) N=330	Ibrutinib (elderly) N=136	Ibrutinib (elderly) N=31
Age, median (range)	61 (36-81)	Not reported	62.1 (55-67)	61 (54-69)	72 (65-87)	70.0 (43-86)	75 (approx)	74 (39-88)	73 (65-89)	71 (65-84)
PFS, median	56.8 mo	54.8 mo	57.6 mo	42.3 mo	35 mo	40.0 mo	40 mo	26.7 mo	NR 89% at 2 Yr	NR 92% at 5 Yr
OS, median	NR 78.7% at 5Yr	Not reached	NR 80.9% at 5Y	NR 80.1% at 5Y	55 mo 89.6% at 2Yr	NR 94.3% at 2Yr	44mo	Not reached	NR 95% at 2Yr	NR 92% at 5 Yr
Median Fu	5.9 yrs	70 mo	58.2 mo	58.2 mo	N rep.	24m	24 mo	18.8 mo	28.6 mo	62 mo
Reference	CLL8 Fischer et al 2016	Rossi 2015 Retrospective	CLL10 Eichhorst, et al. ASH 2016. Abstract 4382	CLL10 Eichhorst, et al. ASH 2016. Abstract 4382	Laurenti 2015 Leuk Res Retrospectiv "Real Life"	Gentile M et al. Eur J Cancer 2016 "Real Life"	MABLE Michallet iwCLL2015 #178	CLL 11 Goede V, et al. N Engl J Med. 2014;	RESONATE-2 Barr et al. ASH 2016	PCYC-1102 Susan M. O'Brien et al. ASH 2016 ORAL

Need longer follow up to draw any conclusions from naïve comparisons against FCR or BR in 1L CLL cohorts

Caution: Naive Comparison

R/R CLL

	IBRUTINIB		BR			FCR		Ide	Ven
Comparators	ibrutinib R/R PCYC-1102 O'Brien ASH 2016	ibrutinib R/ R RESONATE J. Byrd ASCO 2017	BR Fisher et al. JCO 2011	BR _{HELIOS} (n=289) Fraser iwCLL 2017	BR A.Cuneo et al. ASH 2017	FCR Badoux Blood 2011	FCR Robak JCO 2010 REACH	IDELA+R Sharman ASH 2014	Venetoclax Roberts 2016
Median PFS, months	52	NR 3-year PFS rate was 59%	15.2	14.3	25	20.9	30.6	19.4	66% at 15 mo
Median OS, months	NR 57% at 60 mp	NR 3-year OS rate was 74%	33.9	NR	NR 92.7% at 12 mo	46	NR	NR	NR
ORR, %	86%	91%	59%	66.1%	82.3%	74%	69.9%	81% 1 interim analysis	77%
mFUp	5-year (60 month)	4-year (44 month)	24	34.8	37.1	43	25	13	16.7


Susan M. O'Brien et al. ASH 2016 ORAL John C. Byrd et al. ASCO 2017 Poster 272 - RESONATE 4 Year Follow-Up PCYC

Fisher et al. JCO 2011

Fraser et al., iwCLL 2017, abstract 400 (poster presentation)

Badoux C. et al. Blood March 17, 2011

Roback et al. JCO 2010 Sharman et al. ASH 2014; Abstract 330 (Oral Presentation) Andrew W. Roberts et al. ASH 2016 POSTER Roberts A.W. et al. – NEJM 2016 A.Cuneo et al. Abstract 642 - ASH 2017

Curso A personal view adapted from NCCN 2015, Rallek M. Am.) Hematoliol 2015, Stilpenbauer 5 Educ book ASCO 2015, Barrientos J. ASH Educ Book 2016, Euchhorst 8 and Hallek M. ASH Educ Book 2016.

Consider allogeneic BMT in eligible patients

Venetoclax at progression or if ibrutinib or idela are not an option

DISCUSSION

Cytogenetic:

When? Who? Where? Why?

- IGHV mutational status
 When? Who? Where? Why?
- Therapeutic Algorithm
- New drugs

alone or combination?

Nuovi scenari in Ematologia

NAPOLI 1 dicembre 2017

PALAZZO ESEDRA

Grazie...