

Pellegrino Musto

Direzione Scientifica IRCCS-CROB, Centro di Riferimento Oncologico di Basilicata, Rionero in Vulture (Pz)

> Mieloma Recidivo/Refrattario: Strategie terapeutiche e Anticorpi Monoclonali

IL MIELOMA MULTIPLO

Nuove prospettive ed aspettative di vita

NAPOLI 31 ottobre 2017 HOTEL ROYAL CONTINENTAL

Pattern of remission and relapse defines natural course of multiple myeloma

MGUS, monoclonal gammopathy of unknown significance. Figure adapted from Durie BGM. Concise review of the disease and treatment options; Edition 2016. http://myeloma.org/pdfs/ConciseReview.pdf [Accessed July 2016]; Chung DJ, et al. Cancer Immunol Res 2016;4:61-71; Boland E, et al. J Pain Symptom Manage 2013;46:671-80; Bolli N, et al. Nat Commun 2014;5:2997.

Patient outcome in real-word practice

Mean (95% CI): interval 4L-5L, 3 m (1·8, 4·2); 5L, 4 m (3·15, 4·85)

Yong et al. Br J Haematol, 2016

Expected vs current PFS by treatments and line of therapy at relapse

* Expected

FOCUS study > 3 lines, refractory last line

Carfilzomib (28-day cycles) Cycle 1: 20 mg/m2 IV day 1, 2 in cycle 1, escalated to 27 mg/m2 on day 8, 9, 15, 16 Cycles 2-9: 27 mg/m2 on day 1, 2, 8, 9, 15, 16 Cycle >9: 27 mg/m2 on day 1, 2, 8, 9, 15, 16 and optional on day 8, 9

R 1:1

Control with corticosteroids

Prednisone 30 mg PO every other day or dexamethasone 6 mg PO every other day

Optional cyclophosphamide 50 mg PO

Treatment challenges in patients with RRMM

General considerations for salvage therapy selections

Relapses are associated with a high emotional and physical burden for patients, caregivers and physicians

Impatto sul paziente

- Impegno logistico:
 - Accessibilita' e numero di accessi in ospedale
 - Impegno del caregiver
- Effetti collaterali (citopenia, infezioni, PN, TVP, cuore)
- Terapie di supporto (profilassi antitrombotica, antibiotica, antivirale, ecc.)
- Terapia orale vs i.v.
- Durata della terapia
- Qualità della vita
- Possibilità di continuare a svolgere le proprie attività
- Preferenze

Illustration from a hematologist with 50 multiple myeloma patients per month, 90% of time spent in clinical care.

Fig. 5. Multiple impacts of relapse on patients living with MM.

Hulin et al. Leukemia Research (2017)

Continuing Evolution of Multiple Myeloma Treatment: Selected New Classes and Targets 2016- 2017

EDITORIALS

Progress in Myeloma — A Monoclonal Breakthrough

S. Vincent Rajkumar, M.D., and Robert A. Kyle, M.D.

"In the past decade, we have witnessed more progress in the treatment of multiple myeloma than any other cancer."

Rajkumar SV, et al. N Engl J Med. 2016;375(14):1390-1392.

Monoclonal antibodies in MM

		N O 00
Target	mAb	Stage of development
Surface molecules		
SLAMF7 (CS1)	Elotuzumab FDA & EMA approved Humanized	Phase 1/2/3
CD38	DaratumumabFDA & EMA approvedFully humanIsatuximab (SAR650984)ChimericMOR202Fully human	Phase 1/2/3/4 Phase 1/2/3 Phase 1/2
CD138	Indatuximab ravtansine (BT062)	Phase 1/2
BCMA	J6M0-mcMMAF (GSK2857916)	Phase 1
Signaling molecules		
IL-6	Siltuximab	Phase 2
RANKL	Denosumab	Phase 3
VEGF	Bevacizumab	Phase 2
DKK1	BHQ880	Phase 2
Immune checkpoint inhibi	tors	
	Pembrolizumab	Phase 1/2/3
PD-1	Nivolumab	Phase 1/2
	Pidilizumab	Phase 1/2
PD-L1	Durvalumab	Phase 1
CTLA4	Ipilimumab	Phase 1/2
KIR	Lirilumab	Phase 1

Is the paradigm of survival evaluation changing also in myeloma?

- Median OS provides a measure of when 50% of patients will die, it does not provide a true reflection of the survival time that may be expected from the patients who are alive after the median OS is reached
- Median OS is considered less suitable for survival curves that are skewed to the right since it does not differentiate the proportion of patients alive or dead after 50% of the patients have died

RELAPSE / REFRACTORY MULTIPLE MYELOMA ESMO guidelines 2017

Moreau et al. Ann Oncol 2017, in press

Possibile algoritmo rimborsato da Ottobre 2017 nel paziente elegibile al trapianto

Possibile algoritmo rimborsato da Ottobre 2017 nel paziente inelegibile al trapianto

Strategies at Relapse: How to Make the Right Choice

Strategies at Relapse: How to Make the Right Choice

Treatment options in relapsed MM The past

ASCT (melphalan 200)

Nothing/Consolidation/Maintenance

Second transplant, Allo-RIC Induction VMP

Rd continuous

(Re)treatment with bortezomib-based combinations *

Rd Continuous therapy

* Doxil, bendamustine

Treatment options in relapsed MM The present

1. Dimopoulos MA, et al. Lancet Oncology 2016; 17: 27-38; 2. Stewart AK, et al. N Engl J Med 2015;372:142-52; 3. Lonial S et al. N Engl J Med 2015;373:621-31; 4. Dimopoulos MA, eta la. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):154-66.

Treatment options in relapsed MM The present

1. Dimopoulos MA, et al. Lancet Oncology 2016; 17: 27-38; 2. Stewart AK, et al. N Engl J Med 2015;372:142-52; 3. Lonial S et al. N Engl J Med 2015;373:621-31; 4. Dimopoulos MA, eta la. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, eta la. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, eta la. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, eta la. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, eta la. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, eta la. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, eta la. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, eta la. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, eta la. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, eta la. NEJM 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, eta la. NEJM 2016;375(14):1319-1331; 7. Moreau P et al. NEJM 2016;374(17):1621-34; 7. Moreau P et al. NEJM 2016;375(14):174, 7. Moreau P et al. NEJM 2016;375(14); 7. Moreau P et al. NEJM 2016;375(14); 7. Moreau P et al.

Rd versus Rd + Proteasome Inhibitors Progression-Free Survival

Carfilzomib

Ixazomib

Rd versus Rd + Monoclonal antibodies Progression-Free Survival

Daratumumab

Elotuzumab

Dara-Rd vs Lenalidomide-based Studies

	POLLUX DRd vs Rd	ASPIRE KRd vs Rd ¹	ELOQUENT-2 ERd vs Rd ^{2,3}	TOURMALINE-MM1 IRd vs Rd⁴
PFS HR (95% CI)	0.37 (0.27-0.52)	0.69 (0.57-0.83)	0.73 (0.60-0.89)	0.74 (0.59-0.94)
ORR	93%	87%	79%	78%
≥VGPR	76%	70%	33%	48%
≥CR	43%	32%	4%	14%
Duration of response, mo	NE	28.6	20.7	20.5
OS HR (95% CI)	0.64 (0.40-1.01)	0.79 (0.63-0.99)	0.77 (0.61-0.97)	NE

1. Stewart AK, et al. N Engl J Med. 2015;372(2):142-152.

2. Lonial S, et al. N Engl J Med. 2015;373(7):621-631.

3. Dimopoulos MA, et al. Blood. 2015;126(23):Abstract 28.

4. Moreau P, et al. N Engl J Med. 2016;374(17):1621-1634.

Treatment options in relapsed MM The present

1. Dimopoulos MA, et al. Lancet Oncology 2016; 17: 27-38; 2. Stewart AK, et al. N Engl J Med 2015;372:142-52; 3. Lonial S et al. N Engl J Med 2015;373:621-31; 4. Dimopoulos MA, eta la. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):154-66.

Kd versus Vd Progression-free and Overall Survival

Progression-free survival

Overall Survival

Vd versus Vd + Monoclonal antibodies Progression-Free Survival

Palumbo A, et al. N Engl J Med. 2016 Aug 25;375(8):754-66.

Dara-Vd vs PI-based Studies

	Daratumumab DVd vs Vd	Carfilzomib Kd vs Vd ¹	Panobinostat PVd vs Vd ^{2,3}	Elotuzumab EVd vs Vd⁴
PFS HR (95% CI)	0.39 (0.28-0.53)	0.53 (0.44-0.65)	0.63 (0.52-0.76)	0.72 (0.59-0.88)
PFS, median mo	NE	18.7	12.0	9.7
≥VGPR	59%	54%	28%	36%
≥CR	19%	13%	11%	4%
Duration of response, mo	NE	21.3	13.1	11.4
OS HR (95% CI)	0.77 (0.47-1.26)	0.79 (0.58-1.08)	0.94 (0.78-1.14)	0.61 (0.32-1.15)

1. Dimopoulos MA, et al. *Lancet Oncol*. 2016;17(1):27-38.

2. San-Miguel JF, et al. Lancet Oncol. 2014;15(11):1195-1206.

3. San-Miguel JF, et al. Blood. 2015;126(23):Abstract 3026.

4. Jakubowiak A, et al. *Blood*. 2016. Epub ahead of print.

Treatment goals in elderly MM patients

How can we choose the right treatment?

- 1. Bortezomib or Lenalidomide refractory
- 2. N. of prior lines
- 3. High vs standard risk
- 4. Safety profile
- 5. Frailty

6. Bortezomib AND Lenalidomide refractory

How can we choose the right treatment?

- 1. Bortezomib or Lenalidomide refractory
- 2. N. of prior lines
- 3. High vs standard risk
- 4. Safety profile
- 5. Frailty

6. Bortezomib AND Lenalidomide refractory

Role of refractoriness to Bor or Len Eligibility criteria of the studies

ded if we free

	included in refractory to	
	Len	Bort
KRd vs Rd ¹	No	No
IRd vs Rd ²	No	No
ERd vs Rd ³	No	Yes
DaraRd vs Rd ⁴	No	Yes
Kd vs Vd ⁵	Yes	No
DaraVd vs Vd ⁶	Yes	No

1. Stewart AK, et al. N Engl J Med 2015;372:142-52; 2. Dimopoulos MA, et al. Lancet Oncology 2016; 17: 27-38; 3. Lonial S et al. N Engl J Med 2015;373:621-31; 4. Dimopoulos MA, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Dimopoulos MA, et al. Lancet Oncology 2016; 17: 27-38; 6. Palumbo A, et al. N Engl J Med. 2016 Aug 25;375(8):754-66.

Eligibility criteria of the studies Role of refractoriness to Bor or Len

Enrolment if refractory to Len Bort KRd vs Rd¹ No No IRd vs Rd² No No Erd vs Rd³ No Yes DaraRd vs Rd⁴ No Yes $1/d \sim 1/d5$ Bort-refractory: ERd or DaraRd DaraRd vs Rd ERd vs Rd Prior Pl Prior bortezomib (yes) 0.68 (0.54-0.86) 0.37 (0.26, 0.52) Yes No 0.35 (0.12, 1.00) 0.72 (0.49-1.07) \rightarrow Prior bortezomib (no) **Refractory to PI** 0.50 (0.27, 0.93) Yes H 0.25 0.5 1 2 4 0.27 (0.17, 0.43) No ю 0.1 10

How can we choose the right treatment?

- 1. Bortezomib or Lenalidomide refractory
- 2. N. of prior lines
- 3. High vs standard risk
- 4. Safety profile
- 5. Frailty
- 6. Bortezomib AND Lenalidomide refractory

Number of prior lines of therapy Ixa-Rd

Number of prior lines of therapy Ixa-Rd

PC differentiation is characterized by the acquisition of secretory capacity, cell-cycle exit and changes in both surface phenotype and gene expression (1)

Sample tumors from patients relapsing after 1 prior line/no ASCT and 2/3 prior lines, have higher levels of c-MYC expression, while tumors relapsing post-ASCT tend to have lower levels

How can we choose the right treatment?

- 1. Bortezomib or Lenalidomide refractory
- 2. N. of prior lines
- 3. High vs standard risk
- 4. Safety profile
- 5. Frailty

6. Bortezomib AND Lenalidomide refractory

High risk versus standard risk

But these results should be compared with caution because the cut off value of plasma cells with cytogenetic abnormalities is very different among the trials

Trials	PLCs %
IRd	<5%
KRd	60%
Kd	20%
DaraRd	-
ERd	60%
DaraVd	-

How can we choose the right treatment?

- 1. Bortezomib or Lenalidomide refractory
- 2. N. of prior lines
- 3. High vs standard risk
- 4. Safety profile
- 5. Frailty
- 6. Bortezomib AND Lenalidomide refractory

MM Frailty Score

Variable		HR (CI 95%)	Р	SCORE
AGE	Age <75 years	1	-	0
	Age 75-80 years	1.13 (0.76-1.69)	0.549	1
	Age >80 years	2.40 (1.56-3.71)	<0.001	2
CHARLSON INDEX	Charlson <u><</u> 1	1	-	0
	Charlson <u>></u> 2	1.37 (0.92-2.05)	0.125	1
ADL SCORE	ADL >4	1	-	0
	ADL <u><</u> 4	1.67 (1.08-2.56)	0.02	1
IADL SCORE	IADL >5	1	-	0
	IADL <u><</u> 5	1.43 (0.96-2.14)	0.078	1

ADDITIVE TOTAL SCORE	PATIENT STATUS
0	FIT
1	INTERMEDIATE
<u>></u> 2	FRAIL

Suggested Empiric Age-Adjusted Dose Reduction in Pts With Myeloma

Agent	Younger Than 65 Yrs	65-75 Yrs	Older Than 75 Yrs
Dexamethasone	40 mg/day Days 1-4, 15-18 q4w or Days 1, 8, 15, 22 q4w	40 mg/day Days 1, 8,1 5, 22 q4w	20 mg/day Days 1, 8, 15, 22 q4w
Melphalan	0.25 mg/kg Days 1-4 q6w	0.25 mg/kg Days 1-4 q6w or 0.18 mg/ kg Days 1-4 q4w	0.18 mg/kg Days 1-4 q6w or 0.13 mg/ kg Days 1-4 q4w
Cyclophosphamide	300 mg/day Days 1, 8, 15, 22 q4w	300 mg/day Days 1, 8, 15 q4w or 50 mg/day Days 1-21 q4w	50 mg/day Days 1-21 q4w or 50 mg/day QOD Days 1-21 q4w
Thalidomide	200 mg/day	100 mg/day or 200 mg/day	50 mg/day to 100 mg/day
Lenalidomide	25 mg/day Days 1-21 q4w	15-25 mg/day Days 1-21 q4w	10-25 mg/day Days 1-21 q4w
Bortezomib	1.3 mg/m ² bolus Days 1, 4, 8, 11 q3w	1.3 mg/m ² bolus Days 1, 4, 8, 11 q3w or Days 1, 8, 15, 22 q5w	1.0- 1.3 mg/m ² bolus Days 1, 8, 15, 22 q5w

Palumbo A, et al. N Engl J Med. 2011;364:1046-1060.

Novel Combinations: Safety

		Rd as a	PI as a b	ackbone		
	POLLUX DRd vs Rd	ELOQUENT-2 ERd vs Rd	ASPIRE KRd vs Rd	TOURMALINE-1 IRd vs Rd	CASTOR DVd vs Vd	ENDEAVOR Kd vs VD
Discontinuation for AEs Deaths			NOI	NCREASE		
Renal Funtion: Creat clearence		>30) ml/min		>20 ml/min	>15ml/min
Hematologic toxicity G3-4 Neutropenia G3-4 Thrombocytopenia	52% vs 37% 13% vs 13%	34% vs 44% 19% vs 20%	30% vs 26% 17% vs 12%	23% vs 24% 19% vs 9%	13% vs 4% 45% vs 32%	- 9% vs 9%
G3-4 Non hematologic	Diarrhea Infusion react	Fatigue Diarrhea Infusion react	Fatigue cardiovascular	Diarrhea Nausea rash	Infusion React hypertension PN	cardiovascular
 Triplets/second generation: no increase in treatment discontinuation or toxicity Different treatment emergent AEs 						

1. Dimopoulos MA, et al. Lancet Oncology 2016; 17: 27-38; 2. Stewart AK, et al. N Engl J Med 2015;372:142-52; 3. Lonial S et al. N Engl J Med 2015;373:621-31; 4. Dimopoulos MA, eta la. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016 Aug 25;375(8):754-66.

Overall Survival Subgroup analysis in all patients

Fit defined as: score=0 Frail defined as: score \geq 2 HR Fish: presence of t(4;14) or t(14;16) or del 17q13

Palumbo A et al, Blood 25(13):2068-74, 2015

IMWG Frailty Score: long-term outcome

Novel combinations: Age

		Rd as a	Vd as a b	oackbone		
	POLLUX DRd vs Rd	ELOQUENT-2 ERd vs Rd	ASPIRE KRd vs Rd	TOURMALINE-1 IRd vs Rd	CASTOR DVd vs Vd	ENDEAVOR Kd vs VD
Median PFS (m) HR P value	NR vs 17.1 HR 0.37 P<0.001	19.4 vs 14.9 HR 0.70 P<0.001	26.3 vs 17.6 HR 0.69 P=0.0001	20.6 vs 14.7 HR 0.74 P=0.01	NR vs 7.1 HR 0.39 P<0.001	18.7 vs 9.4 HR 0.53 P<0.0001
Age (years) Median range	65 (34-89)	66 (37-91)	64 (31-91)	66 (30-91)	64 (30-85)	65 (30-89)
65-75 years % pts HR	41% 0.4	57%° 0.65°	50%° 0.85°*	37% 0.83	53% 0.35	38% 0.53
≥75 % pts HR	11% 0.11	20% 0.56		15% 0.87	12% 0.27	15% 0.38

- Triplets/second generation always better than old standards
- All effective over 65
- Few data over 75

1. Dimopoulos MA, et al. Lancet Oncology 2016; 17: 27-38; 2. Stewart AK, et al. N Engl J Med 2015;372:142-52; 3. Lonial S et al. N Engl J Med 2015;373:621-31; 4. Dimopoulos MA, eta la. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):1319-1331; 5. Moreau P et al. NEJM 2016;374(17):1621-34; 6. Palumbo A, et al. N Engl J Med. 2016;375(14):154-66.

Carfilzomib: cardiovascular AEs subgroup analysis

	All patients All grades heart	
ASPIRE ¹		
KRd	27/392 (6.9)	
Rd	16/389 (4.1)	
ENDEAVOR ²		
Kd	38/463 (8.2)	
Vd	13/456 (2.9)	
FORTE ³		
KCyd	(3)	
KRd	(5)	
POOLED ANALYSIS⁴		
KCyd	17/154 (11)	

1.Dimopoulos M, et al; Lancet 2015. 2.Stewart K, et al; NEJM 2015. 3.Gay F, et al. ASCO 2017. 4.Mina R, at al. IMW 2017

Carfilzomib: cardiovascular AEs subgroup analysis

1.Dimopoulos M, et al; Lancet 2015. 2.Stewart K, et al; NEJM 2015. 3.Gay F, et al. ASCO 2017. 4.Mina R, at al. IMW 2017

Cardiovascular AEs according to age: subgroup analysis

	All patients All grades heart failure n/N (%)	< 65 years All grades heart failure n/N (%)	65-74 years All grades heart failure n/N (%)	≥ 75 years All grades heart failure n/N (%)
ASPIRE ¹				
KRd	27/392 (6.9)	7/207 (3.4)	7/142 (4.9)	11/43 (25.6)
Rd	16/389 (4.1)	6/184 (3.3)	7/155 (4.5)	3/50 (6)
ENDEAVOR ²				
Kd	38/463 (8.2)	10/223 (4.5)	12/163 (7.4)	16/77 (20.8)
Vd	13/456 (2.9)	5/208 (2.4)	5/183 (2.7)	3/65 (4.6)
FORTE ³				
KCyd	(3)	(3)	-	-
KRd	(5)	(5)	-	-
POOLED ANALYSIS ⁴				
KCyd	17/154 (11)	-	9/117 (7.7)	8/37 (21.6)

1.Dimopoulos M, et al; Lancet 2015. 2.Stewart K, et al; NEJM 2015. 3.Gay F, et al. ASCO 2017. 4.Mina R, at al. IMW 2017

MoAb-related **Adverse-Events**

The majority (95%) of IRRs occurred at the first infusion. Most events occurred within the first few hours after the start of the infusion. Patients with underlying pulmonary disease such as COPD or asthma are at increased risk for bronchospasms.

Infusion Related Reactions (IRRs)

STUDY	Grade 1-2	Grade 3-4	Discontinuation	\wedge
Elotuzumab + Rd ¹	9%	1%	<1%	
Elotuzumab + Vd ²	7%	0	0	
Daratumumab + Rd ³	43%	5%	<1%	$\backslash \Gamma$
Daratumumab + Vd ⁴	36%	9%	<1%	N

MoAb, monoclonal antibody; Rd, lenalidomide-dexamethasone; Vd, bortezomib-dexamethasone

≥ 5% of pts: nasal congestion, cough, chills, allergic rhinitis, throat irritation, dyspnoea, nausea.
Bronchospasm (2.6%)
Hypertension (1.3%)
Hypoxia (1.3%).

Lonial S, et al. NEJM 2015; Jakubowiak A, et al. Blood 2016; Dimopoulos MA, et al. NEJM 2016; Palumbo A, et al. NEJM 2016

Daratumumab infusion

Escalate only if there were no grade 1 (mild) or greater infusion reactions during a final infusion rate of ±100 mL/hour in the first 2 infusions.* *If the previous infusion rate is not well tolerated, instructions used for the second infusion rate should be followed.

Prevention of IRRs

- Administer **pre-medication** to reduce the risk of IRRs (approximately 1 hour prior to every daratumumab infusion)
 - intravenous corticosteroid (methylprednisolone 100 mg or equivalent)
 - oral antipyretic (paracetamol at 650-1000 mg)
 - oral or intravenous antihistamine (diphenhydramide 25-50 mg or equivalent)
- **Post-medication** corticosteroids on 1st and 2nd day after all infusions

• In case of occurrence of IRRs

- React early to mild signs of symptoms and immediately stop the infusion
- Manage symptoms appropriately, consider e.g. antihistamines, corticosteroids
- Once symptoms have resolved, treatment resumed at half the infusion rate
- In case of grade 4 IRRs permanently discontinue treatment.

Daratumumab in specific populations

Liver dysfunction. No dose modifications are necessary for patients with mild hepatic impairment based on population pharmacokinetic analysis. No data are available for moderate or severe hepatic impairment (accessed 19 July 2016).

Renal dysfunction. DARA is not metabolized by the kidney; such that renal failure is not a contraindication for treatment. The GEN501 and SIR-IUS trials each included patients with mild-to-moderate renal failure, creatinine clearance 30–60 ml/min and the ORR in these patients was 26.2%. [Lonial *et al.* 2016b]. No data are available to provide guidance on patients with severe renal impairment.

Advanced age. The GEN501 was administered to 16 patients aged 65–74 years, 56% of whom responded [Lokhorst *et al.* 2015], while none of the 4 patients over age 75 responded. In the SIR-IUS trial, 36 patients were aged 65–74 years, and 12 patients were 75 years or older. The ORR in these subgroups of patients was 25% and 33.3%, respectively, suggesting that the efficacy of DARA is equivalent in all age groups.

Costello C, Ther Adv Hematol 2017

Laboratory Interference Associated With mAbs

Strategies at Relapse : How to Make the Right Choice

How can we choose the right treatment?

- 1. Bortezomib or Lenalidomide refractory
- 2. N. of prior lines
- 3. High vs standard risk
- 4. Safety profile
- 5. Frailty
- 6. Bortezomib AND Lenalidomide refractory

Outcome from relapse

Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib

Kumar SG et al, Leukemia 2012

Pomalidomide and low dose Dex

Superior PFS and OS independently of double refractory disease

San-Miguel et al Lancet Oncology 2013;14(11):1055-66

Efficacy of Daratumumab as single agent: Combined Analysis

- ORR = 31%
- CBR = $83\% \rightarrow OS$ benefit observed also in SD/MR pts
- Median (range) **TTR: 0.95** (0.5-5.6) months
- Median DOR = 7.6 (95% CI, 5.6-NE) months; responses deepened with continued treatment (7/10 PR → VGPR; 3 PR → CR 1 patient sCR 2 patients)

Daratumumab Monotherapy – PFS/OS

Patients at risk 148 136 125 119 108 103 96 90 82 77 51 22 16 3 0

DOI: 10.1002/ajh.24781

RESEARCH ARTICLE

Daratumumab monotherapy compared with historical control data in heavily pretreated and highly refractory patients with multiple myeloma: An adjusted treatment comparison

Saad Z. Usmani¹ | Joris Diels² | Tetsuro Ito³ | Maneesha Mehra⁴ | Imran Khan⁵ | Annette Lam⁴ 0

FIGURE 1 Unadjusted (A) and adjusted (B) overall survival in daratumumab-treated patients versus historical controls from US claims databases. Adjusted and unadjusted HRs are also shown in the forest plot (A). HR, hazard ratio; LCL, lower confidence level; HCL, higher confidence level; DARA, daratumumab; CI, confidence interval

Received: 28 July 2017 Revised: 7 August 2017 Accepted: 8 August 2017

DOI: 10.1002/ajh.24883

RESEARCH ARTICLE

Efficacy of daratumumab-based therapies in patients with relapsed, refractory multiple myeloma treated outside of clinical trials

Arjun Lakshman¹ | Jithma P. Abeykoon²) | Shaji K. Kumar¹ | S. Vincent Rajkumar¹ | David Dingli¹ | Francis K. Buadi¹ | Wilson I. Gonsalves¹) | Nelson Leung¹ | Angela Dispenzieri¹ | Taxiarchis V. Kourelis¹ | Ronald S. Go¹ | Martha Q. Lacy¹ | Miriam A. Hobbs¹ | Yi Lin¹ | Rahma Warsame¹ | John Lust¹ | Amie L. Fonder¹ | Yi L. Hwa¹ | Suzanne R. Hayman¹ | Stephen J. Russell¹ | Robert A. Kyle¹ | Morie A. Gertz¹ | Prashant Kapoor¹

Abstract

¹Division of Hematology, Mayo Clinic, Rochester, Minnesota; ²Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota

Correspondence

Prashant Kapoor, Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905. Email: kapoor.prashant@mayo.edu Outside of clinical trials, experience with daratumumab-based combination therapies (DCTs) using bortezomib (V)/lenalidomide (R)/pomalidomide (P), and dexamethasone (d) in relapsed/refractory multiple myeloma (RRMM) is limited. We reviewed the outcomes of 126 patients who received ≥ 1 cycle of any DCT. Median age at DCT initiation was 67 (range, 43-93) years. Highrisk cytogenetics was present in 33% patients. Median number of prior therapies was 4 (range, 1-14) and time to first DCT from diagnosis was 4.3 years (range, 0.4-13.0). Seventeen (13%) patients were refractory to single agent daratumumab. Fifty-two (41%), 34 (27%), 23 (18%), and 17 (14%) received DPd, DRd, DVd and "other" DCTs, respectively. Overall response rate was 47%. Median follow-up was 5.5 months (95% CI, 4.2-6.1). Median progression-free survival (PFS) was 5.5 months (95% CI. 4.2-7.8). Median overall survival was not reached (NR) with any regimen. Median PFS (months) was worst for penta-refractory MM (n = 8) vs quadruple refractory MM (n = 18) and others (n = 100) (2.2 [95% CI, 1-2.4] vs 3.1 [95% CI, 2.1-NR] vs 5.9 [95% CI, 5.0-NR]; P < .001); those who were refractory to ≥1 agents used in the DCT vs others (4.9 [95% CI, 3.1-6.0] vs 8.2 [95% CI, 4.6-NR]; P = .02); and those who received >2 prior therapies vs others (5.0 months [95% CL 3.7-5.9] vs NR [95% CL NR-NR]; P = .002). Non-hematologic toxicities included infections (38%), fatigue (32%), and infusion reactions (18%). Grade 3 or higher hematological toxicities were seen in 41% of patients. DCTs are effective in RRMM. ORR and PFS in heavily pretreated patients are lower than those reported in clinical trials.

FIGURE 1 (A) Outcomes for patients receiving daratumumab-based therapies. Kaplan-Meier curves for patients receiving daratumumabbased therapies showing, (i) progression-free survival (PFS), (ii) time to next treatment (TTNT) and (iii) overall survival (OS). (B) PFS in patients receiving daratumumab-based therapies stratified by treatment regimens- Kaplan Meier curves showing progression-free survival (PFS) for patients receiving, (i) daratumumab with pomalidomide and dexamethasone (DPd) (ii) daratumumab with lenalidomide and dexamethasone (DRd) and (iii) daratumumab with bortezomib and dexamethasone (DVd).

How to improve long term outcome in double refractory: the case of Pomalidomide-based triplets in RRMM

Strategies at Relapse : How to Make the Right Choice

Upfront versus delayed ASCT

autore	terapia	Median PFS	4 y OS
Palumbo et al, NEJM 2014	Induzione: RD Consolidamento: MRP vs Mel 200	MRP: 22 mesi Mel 200:42 mesi	MPR : 79% Mel 200: 88%
Gay et al, Lancet Oncology 2015	Induzione RD Consolidamento: CRD vs Mel 200	CRD: 28 mesi Mel 200:43 mesi	CRD : 73% Mel 200: 86%
Attal et al, ASH 2015	Induzione RVD Consolidamento: RVD vs Mel 200	RVD: 34 mesi Mel 200:43 mesi	MPR : 81% Mel 200: 83%
Cavo et al, ASCO 2016	Induzione VCD Consolidamento: VMP vs Mel 200	PFS prolungata nel gruppo Mel 200 (HR 0.52)	data not mature

Secondo Trapianto in salvataggio

	N° pz	N° linee precedenti	Response rate	PFS (months)	OS (months)
Gonsalves et al. 2013	98	3	87% (CR 31%)	10	33
Lemieux et al. 2013	81	n.r.	93% (CR n.r.)	8	48
Sellner et al. 2013	200	n.r.	68% (CR 25%)	12	34
Auner e <i>t al.</i> 2013	83	n.r.	n.r.	15	32
Jimenez e <i>t al.</i> 2012	81	1	96% (CR 8%)	10 * 17	28 * 71
Michaelis e <i>t al.</i> 2011	187	n.r.	80% (CR 25%)	15	42

* PFS e OS separati in base alla durata di risposta del primo AutoSCT > o < 2 anni

Il numero di linee precedenti e l'intervallo tra primo autologo ed autologo di salvataggio sono i fattori determinanti dell'outcome

Fase 3 autologo di salvataggio vs terapia convenzionale

Cook G et al, Lancet Oncology 2014

Aggiornamento dello studio

	Mel 200	СТХ	HR
TTP1 mediana	19	11	0.45
OS mediana	67	52	0.56
TTP2 mediana	52	35	0.37
Secondi tumori	7/89 (8%)	5/85 (6%)	ns

Cook G et al, Lancet Haematology 2016

Trapianto autologo nel MM refrattario

126 pts nel registro inglese <PR prima del trapianto autologo , 47% dopo autologo di salvataggio Condizionamento: melphalan 100-200 mg/mq CR 21%, PR 74% al giorno + 100 PFS mediana 28 mesi, OS mediana 51 mesi

Figure 1. Kaplan-Meier estimates. (A) Shows PFS by disease status at transplantation and (B) shows OS by disease status at transplantation.

Parrish C et al, BBMT 2015

Risultati della rimobilizzazione in 110 pazienti

64% dei pts senza cellule congelate adeguate rimobilizzano PBSC Parrish C et al, BBMT 2016

CONCLUSIONI E PROSPETTIVE

- Il trapianto autologo di salvataggio dopo terapia di prima linea che NON include alte dosi di chemioterapia è inferiore ad un autologo up-front.
- L' autologo di salvataggio dopo terapia di prima linea che include alte dosi di chemioterapia è fattibile in una proporzione di pazienti (16-59%) ed è efficiente se la durata PFS1 è > di 18- 24 mesi.

 Il trapianto autologo di salvataggio dovrebbe far parte di nuove piattaforme di trattamento della prima ricaduta, che includono nuovi condizionamenti (melphalan + bendamustina o bortezomib) e terapie post-trapianto.
Treatment Strategy: general principles

Multifactorial decision process

Benefit of three drug regimens in early phases of the disease

- Many combo available
- Possibility to choose the most suitable mainly (but not only!) according to pt fitness and previous treatments

At present, no triplets available in late phases of the disease

 In late phases, tolerability can become even more relevant than in early phases

Generally better to switch to a different class of agent

At least one drug from a non-refractory class

ess

But consider re-treatment in specific cases

- Duration of previous remission
- Clinical presentation defines agressiveness

Survival estimates of matched MM patients and controls

Fonseca R, Leukemia 2017

Review

Systematic review and meta-analysis of the efficacy and safety of novel monoclonal antibodies for treatment of relapsed/ refractory multiple myeloma

Tiantian Zhang^{1,*}, Sen Wang^{1,*}, Tengfei Lin², Jingmei Xie¹, Lina Zhao¹, Zhuoru Liang¹, Yangqiu Li^{3,4} and Jie Jiang^{1,5}

- Thirteen clinical trials with 2,402 patients participating.
- ORR was 57% (95% confidence interval [CI]: 38-76%).
- VGPR was 32% (95% CI: 19- 46%).
- mAb-based regimens prolonged PFS (hazard ratio: 0.52, 95% CI: 0.36-0.75) compared to non-mAbbased regimens.
- The efficacy of triplet regimens was superior to that of single or doublet regimens for both daratumumab and elotuzumab, with acceptable toxicity
- The most common grade 3/4 adverse events: anemia, neutropenia, lymphopenia, thrombocytopenia, leukopenia, pneumonia, and fatigue.
- Elotuzumab and daratumumab improved the ORR, at least VGPR, and PFS compared to non-mAbbased regimens.
- Daratumumab triplet therapy (daratumumab, lenalidomide, and dexamethasone) was superior to other triplet regimens.
- Daratumumab monotherapy was more effective than either single agent.

