

Case report

A. Dizdari

Istituto di Ematologia" Seràgnoli" - Bologna

- Male, 41 years old, from Romania
- **February 2015** Lombar pain Rx L3 lytic lesion –biopsy-Plasmacytoma (Romania confermed at Seragnoli's Istitute)

IgG /k 1200mg/l (5% CM, FLC k -19,4mg/l, k/λ - 1,1 B2M-1,4mg/l, LDH-110 U/l.

April 2015

- BM : non infiltrated plasmacells
- BO: 40% -cellularity, little PC infiltrate, with regular k/λ
- FISH: not valutable (CD 138+<5%)
- Pet/TC: Lesion of L3 with total bone destruction and infiltrated bone tissues into the left paravertebral region
- MRI: Tumor mass on L3 compressing the dural sac, intraforaminal compression of L3, on the left

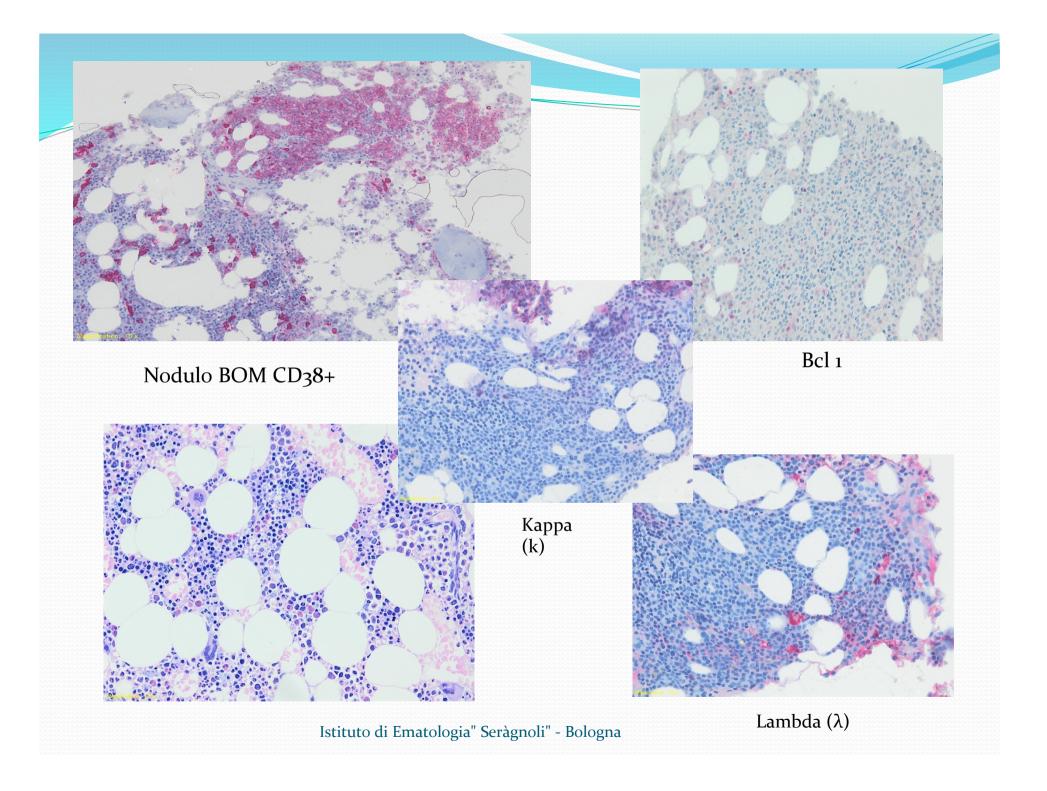
Dg: Solitary Plasmacytoma May-June 2015: Radio-Therapy L2-

L4 (VMAT- volumetric-modulated arc therapy radiation) 40Gy + vertebroplasty

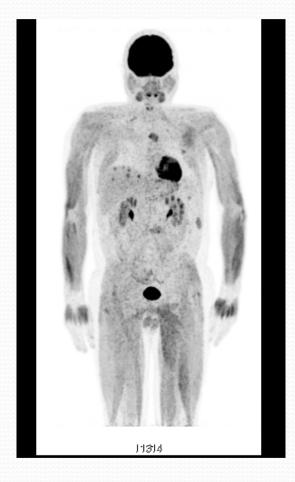
Istituto di Ematologia" Seràgnoli" - Bologna

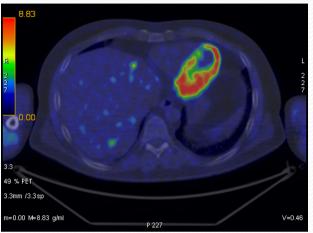
Solitary plasmacytoma of bone (SPB)

5yr (OS -75%, DFS-45%) and 10yr(OS:45%, DFS:25%)

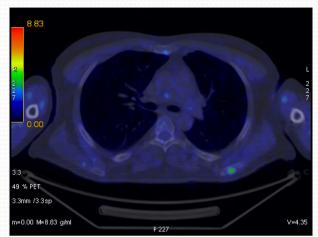

- 5% of plasma cells disorders are SPB
- Small M-protein: present in 30-75% of cases, may not disappear with treatment. The last one: a significant predictor of progression to MM (about 10% progression in 3 years)
- SPB with **minimal marrow involvement** (about 40% of patients) with o-10% clonal PC. 60% of these have high risk of progression in 3 years.
- SPB meeting criteria for MM > 10% marrow clonal PC treatments differs only in the case of additional lesions or CRAB (Hb<10, Ca>11,5, IR:creatinine>2mg/dl)
- Multiple Plasmacytomas: 30-50% of pts with SPB
 (2 concurrent distinct, more than 2, 2 or 3 apparently solitary lesions in 1-2yr)

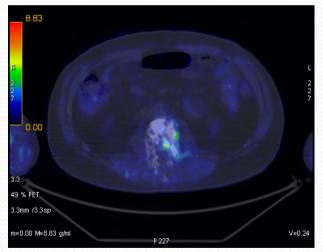
Rajkumar V et al, Lancet Oncology 2014-updated Jul. 2016

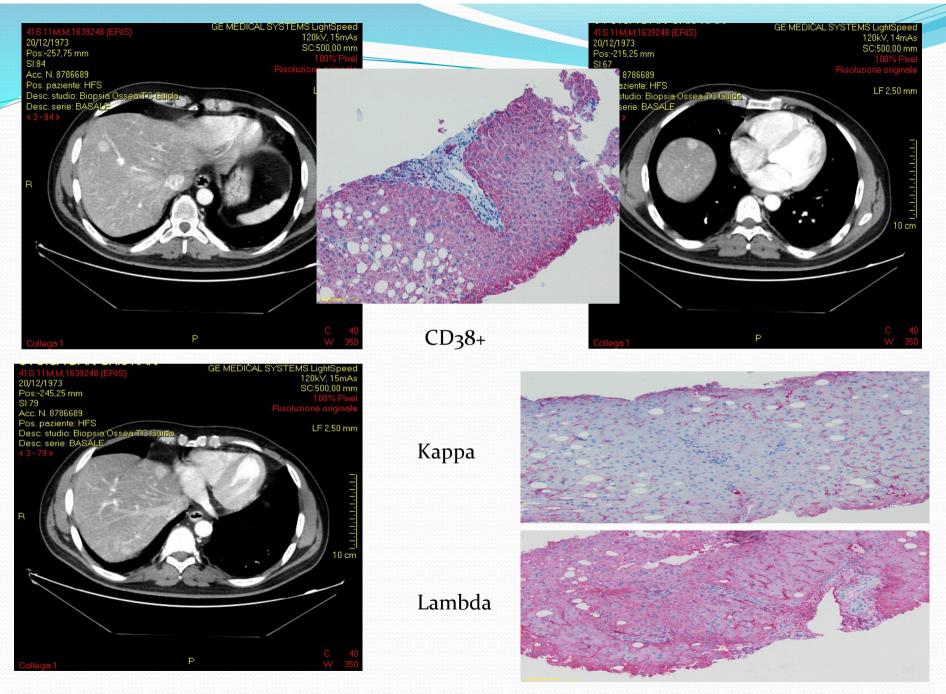

July 2015: MRI- progression L3 – canalicular stenosis, infiltration of m. psoas on the left, suspicious C3-C4 lesions


November '15: 2° opinion at Seràgnoli's Istitute:


- IgG /k : 1318mg/l (5% CM, k -50,3mg/l , B_2M -1,4mg/l, LDH -144mg/l,
- BM < 5% plasma-cells
- BO: 20% cellularity, low grade Plasmacytoma ??, interstizial 10-15% PC, and nodular : CD 38+, negative for : FLC(non secretory), CD56+/BCL1 e Citocheratine
- <u>Pet/TC</u>: increased uptake of FDG throughout the skeleton, major lesion in sternum, VI, X left rib with adjacent soft tissues, left scapula, C₃, C₄ vertebral bodies. Pathological uptake in liver, IV, VII, VIII hepatic segments
- MRI of the spine: Multiple osteolytic lesions (cervical and dorsal vertebrae)
- Needle biopsy of sternal lesion (2,7cm): Plasmocitoma –G° intermediate PC–nucleolated, CD38+, Ki67/MIB-1 (15-20%)
- Echo <u>liver</u>: Hypo-echogenic lesions (0,7-1 e 1,2cm)
- Liver biopsy negative for plasma-cells



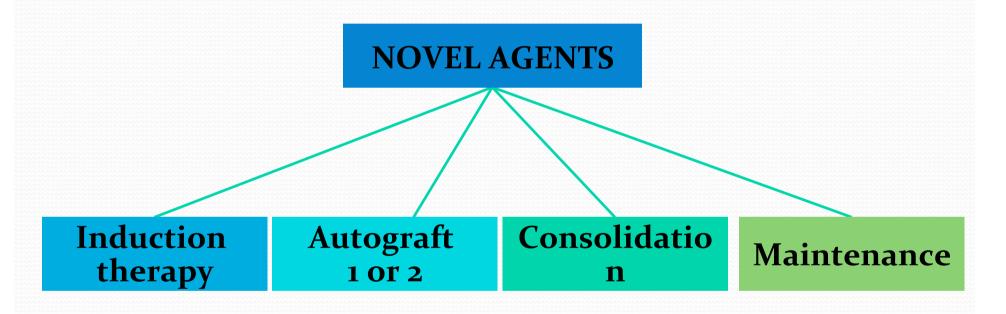

PET – TAC Relapes



Istituto di Ematologia" Seràgnoli" - Bologna

Time to first progression/survival

multivariate analysis - initial patients caracteristics)


- Platelet count< 150.000/microL
- Albumin< 3g/dl
- Age > 65 years
- Beta-2 microglobulin > 4mg/dl
- Involvement of more than three bones
- Hemoglobin <10g/dl

Poor prognostic features

Rajkumar updated Apr. 2016

Liver involvement ???

New treatment paradigm for patients who are eligible for ASCT

- Maximize the depth of response
- Minimize the burden of residual tumor cells

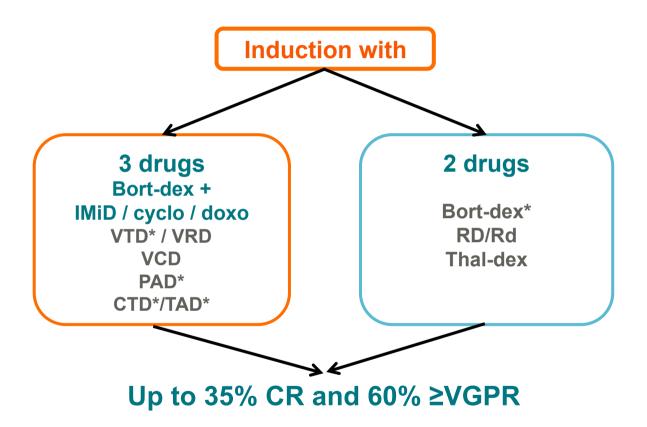
Novel agent-based induction therapies for patients eligible for a transplant

	Bortezomib- based	Thalidomide- based	Lenalidomide- based	PI + IMiD- based
2-drug combinations	VD	TD	Rd RD*	
3-drug combinations	PAD VCD	TAD CTD	RAD CRD	VTD VRD KRD/KTD Ixa-RD
4-drug combinations				VTDC RVCD VTD-Dara VRD-Elo

Regimens in orange: evidence from phase III trials

^{*}Trial was performed in SCT-eligible and -ineligible patients

Meta-analysis: Bortezomib-based versus non-bortezomib-based induction prior to ASCT


• Integrated analysis (n=1572) of 3 randomized trials: Bortezomib-based versus non-bortezomib-based induction regimens

Response rate	Bortezomib- based induction (n=775)	Non-bortezomib- based induction (n=772)		95% CI	Р
Post-transplant (%)					
CR+nCR	38	24	2.05	1.64-2.56	< 0.001

Median follow-up ~37 months

	Bortezomib- based induction	Non-bortezomib- based induction	HR	95% CI	Р
Median PFS, mos	35.9	28.6	0.75	0.65-0.85	< 0.001
3-yr PFS, %	50.0	41.1			

Novel agent-based induction regimens

Strong preference for 3-drug bortezomib-based regimens

VTD and VD have been approved by the EMA for the induction treatment of adult
patients with previously untreated multiple myeloma who are eligible for transplant

Diagnosis MM stage I/IIA (IgG/kappa) Therapy – Vel-Tha-Dex (2-4cycles)+HSCT

- Started therapy at Bucarest on the 11/1/2016
 - 1° cycle Vel-CTX-Dex (no Thali in Romania),

VTD vs VCD induction: Response

IFM 2013-04 trial (prospective, intent-to-treat analysis)¹

	VTD (4-cycles)* N = 169	VCD (4-cycles) [†] N = 169	p-value
≥CR	13.0%	8.9%	0.22
≥ VGPR	66.3%	56.2%	0.05

^{*}Bortezomib 1.3 mg/m²/day SC D1,4,8,11 + Thalidomide 100 mg/day PO D1–21 + Dexamethasone 40 mg/day PO D1–4, D9–12 †Bortezomib 1.3 mg/m² /day SC D1,4,8,11 + Cyclophosphamide 500 g/m² /day PO D1,8,15 + Dexamethasone 40 mg/day PO D1–4, D9–12

GIMEMA MMY-3006 and EMN-02 studies (retrospective, case-matched analysis)²

	VTD (3-cycles) [‡] N = 236	VCD (3-cycles) [§] N = 236	p-value
≥CR	19%	6%	< 0.001
≥ VGPR	64%	37%	< 0.001

[‡]Bortezomib 1.3mg/m² twice weekly + Thalidomide 100→200mg/day + Dexamethasone 320mg/cycle (3 X 21-day cycles) §Bortezomib 1.3mg/m² SC D1,4,8,11 + Cyclophosphamide 500 g/m²/day IV D1,8 + Dexamethasone 40 mg/day PO D 1, 2, 4, 5,8, 9,11, 12 (3 X 21-day cycles)

^{1.} Moreau, P et al. Blood 2016;127:2569-74;

^{2.} Cavo et al. Leukemia 2015;29(12);2429-31. Istituto di Ematologia" Seràgnoli" - Bologna

Therapy – Vel-Tha-Dex (2-4cycles)+HSCT

- 3 other cycles with VTD
- Liver Echo progressive nodular disease,

repeated needle biopsy: plasma-cells, with prominent nucleoli (G2 – pleomorphic Histotype): CD138+, k light chain+ restriction, Ki67 /MIB (5%), negative for Keratins, CD34, Cyclin D1

- I° ASCT June 2016: partial remission: bone response, reduction of liver nodular lesions
- II° ASCT Octobre 2016

The incidence and pattern of **Liver infiltration** in Haematologic malignancies

- 80-100% in Cronic Myeloproliferative disease
- 60-70% in Acute Leukemia
- 50-60% in non Hodgkin's Lymphoma, LLC
- 32% in Multiple Myeloma (nodular infiltration is seen only in MM e LNH)

Waltz- Mattmuller at al. Pathol Res Pract 1998

Common sites for EMD

- 5% of pts with MM are diagnosed with EMD plasmacytomas, and less as a primary lesion
- At diagnosis: Skin and soft tissue, upper respiratory
- Less common sites: gastro-intestinal(10%), liver, lymphnodes, testes, CNS(1%).
- Relapse/progression: liver involvement (16% of pts dg. with endoscopic ultrasound fine needle aspiration)

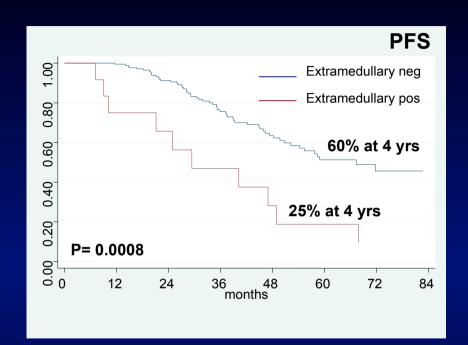
Husney J. Endoscop Ultrasound 2016

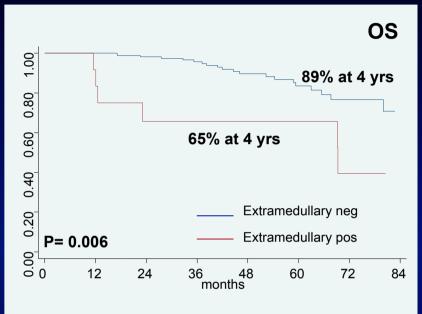
Sites of extramedullary disease (Usmani Ematologica 2012

Anatomic site	EMD-1 (n=66) % of affected patients	EMD-2 (n=35) % of affected patients
Head & neck		
Central nervous system	3%	3%
Oral Cavity	1,50%	
Lymph Nodes	6%	6%
Chest		
Chest wall	14%	-
Breast	9%	3%
Lung	3%	3%
Pleura	3%	6%
Abdomen & pelvis		
Liver	21%	34%
Spleen	9%	11.5%
Pancreas		3%
Gastrointestinal tract		6%
Kidney	6%	6%
Testes	4.5%	3%
Lymph nodes	10.5%	12%
Skin/soft tissue	30%	14%
Skeletal muscle	4.5%	-
Paraspinal area	25%	23%
Lymphadenopathy(>2sites)	21%	11%

EXTRAMEDULLARY DISEASE (EMD)

- Need to identify true EMD from para-medullary/breakout lesions
- •Incidence ranging from 7% to 18%; more frequent in later phases of the disease 1,2
- •Increased incidence in the tast years due to the availability of more sensitive imaging techniques and the prolongation of survival ^{1,2}
- Extremely poor prognosis even in the novel agents era 1,2,3,4
- •Associated with unfavorable cytogenetic abnormalities and GEP defined high-risk MM ⁴
- •Well assessed by PET/CT and whole body techniques; in a recent meta-analysis higher sensitivity and diagnostic accuracy of PET/CT for EMD 3


¹ Varettoni M. et al, Annals of Oncology 2010


² Bladè J. et al, JCO 2011

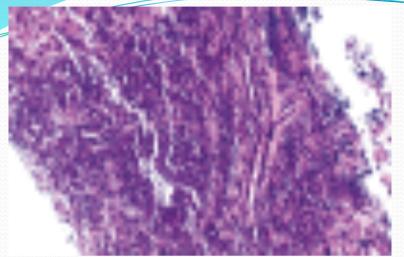
³ Lu Y.Y. et al, Clinical Nuclear Med 2012

⁴ Usmani S.Z. et al, Haematologica 2012

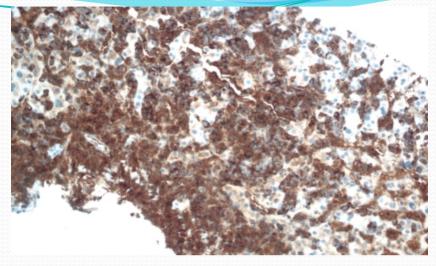
PROGNOSTIC RELEVANCE OF PET/CT AT DIAGNOSIS IN PATIENTS WITH EXTRAMEDULLARY DISEASE 1,2

VARIABLES	HAZARD RATIO (95% CI)	P VALUE
PFS		
Extramedullary disease	5. 93 (2.27-15.51)	0.000
del (17p) ± t(4;14)	1.90 (1.09-3.32)	0.023
Not complete FDG PET suppression	1.89 (1.06-3.35)	0.030

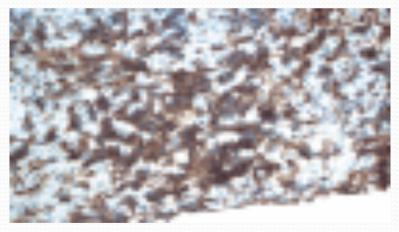
Istituto di Ematologia" Seràgnoli" - Bologna

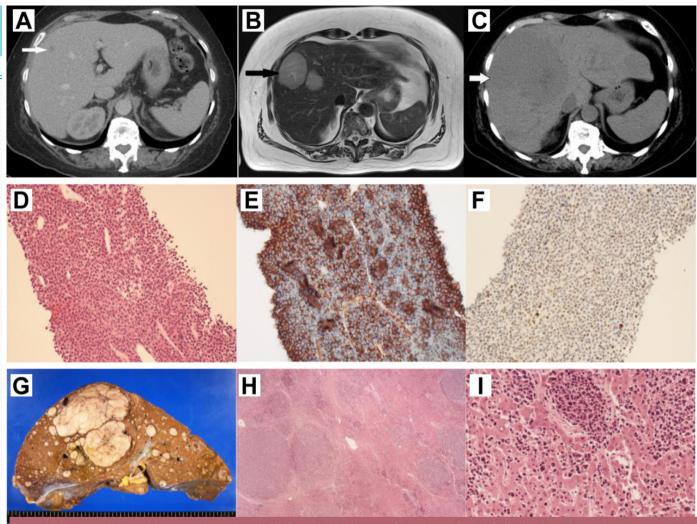

Histological Liver Involvement in MM

- Light chain deposition disease (usually K type)membrane of biliary ducts and sinusoid without parenchimal lesions (1, 2)
- Extramedullary plasmacytoma
- AL Amiloydosis (15% of MM)
- Nodular or Diffuse infiltrative pattern (sinusoidal, diffuse, mixed types)
 - 1.Sammanez C Eur. J. Haematology 20062. Michopoulos S Dig Dis Sci 2002


Liver EMD in MM

- Is rarely clinically evident pre-mortem. Pattern:
 - diffuse infiltration with hepatomegaly
 - rarely as nodules (unifocal o multifocal)
- On autopsy: myeloma cells proliferated not only in the nodular lesions, but also in the sinusoides (from nodular to nodular and diffuse pattern at the end-stage)
- Immuno-histochemistry: myeloma cells were negative for p53 at diagnosis, but positive at relapse.
- Several case reports described that nodular hepatic EMD is associated with end-stage disease and a very poor prognosis


Histology


HE liver biopsy showing massive plasma cell infiltration (HE)

Positive kappa light chain stain on liver biopsy.

Positive CD138 (syndecan-1), a plasma cell marker. CD138 is expressed on plasma cells, including the malignant plasma cells of MM and some lymphomas

Hepatic Extramedullary Disease (Arrows). (A) CT Scan in April 2011 Showing a Small Solid Lesion Measuring 9 mm in the Liver S8 (Right Anterior Superior Segment). (B) Abdominal MRI in July 2011 Showing Multiple Lesions in The Liver Without Hepatomegaly, Which Were Hyperintense on T2-Weighd Images. (C) CT Scan in October 2011 Showing That the Hepatic Lesion Had Increased In Size to 117 mm. (D-F) Histological and Immunohistochemical Studies of a Hepatic Nodular Lesion Showing Sheets of Plasma Cells (D; H&E Stain) That Were Positive for CD138 (E). Myeloma Cells Were Also Positive for p53 (D0-7, A Mouse Monoclonal Antibody Which Recognized the Wild-Type and Mutant-Type of the p53 Protein; F). (G-I) Autopsy Specimen of the Enlarged Liver in October 2011 Showing Numerous Nodular Lesions (G and H). Myeloma Cells Also Proliferated in the Sinusoids (I)

- Mayo clinic: 869 case of MM 21% liver was palpable (5% of pt. >5cm). Other symtomes: jaundice, portal hypertension, enzyme level, abnormal liver function. (Kyle RA, 1975)
- Little Rock: Talamo 2584 pts with MM: liver mass of nodules : found in 9 pts
- Thomas et al: Reviewed 64 cases of MM (including autopsy)
- Hepatomegaly > 4cm right costal margin : 58% of pts
- Splenomegaly: 25% of pts
- Jaundice (serum bilirubine 3,2-17,3mg/dl): 14%
- Some pts: only elevations of alkaline phosphatase from PC liver infiltration
- Only 9% normal liver in pathological exam
- 40% PC involvement of the liver from plasmacytomas to diffuse sinusoidal infiltration

Conclusions

- Liver infiltration is not a classical manifestation of MM
- The initial presentation con be subtle, but rapidly progressive
- Nodular hepatic lesions enlarged rapidly despite novel agents' therapy, resulting in nodular and diffuse infiltration
- The cytogenetic and immunohistochemical have been related with 17p deletion (p53 locus) -10% of pts at dg. and increases in disease progression: -agressive such EMD, -lack of treatment response, shorter survival even in novel agent era.
- Additional studies for GEP in patients who develop EMD for understanding the distinctive biology of the patients' subset with EMD
- Necessary to study if /when /where/ why the neoangiogenesis and loss of adhesion molecules such as CD56 could play a part in the extramedullary progression of the disease

- The number of clinically liver's involvement reports is small, difficult to ascetain the prognosis or it's response to therapy
- Some reports demonstrated successful management of EMD with novel agents: it's not our case!!!
- SCT is effective in inducing remission but relapse is common
- Short at al. : EMD pomalidomide's response rate approximately 30%
- Improved therapeutic strategies are required for this subgroup of pts with EMD

Ringraziamenti

Gruppo Mieloma – Prof. Cavo Istolinfopatologia – Dr.ssa Sabattini

- Dr.ssa Zamagni Elena
- ❖ Dr.ssa Tacchetti Paola
- Dr.ssa Pantani Lucia
- Dr.ssa Mancuso Katia

- Dr.ssa Sabattini Elena
- Dr. Sagramoso Carlo
- Dr. Bacci Francesco

PET - Prof. Fanti

Dr.ssa Nanni Cristina