FORUM IN EMATOLOGIA: Novità Biologiche E terapeutiche

Le basi molecolari della resistenza al trattamento nel mieloma multiplo

Antonino Neri Dipartimento di Oncologia ed Emato-oncologia Università di Milano Ematologia-IRCCS Policlinico Milano

BARI 6-7 OTTOBRE **2016** Villa Romanazzi Carducci

Multiple myeloma: a malignant proliferation of bone marrow plasma cells

Plasma cell: Ig-secreting, heavy-chian class switched, terminally differentiated B-cell

abnormal production of a monoclonal immunoglobulin (M-protein)

•1% of cancer

- 10% of hematological malignancies
- 2-4 cases/year/100.000
- Uncurable disease_ MS approximately 6 ys

Major issues

- Myeloma looks homogeneous at microscope
- •Survival outcome cannot be predicted at presentation
- •High molecular heterogeneity

What's the relevance of molecular genetics in the risk stratification and targeting treatments of patients?

Common cytogenetic findings in MM by FISH

Translocations involving 14q32 • t(11;14) Cyclin D1 • t(4;14) FGFR3-MMSET • t(14;16) MAF • t(14;20) MAFB	 = 40% = 16% = 15% = 5% = 2 		
<u>Chromosome 13 abnormalities</u> • Monosomy • Deletion 13 • 13q translocations	■ ≅40-50%		
17p deletions	■ ≅8%/0		
Hyperdiploidy	■ ≅50% (3,5,7,9,11,15,19,21)		
1q amplifications 1p deletions C-MYC alterations (Trx, gain)	 ≅50% ≅35% 50% 		

Fonseca R, et al. Leukemia. 2009; 23: 2210-2221; Bergsagel et al, Blood 2013; Affer et al. Leukemia, 2014

Disease stages and timing of oncogenic events in Multiple Myeloma

Molecular pathogenesis of Multiple Myeloma: two main models

Frequency of DNA copy number alterations in MMs by SNP-array

Agnelli et al. GCC 2009

Distinct molecular types of MM are associated with specific RNA expression profiles

Mattioli et al. Oncogene, 2005; Agnelli et al. JCO, 2005

Specific microRNA expression profiles are associated with major molecular MM groups Transcription

Ν

Definition of three prognostic groups based on *miR-17* and *miR-886-5p* expr ession:

ww.impactjournals.com/oncotarget/

Oncotarget, February, Vol.4, No 2

Cancer Therapy: Preclinical

Clinical Cancer Research

In Vitro and in Vivo Anti-tumor Activity of miR-221/222 Inhibitors in Multiple Myeloma

Maria Teresa Di Martino^{1,2}, Annamaria Gullà¹, Maria Eugenia Gallo Cantafio¹, Marta Lionetti³, Emanuela Leone¹, Nicola Amodio¹, Pietro Hiram Guzzi⁴, Umberto Foresta¹, Francesco Conforti², Mario Cannataro⁴, Antonino Neri³, Antonio Giordano^{5,6}, Pierosandro Tagliaferri^{1,2}, and Pierfrancesco Tassone^{1,2,6}

Clinical Cancer Research

Targeting miR-21 inhibits in vitro and in vivo multiple myeloma cell growth

Emanuela Leone, Eugenio Morelli, Maria T. Di Martino, et al.

Clin Cancer Res Published OnlineFirst February 27, 2013.

www.impactjournals.com/oncotarget/

Oncotarget, Advance Publications 2012

DNA-demethylating and anti-tumor activity of synthetic miR-29b mimics in multiple myeloma

Nicola Amodio¹, Marzia Leotta¹, Dina Bellizzi², Maria Teresa Di Martino¹, Patrizia D'Aquila², Marta Lionetti³, Fernanda Fabiani¹, Emanuela Leone¹, Anna Maria Gullà¹, Giuseppe Passarino², Michele Caraglia⁴, Massimo Negrini⁵, Antonino Neri³, Antonio Giordano⁶, Pierosandro Tagliaferri¹ and Pierfrancesco Tassone^{1,6}

¹ Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, T. Campanella

OPEN

Leukemia (2015), 1–11 © 2015 Macmillan Publishers Limited All rights reserved 0887-6924/15 www.nature.com/leu

ORIGINAL ARTICLE

Selective targeting of IRF4 by synthetic microRNA-125b-5p mimics induces anti-multiple myeloma activity *in vitro* and *in vivo*

E Morelli¹, E Leone¹, ME Gallo Cantafio¹, MT Di Martino¹, N Amodio¹, L Biamonte¹, A Gullà¹, U Foresta¹, MR Pitari¹, C Botta¹, M Rossi¹, A Neri², NC Munshi^{3,4}, KC Anderson³, P Tagliaferri¹ and P Tassone^{1,5}

A research platform for miRNA-based treatment of multiple myeloma and chronic lymphocytic leukemia

Ciin Can Resea

Synthetic miR-34a Mimics as a Novel Therapeutic Agent for Multiple Myeloma: *In Vitro* and *In Vivo* Evidence

Maria T. Di Martino¹, Emanuela Leone¹, Nicola Amodio¹, Umberto Foresta¹, Marta Lionetti³, Maria R. Pitari¹, Maria E. Gallo Cantafio¹, Annamaria Gullà¹, Francesco Conforti², Eugenio Morelli¹, Vera Tomaino¹, Marco Rossi¹, Massimo Negrini⁴, Manlio Ferrarini⁵, Michele Caraglia⁶, Masood A. Shammas^{7,8}, Nikhil C. Munshi^{7,8}, Kenneth C. Anderson⁷, Antonino Neri³, Pierosandro Tagliaferri¹, and Pierfrancesco Tassone^{1,9}

www.impactjournals.com/oncotarget/

Oncotarget, Advance Publications 2012

DNA-demethylating and anti-tumor activity of synthetic miR-29b mimics in multiple myeloma

Nicola Amodio¹, Marzia Leotta¹, Dina Bellizzi², Maria Teresa Di Martino¹, Patrizia D'Aquila², Marta Lionetti³, Fernanda Fabiani¹, Emanuela Leone¹, Anna Maria Gullà¹, Giuseppe Passarino², Michele Caraglia⁴, Massimo Negrini⁵, Antonino Neri³, Antonio Giordano⁶, Pierosandro Tagliaferri¹ and Pierfrancesco Tassone^{1,6}

Cell Cycle 12:23, 3650–3662; December 1, 2013; © 2013 Landes Bioscience

miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells

Nicola Amodio¹, Dina Bellizzi², Marzia Leotta¹, Lavinia Raimondi¹, Lavinia Biamonte¹, Patrizia D'Aquila², Maria Teresa Di Martino¹, Teresa Calimeri¹, Marco Rossi¹, Marta Lionetti^{3,4}, Emanuela Leone¹, Giuseppe Passarino², Antonino Neri^{3,4}, Antonio Giordano^{5,6}, Pierosandro Tagliaferri¹, and Pierfrancesco Tassone^{1,6,*}

www.impactjournals.com/oncotarget/

Oncotarget, Advance Publications 2016

Distinct IncRNA transcriptional fingerprints characterize progressive stages of multiple myeloma

Domenica Ronchetti^{1,2,*}, Luca Agnelli^{1,2,*}, Elisa Taiana^{1,2}, Serena Galletti^{1,2}, Martina Manzoni^{1,2}, Katia Todoerti³, Pellegrino Musto³, Francesco Strozzi⁴, Antonino Neri^{1,2}

Survival Has Improved...even for High Risk MM?

 How to integrate the molecular genetics for risk stratification and treatment selection

mSMART 2.0: Classification of Active MM

20%	20%	60%
High-Risk	Intermediate-Risk*	Standard-Risk*†
 FISH Del 17p t(14;16) t(14;20) GEP High risk signature 	 FISH t(4;14)[‡] Cytogenetic Deletion 13 or hypodiploidy PCLI ≥3% 	All others including: Hyperdiploid t(11;14)** t(6;14)

* Note that a subset of patients with these factors will be classified as high-risk by GEP

⁺ LDH >ULN and beta-2 M > 5.5 may indicate worse prognosis

[‡] Prognosis is worse when associated with high beta-2 M and anemia

**t(11;14) may be associated with plasma cell leukemia

Dispenzieri et al. Mayo Clin Proc 2007;82:323-341; Kumar et al. Mayo Clin Proc 2009 84:1095-1110 v8 Revised and updated: Feb 2011

GENETIC PROGNOSTIC MARKERS IN MYELOMA _ MRC MM IX *Thalidomide-based regimen*

ADVERSE PROGNOSTIC VALUE OF t(4;14), MAF Trx, gain 1q, del1p, del17p

Black = no 4:14 Red = 4:14 only Blue = 4:14 + either 17p- or 1q+ Green = 4:14 + 17p- and 1q+

www.nature.com/leu

SPOTLIGHT REVIEW

International Myeloma Working Group molecular classification of multiple myeloma: spotlight review

R Fonseca¹, PL Bergsagel¹, J Drach², J. Shaughnessy³, N Gutierrez⁴, K Stewart¹, G Morgan⁵, B Van Ness⁶, M Chesi¹, S Minvielle⁷, A Neri⁸, B Barlogie³, WM Kuehl⁹, P Liebisch¹⁰, F Davies⁵, S Chen-Kiang¹¹, BGM Durie¹², R Carrasco¹³, Orhan Sezer¹⁴, Tony Reiman¹⁵, Linda Pilarski¹⁶ and H Avet-Loiseau⁷

Level	FISH tests	Testing frequency	Validation
<i>Minimal proposed testing (essentia</i> Established markers	<i>testing)</i> t(4;14)(p16;q32) t(14;16)(q32;q23) 17p13	Once Once May be repeated	Validated by several studies
Expanded panel Markers with modest effects	Hyperdiploidy	Once	Weak effects when used alone. The first two may portend a more favorable outcome
	t(11;14)(q13;q32)	Once	
Other	Other translocations	May be repeated Once	Rare events and not routinely tested
Chromosome 1	1q amplification	May be repeated	Although conflicting studies
aCGH derived	1p deletion 12p deletion		seem to predict outcome
manoio	5q amplification	May be repeated	Data not validated yet

Table 1 FISH markers and association with outcome for patients with MM

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group

Antonio Palumbo, Hervé Avet-Loiseau, Stefania Oliva, Henk M. Lokhorst, Hartmut Goldschmidt, Laura Rosinol, Paul Richardson, Simona Caltagirone, Juan José Lahuerta, Thierry Facon, Sara Bringhen, Francesca Gay, Michel Attal, Roberto Passera, Andrew Spencer, Massimo Offidani, Shaji Kumar, Pellegrino Musto, Sagar Lonial, Maria T. Petrucci, Robert Z. Orlowski, Elena Zamagni, Gareth Morgan, Meletios A. Dimopoulos, Brian G.M. Durie, Kenneth C. Anderson, Pieter Sonneveld, Jésus San Miguel, Michele Cavo, S. Vincent Rajkumar, and Philippe Moreau

Author affiliations appear at the end of this article.

Published online ahead of print at www.jco.org on August 3, 2015.

Authors' disclosures of potential conflicts of interest are found in the article online at www.jco.org. Author contributions are found at the end of this article.

Corresponding author: Antonio Palumbo, MD, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Dipartimento di Oncologia ed Ematologia, San Giovanni Battista, Via Genova, 3 - 10126 Torino, Italy; e-mail: appalumbo@yahoo.com.

© 2015 by American Society of Clinical Oncology

0732-183X/15/3326w-2863w/\$20.00

DOI: 10.1200/JCO.2015.61.2267

A B S T R A C T

Purpose

The clinical outcome of multiple myeloma (MM) is heterogeneous. A simple and reliable tool is needed to stratify patients with MM. We combined the International Staging System (ISS) with chromosomal abnormalities (CA) detected by interphase fluorescent in situ hybridization after CD138 plasma cell purification and serum lactate dehydrogenase (LDH) to evaluate their prognostic value in newly diagnosed MM (NDMM).

Patients and Methods

Clinical and laboratory data from 4,445 patients with NDMM enrolled onto 11 international trials were pooled together. The K-adaptive partitioning algorithm was used to define the most appropriate subgroups with homogeneous survival.

Results

ISS, CA, and LDH data were simultaneously available in 3,060 of 4,445 patients. We defined the following three groups: revised ISS (R-ISS) I (n = 871), including ISS stage I (serum β_2 -microglobulin level < 3.5 mg/L and serum albumin level \geq 3.5 g/dL), no high-risk CA [del(17p) and/or t(4;14) and/or t(14;16)], and normal LDH level (less than the upper limit of normal range); R-ISS III (n = 295), including ISS stage III (serum β_2 -microglobulin level > 5.5 mg/L) and high-risk CA or high LDH level; and R-ISS II (n = 1,894), including all the other possible combinations. At a median follow-up of 46 months, the 5-year OS rate was 82% in the R-ISS I, 62% in the R-ISS II, and 40% in the R-ISS III groups; the 5-year PFS rates were 55%, 36%, and 24%, respectively.

Conclusion

The R-ISS is a simple and powerful prognostic staging system, and we recommend its use in future clinical studies to stratify patients with NDMM effectively with respect to the relative risk to their survival.

J Clin Oncol 33:2863-2869. © 2015 by American Society of Clinical Oncology

Table 1. Standard Risk Factors for MM and the R-ISS						
Prognostic Factor	Criteria					
ISS stage						
1	Serum β_2 -microglobulin < 3.5 mg/L, serum albumin \geq 3.5 g/dL					
I	Not ISS stage I or III					
III	Serum β₂-microglobulin ≥ 5.5 mg/L					
CA by iFISH						
High risk	Presence of del(17p) and/or translocation t(4;14) and/or translocation t(14;16)					
Standard risk	No high-risk CA					
LDH						
Normal	Serum LDH < the upper limit of normal					
High	Serum LDH > the upper limit of normal					
A new model for risk stratification for MM						
R-ISS stage						
I	ISS stage I and standard-risk CA by iFISH and normal LDH					
II.	Not R-ISS stage I or III					
III	ISS stage III and either high-risk CA by iFISH or high LDH					
Abbreviations: CA, chromoso cent in situ hybridization; ISS dehydrogenase; MM, multi Staging System.	omal abnormalities; iFISH, interphase fluores- S, International Staging System; LDH, lactate ple myeloma; R-ISS, revised International					

Fig 3. Revised International Staging System (R-ISS) and overall survival (OS) by type of treatment. (A) OS in regimens non-transplantation-based regimens. (B) OS in transplantation-based regimens. (C) OS in immunomodulatory-based regimens. (D) OS in proteasome inhibitor-based regimens. NR, not reached.

Palumbo et al, J Clin Oncol 2015

Survival Has Improved...even for High Risk MM?

- How to integrate the molecular genetics for risk stratification and treatment selection
- What about "novel" agents?

Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group

Pieter Sonneveld, Hervé Avet-Loiseau, Sagar Lonial, Saad Usmani, David Siegel, Kenneth C. Anderson, Wee-Joo Chng, Philippe Moreau, Michel Attal, Robert A. Kyle, Jo Caers, Jens Hillengass, Jesús San Miguel, Niels W. C. J. van de Donk, Hermann Einsele, Joan Bladé, Brian G. M. Durie, Hartmut Goldschmidt, María-Victoria Mateos, Antonio Palumbo and Robert Orlowski

Thalidomide does not overcome the high risk cytogenetics t(4;14), t(14;20), t(14;16), gain(1q), del(17p), del(1p32) in transplant eligible (TE) patients. Conclusive data for elderly and frail patients are not available.

Lenalidomide partly improves the adverse effect of t(4;14) and del(17p) on PFS, but not OS, in TE patients. In non-TE patients, there are no data suggesting that the drug may improve outcome with HR cytogenetics. Pomalidomide with dexamethasone showed promising results in RRMM with del(17p)

Bortezomib partly overcomes the adverse effect of t(4;14) and possibly del(17p) on CR, PFS, and OS. There is no effect in t(4;14) combined with del(17p) in TE patients. In non-TE patients, VMP may partly restore PFS in HR cytogenetics

2016 127: 2955-2962 doi:10.1182/blood-2016-01-631200 originally published online March 21, 2016

Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group

Pieter Sonneveld, Hervé Avet-Loiseau, Sagar Lonial, Saad Usmani, David Siegel, Kenneth C. Anderson, Wee-Joo Chng, Philippe Moreau, Michel Attal, Robert A. Kyle, Jo Caers, Jens Hillengass, Jesús San Miguel, Niels W. C. J. van de Donk, Hermann Einsele, Joan Bladé, Brian G. M. Durie, Hartmut Goldschmidt, María-Victoria Mateos, Antonio Palumbo and Robert Orlowski

Combining a proteasome inhibitor (Bortezomib) with lenalidomide and dexamethasone greatly reduces the adverse effect of t(4,14) and del(17p) on PFS in newly diagnosed MM patients (NDMM).

Carfilzomib with lenalidomide and dexamethasone seems effective in patients with HR cytogenetics. However, with a few exception, most data were obtained in non randomized studies and long term follow-up has not been reported.

NDMM with HR cytogenetics should be treated with the combination of a proteasome inhibitor with lenalidomide or pomalidomide and dexamethasone

ORIGINAL ARTICLE

Carfilzomib, Lenalidomide, and Dexamethasone for Relapsed Multiple Myeloma

Subgroup	Carfilzomib	Control	Hazard Ratio (95% CI)	
	200	200		0.00.0057.083
All patients	390	290		0.69 (0.57-0.85)
Sex	101	364		0.00.00.000
Female	181	164		0.68 (0.51-0.92)
Male	215	232		0.74 (0.58-0.95)
Age				
18–64 yr	211	188		0.60 (0.46-0.79)
≥65 yr	185	208		0.85 (0.65-1.11)
Cytogenetic risk at study entry				
High risk	48	52	• · · · · · · · · · · · · · · · · · · ·	0.70 (0.43-1.16)
Standard risk	147	170		0.66 (0.48-0.90)
β_2 -microglobulin				
<2.5 mg/liter	68	71	• • • • • • • • • • • • • • • • • • •	0.60 (0.36-1.02)
≥2.5 mg/liter	324	319	→ → j	0.71 (0.58-0.87)
Geographic region				
Europe	302	288		0.70 (0.56-0.86)
North America	84	87	· · · · · · · · · · · · · · · · · · ·	0.88 (0.57-1.37)
Peripheral neuropathy at baseline				
No	252	259	— •—•	0.61 (0.48-0.77)
Yes	144	137	·•;	0.95 (0.69-1.30)
Previous treatment with bortezomib				
No	135	136		0.73 (0.52-1.02)
Yes	261	260	— •—•	0.70 (0.56-0.88)
Previous treatment with lenalidomide				
No	317	318		0.69 (0.55-0.85)
Yes	79	78	• • • • • • • • • • • • • • • • • • •	0.80 (0.52-1.22)
Disease nonresponsive to bortezomib in any previous regimen				
No	336	338	→→	0.70 (0.57-0.86)
Yes	60	58	· · · · · · · · · · · · · · · · · · ·	0.80 (0.49-1.30)
Disease refractory to immunomodulatory agent in any previous regimen				
No	311	308	— •—•	0.72 (0.58-0.90)
Yes	85	88		0.64 (0.44-0.91)
Disease nonresponsive to bortezomib and refr to immunomodulatory agent in any previo regimen	actory ous			
No	372	369	— •—	0.70 (0.57-0.85)
Yes	24	27	· · · · · · · · · · · · · · · · · · ·	0.89 (0.45-1.77)
		0.25	0.50 1.00 2	.00

Carfilzomib significantly improves the progression-free survival of high-risk patients in multiple myeloma

2015 125: 1411-1417 doi:10.1182/blood-2014-11-612069 originally published online January 9, 2015

Pomalidomide plus low-dose dexamethasone in multiple myeloma with deletion 17p and/or translocation (4;14): IFM 2010-02 trial results

Novel proteasome Inhibitors: IXAZOMIB

Patients (Pts) with Relapsed and/or Refractory Multiple Myeloma_phase 3 study

	ORR, %		≥VGPR, %		≥CR, %		Median OFS, months		
	IRd	Placebo- Rd	IRd	Placebo- Ird	IRd	Placebo- Rd	IRd	Placebo- Rd	HR
All patients	78.3*	71.5	48.1	39	11.7*	6.6	20.6	14.7	0.742*
Standard-risk patients	80	73	51	44	12	7	20.6	15.6	0.640*
All high-risk patients	79*	60	45	21	12*	2	21.4	9.7	0.543
Patients with del(17p) [†]	72	48	39	15	11*	0	21.4	9.7	0.596
Patients with t(4;14) alone	89	76	53	28	14	4	18.5	12	0.645

*p<0.05 for comparison between regimens. ⁺Alone or in combination with t(4;14) or t(14;18). Data not included patients with t(14;16) alone due to small numbers (n=7).

In the IRd arm, median PFS in high-risk patients was similar to that in the overall patient population and in patients with standard-risk cytogenetics

Moreau et al. ASH 2015

Initial genome sequencing and analysis of multiple myeloma

Michael A. Chapman¹[†], Michael S. Lawrence¹, Jonathan J. Keats^{2,3}, Kristian Cibulskis¹, Carrie Sougnez¹, Anna C. Schinzel⁴, Christina L. Harview¹, Jean-Philippe Brunet¹, Gregory J. Ahmann^{2,3}, Mazhar Adli^{1,5}, Kenneth C. Anderson^{3,4}, Kristin G. Ardlie¹, Daniel Auclair^{3,6}, Angela Baker⁷, P. Leif Bergsagel^{2,3}, Bradley E. Bernstein^{1,5,8,9}, Yotam Drier^{1,10}, Rafael Fonseca^{2,3}, Stacey B. Gabriel¹, Craig C. Hofmeister^{3,11}, Sundar Jagannath^{3,12}, Andrzej J. Jakubowiak^{3,13}, Amrita Krishnan^{3,14}, Joan Levy^{3,6}, Ted Liefeld¹, Sagar Lonial^{3,15}, Scott Mahan¹, Bunmi Mfuko^{3,6}, Stefano Monti¹, Louise M. Perkins^{3,6}, Robb Onofrio¹, Trevor J. Pugh¹, S. Vincent Rajkumar^{3,16}, Alex H. Ramos¹, David S. Siegel^{3,17}, Andrey Sivachenko¹, A. Keith Stewart^{2,3}, Suzanne Trudel^{3,18}, Ravi Vij^{3,19}, Douglas Voet¹, Wendy Winckler¹, Todd Zimmerman^{3,20}, John Carpten⁷, Jeff Trent⁷, William C. Hahn^{1,4,8}, Levi A. Garraway^{1,4}, Matthew Meyerson^{1,4,8}, Eric S. Lander^{1,8,21}, Gad Getz¹ & Todd R. Golub^{1,4,8,9}

ARTICLE

Received 18 Jul 2013 | Accepted 25 Nov 2013 | Published 16 Jan 2014

DOI: 10.1038/ncomms3997 OPEN

Heterogeneity of genomic evolution and mutational profiles in multiple myeloma

Cancer Cell Article

Widespread Genetic Heterogeneity in Multiple Myeloma: Implications for Targeted Therapy

Jens G. Lohr,^{1,2,10} Petar Stojanov,^{1,2,10} Scott L. Carter,^{1,10} Peter Cruz-Gordillo,¹ Michael S. Lawrence,¹ Daniel Auclair,¹ Carrie Sougnez,¹ Birgit Knoechel,^{1,2,3} Joshua Gould,¹ Gordon Saksena,¹ Kristian Cibulskis,¹ Aaron McKenna,¹ Michael A. Chapman,⁴ Ravid Straussman,¹ Joan Levy,⁵ Louise M. Perkins,⁵ Jonathan J. Keats,⁶ Steven E. Schumacher,^{1,2} Mara Rosenberg,¹ The Multiple Myeloma Research Consortium,¹¹ Gad Getz,^{1,7,12} and Todd R. Golub^{1,2,8,9,12,*}

Published Ahead of Print on August 17, 2015 as 10.1200/JCO.2014.59.1503 The latest version is at http://jco.ascopubs.org/cgi/doi/10.1200/JCO.2014.59.1503

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma

RAS genes frequently mutated (50/60%) Other frequently mutated genes up to 10%

Biological pathways analysis required Histone modification ; RNA processing and protein homeostasis; NF-KB signaling; MAP kinase; DNA damage response

Widespread Genetic Heterogeneity in Multiple Myeloma: Implications for Targeted Therapy

Jens G. Lohr,^{1,2,10} Petar Stojanov,^{1,2,10} Scott L. Carter,^{1,10} Peter Cruz-Gordillo,¹ Michael S. Lawrence,¹ Daniel Auclair,¹ Carrie Sougnez,¹ Birgit Knoechel,^{1,2,3} Joshua Gould,¹ Gordon Saksena,¹ Kristian Cibulskis,¹ Aaron McKenna,¹ Michael A. Chapman,⁴ Ravid Straussman,¹ Joan Levy,⁵ Louise M. Perkins,⁵ Jonathan J. Keats,⁶ Steven E. Schumacher,^{1,2} Mara Rosenberg,¹ The Multiple Myeloma Research Consortium,¹¹ Gad Getz,^{1,7,12} and Todd R. Golub^{1,2,6,9,12,*}

Published Ahead of Print on August 17, 2015 as 10.1200/JCO.2014.59.1503 The latest version is at http://jco.ascopubs.org/cgi/doi/10.1200/JCO.2014.59.1503

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma

Walker et al., JCO Aug 17, 2015 Pub ahead

Integration of ISS, copy number/structural alterations (CNSA) and mutations improves the ability to identify early progression and mortality

Walker et al., JCO Aug 17, 2015 Pub ahead

IMPACT OF DNA REPAIR PATHWAY GENES IN MYELOMA

Walker et al., JCO Aug 17, 2015 Pub ahead

A

Progression-Free Survival

	HR	LCI	UCI	Р	Sign.	
TP53 signal	2.6	1.8	3.7	< .0001	* * *	
ISS III	2.6	1.7	3.8	< .0001	* * *	
t(4;14)	2.3	1.6	3.3	< .0001	***	
Age > 70 years	1.9	1.4	2.5	< .0001	* * *	
ZFHX4	2.6	1.4	4.7	< .0001	**	
ISS II	1.8	1.2	2.7	.004	**	
MYC translocation	1.6	1.2	2.2	.005	**	
ATM/ATR	2.1	1.2	3.6	.008	**	
Overall Survival						
TP53 signal	3.3	2	5.3	< .0001	* * *	_
ISS III	2.2	1.5	3.3	.0001	* * *	
amp(1q)	2.5	1.5	4.1	.0008	***	
CCND1	4.2	1.7	10.5	.0025	**	
ATM/ATR	2.8	1.4	5.3	.0029	**	
MYC translocation	1.9	1.2	3	.0036	**	

group 1, ISS I and II with no copy number and structural abnormality [CNSA] or mutation;

group 2, ISS III with no CNSA or mutation or ISS I, II, and III with one CNSA or mutation

group 3, two CNSAs or mutations regardless of their ISS).

81% and 90% of patients who both experienced relapse and died prematurely are identified by this score

Multivariate analyses of genomic alterations and gene mutations significantly associated with poor prognosis in Myeloma XI trial

Walker et al., J Clin Oncol. 2015 aug 17. [Epub ahead of print]

Intraclonal diversity arises early in Myeloma

Walker B, et al. *Leukemia*. 2014 28:384–90.

MODEL OF CLONAL EVOLUTION IN CANCER

Linear_ Clonal homogeneity

Branching Intra-clonal heterogeneity

Independent clones _ inter-clonal heterogeneity

Clonal evolution in Myeloma: *implication for high risk disease*

Clonal evolution in Myeloma: implication for high risk disease

Leukemia (2013) 27, 473-481 © 2013 Macmillan Publishers Limited All rights reserved 0887-6924/13

npg

linear

subclonal

evolution

www.nature.com/leu

ORIGINAL ARTICLE

Minor clone provides a reservoir for relapse in multiple myeloma

F Magrangeas^{1,2}, H Avet-Loiseau², W Gouraud^{1,3}, L Lodé², O Decaux^{1,4}, P Godmer⁵, L Garderet⁶, L Voillat⁷, T Facon⁸, AM Stoppa⁹, G Marit¹⁰, C Hulin¹¹, P Casassus¹², M Tiab¹³, E Voog¹⁴, E Randriamalala¹⁵, KC Anderson¹⁶, P Moreau^{1,2}, NC Munshi^{16,17} and S Minvielle^{1,2}

Models of clonal evolution in MM

Pattern of genomic evolution could not be predicted by response treatment, interval between sampling or treatment type

Bolli et al., Nature Communications, 2014

Patterns of Clonal Evolution in Multiple Myeloma:

whole-exome sequencing and single-cell genetic analyses

Branching evolution

Melchor et al ., Leukemia, 2014

Comparison of *BRAF/NRAS/KRAS/DIS3/TP53/FAM46C* mutation frequencies in MM

	WES	WES	WES	Targeted sequencing
	Walker (n=463)	Lohr (n=203)	Bolli (n=67)	Neri (n=132)
BRAF	6.7%	6%	14.9%	10.6%
NRAS	19.4%	20%	25.4%	26.5%
KRAS	21.1%	23%	25.4%	32.6%
DIS3	8.6%	11%	1.5%	18.5%
FAM46C	5.6%	11%	11.9%	11.7%
TP53	3.0%	8%	14.9%	3.1%

BRAF/NRAS/KRAS/DIS3/TP53/FAM46C mutations ^{13q14} /IM an(TP53 L

	BRAF	NRAS	KRAS	DIS3	and/or <i>DIS3</i> mut	TP53	del and/or	AM46C
132 MM patients at onset	14/132 10.6%	35/132 26.5%	43/132 32.6%	24/130 18.5%	66/130, 50.8%	4/129 3.1% 25% del(17p)	9/128, 7%	L5/128 11.7%
16 MM patients at relapse	0/16 0%	3/16 18.7%	7/16 43.7%	3/16 18.7%	8/16, 50%	1/16 6.2%	5/16, 31.2%	2/16 12.5%
24 primary PCL patients at onset	5/24 20.8%	1/24 4.2%	4/24 16.7%	6/24 25%	19/24, 79.2%	6/24 25% 67% del(17p)	9/24, 37.5%	1/24 4.2%
11 secondary PCL patients	1/11 9.1%	4/11 36.4%	2/11 18.2%	3/10 30%	6/10, 60%	2/10 20% 100% del(17p	4/9, 44.4%	2/10 20%
RAS/BRAF								
KRAS NRAS								
BRAF								
DIS3								
FAM46C								
ТР53								

The RAS/MAPK is the most mutated pathway in Multiple Myeloma

Lionetti et al., Oncotarget. 2015 Jun 10. [Epub ahead of print]

Walker et al., J Clin Oncol. 2015 aug 17. [Epub ahead of print]

Variant allelic frequency and sequential analysis of BRAF mutation analysis: *Evidence of mutation in small sublones*

Lionetti et al., Oncotarget. 2015;6(27):24205-17.

Variant allelic frequency and sequential analysis of RAS mutation analysis:

Evidence of mutation in small sublones

Lionetti et al., Oncotarget. 2015;6(27):24205-17.

Experimental evidence in Melanoma indicates that D594 mut are not able to activate BRAF They are defined *Dead Mutations* and reported to be recurrentely concomitant to Ras mutation

Dead-BRAF mutations are able to activate MEK-ERK in a RAS-dependent manner

Sample	BRAF	NRAS	KRAS
MM-295_early	D594N, 50%	G12D, 8.9%	wt
MM-295_late	D594N, 51.9%	G12D, 100%	wt
MM-435	D594G, 22.2%	Q61R, 29.9%	wt
MM-219	D594G, 7.8%	wt	G13D, 5.9%
MM-140	D594N, 1.7%	wt	G12A, 14.8%
MM-411	D594G, 0.9%	S87C, 45.5%	wt
PCL-026_early	D594N, 43.1%/E586K, 42.2%	wt	wt
PCL-026_late	D594N, 40%/E586K, 42.8%	wt	wt
PCL-028	D594E, 4.7%	wt	wt
MM-036	D594N, 5.6%	wt	wt

Oncogenic RAS and Kinase-Dead BRAF Mutation cooperate to induce melanoma in mice

5 out of 8 MM patients carrying a D594 dead-BRAF mutation were mutated for RAS genes.

Lionetti et al., Oncotarget. 2015;6(27):24205-17.

Heidorn et al Cell, 2014

Treatment of Vemurafenib on BRAF mutated U266 myeloma line affects cell proliferation

120

100

80

60

40

20

D

0

24

30 µM

72

24 h

48 h

72 h

48

7.42%

4.95%

8.93%

8.59%

14.40%

9.23%

103

102

103 10 в

Vemurafenib 6 h 12 h 24 h 0 µM 30 µM 0 µМ 30 µМ 0 µМ 30 µМ BRAF phERK ERK tot actin

48 h

72 h

G2

s =

■ G1

24 h

Oncotarget. 2015;6(27):24205-17.

NRAS, KRAS and BRAF mutated MMs

GSEA enrichment plots of U266 vemurafenib-treated cells

DIS3, a catalytic component of the RNA exosomes

•DIS3 is the catalytic subunit of the RNA exosome, a macromolecular complex degrading RNA.

•The eukaryotic exosome complex is built around a backbone of a 9-subunit ring devoid of any detectable catalytic activity

•The RNA decay capability is supplied by two associated hydrolytic ribonucleases, Dis3 and Rrp6.

•Dis3 is both a 3'-5' exonuclease and, as recently demonstrated, an endoribonuclease (Lebreton et al. 2008; Schaeffer et al. 2009).

•Rrp6 is instead an exonuclease. The functional relationship between Dis3 and Rrp6 is unknown

Compendium of DIS3 mutations in plasma cell dyscrasias

Lionetti et al. Oncotarget. 2015 Sep 22;6(28):26129-41

Variant allelic frequency and sequential analysis of DIS3 mutation analysis: *Evidence of mutation in small sublones*

DIS3 mutations and chromosomal abnormalities

Negative/Positive association with Hyperdiplody/non-Hyperdiplody

Lionetti et al. Oncotarget. 2015 Sep 22;6(28):26129-41

Walker et al. J Clin Oncology, 2015

1p32.3 CDKNC2

1p31.1

1p36.31

1p36.13

Mapping of Chromosome 1p Deletions in Myeloma Identifies *FAM46C* at 1p12 and *CDKN2C* at 1p32.3 as Being Genes in

Predictive Biomarkers and Personalized Medicine

Regions Associated with Adverse Survival

 1p21.3

 1p13.3

 1p12

 FAM46C

 International State State

FAM46C contains one domain of unknown function, DUF1693, and as such has been placed in the DUF1693 protein family.

This protein family has been established as a part of the Nucleotidyltransferase superfamily .

Predicted as a cytosolic protein

locus 1p12

FAM46C is recurrently involved in translocation juxtaposing MYC with genes harboring superenhancers with a role in B-cell biology or neoplasia

FAM46C (391 aa long) is found on chromosome 1 at the

118.2 Mb 118.3 Mb 118.4 Mb Chromosome 1 FAM46 128.8 Mb 129.0 Mb 128.7 Mb 128.9 Mb 129.1 Mb Chromosome 8 MIR1204 PVT1 128.7 Mb 128.8 Mb 118.3 Mb 118.2 Mb Derivative HH MYC MIR1204

Walker B. et al. Blood Cancer Journal, 2014 Affer M. et al. Leukemia, 2014

Boyd KD et al. Lin Cancer Res. 2011

20 15 10 5 0 5 10 15 20 25 30

Compendium of FAM46C mutations in plasma cell dyscrasias

Barbieri et al., British Journal of Haematology 2016

Boyd et al., Clinical Cancer Research 2011

Walker et al., Journal of Clinical Oncology 2015

Walker et al., Blood 2012

Chapman *et al.,* Nature 2011; Lohr *et al.,* Cancer Cell 2014

Bolli et al., Nature Communications 2014

Barbieri et al. Br J Haematol. 2016 Aug;174(4):642-5

Variant allelic frequency and sequential analysis of FAM46C mutation analysis: *Evidence of mutation in small sublones*

Chapman *et al.*, Nature 2011; Lohr *et al.*, Cancer Cell 2014

Walker et al., Blood 2012

Walker et al., JCO 2015

Bolli et al. Nature Communications 2014

Wheinhold, Blood, sept 2016

Variant allelic frequency and sequential analysis of TP53 mutation analysis: *Evidence of mutation in small sublones*

210 210 210 p12 %% 210 ۲ 210 210 210 q12 q41 ×. 210 210 210 210 210 p12 Z p18 % H H q12 q12 q21 H q34 2 1 0 125 210 210 210 210 210 210 q12 210 210 210 210 210

CLONAL EVOLUTION IN MULTIPLE MYELOMA – CytoScan Affy array

LOSS MOSAICISM LOSS **GAIN MOSAICISM** GAIN

q21

R22

NEW LESIONS ACQUIRED IN DISEASE PROGRESSION

EVOLVING LESIONS FROM DIAGNOSIS TO PROGRESSION

~

0= NEGATIVE CONTROL 1= DIAGNOSIS 2= PROGRESSION

Detailed view of chromosome 17 aberrations in MM - sPCL

Sub-clonal 17p12-p13.1 loss (2.4 Mb) and 17p12 loss (1.3 Mb)

TP53 WT

> 17p11.2-p13.3 loss (16.3 Mb)

> TP53 loss (17p13.1) + TP53 mut

WES_MM-281 : NON-SYN Mutations

in preparation

Genomic background in primary PCL

A Pilot Study of Lenalidomide and Dexamethasone in Primary Plasma Cell Leukemia (GIMEMA)

FISH

Pos/tested %	t(11;14)	t(4;14)	t(14;16)	del(13q14)	del(17p13)
Mosca	9/23	3/23	7/23	17/23	8/23
AMJ, 2013	39%	13%	30%	74%	35%

Royer 16/32	2/32	5/32	19/32	9/32
JCO, 2016 50%	6%	16%	59%	28%

Bortezomib, Doxorubicin, Cyclophosphamide, Dexamethasone Induction Followed by Stem Cell Transplantation for Primary Plasma Cell Leukemia: A Prospective Phase II Study of the Intergroupe Francophone du Myélome

J Clin Oncol 34:2125-2132. © 2016 by American Society of Clinical Oncology

Musto et al. , *Leukemia* 2014 Mosca et al., *Am J Hematol*, 2013 Todoerti et al. , *Clin Cancer Res*, 2013 Lionetti et al. , *Clin Cancer Res*, 2013

absence of hyperdiploid pattern in PPCL

Major genetic lesions do not evidence significant impact in the clinical outcome of PPCL patients enrolled in two recent prospective trials

Best outcome observed in transplanted patients

Whole-exome sequencing of primary plasma cell leukemia discloses heterogeneous mutational patterns

CIFOLA et al. Oncotarget, 2015

	A		Mutated pathways significantly e dissemination			
		Non-syn SNVs - missense Non-syn SNVs - nonsense	Pathway	Source	p	
	1725	 Indels - tramesnitt Indels - inframe Splice site variants 	Cadherin signaling pathway	PantherDB (ID P00012)	1	
	60%		ECM-receptor interaction	BioSystems: KEGG (ID 83068)	2.	
variants	50%		Cell Cycle G2/M Checkpoint	MSigDB C2: BioCarta (ID M8560)	1	
Percentage of	30%		Wnt signaling pathway	PantherDB (ID P00057)	1	
	0% C>A C>G C>T T	T>C T>A T>G	Extracellular matrix organization	BioSystems: REACTOME (ID 576262)	1	
Percentage of variants	40% 30% 20% 10% 0% C>A C>G C>T	T>C T>A T>G	Checkpoint Wnt signaling pathway Extracellular matrix organization	BioCarta (M8560) PantherD (ID P0005 BioSystem REACTON (ID 57626	1D)B (7) 1s: /E (2)	

Mutated pathways significantly enriched in mutated genes in pPCL suggest a role in leukemic dissemination

ense sense	Pathway	Source	p-value	Bonferroni q-value	No. Damaging/ Total variants	Genes
	Cadherin signaling pathway	PantherDB (ID P00012)	1.91E-0 7	4.69E-04	24/48	PCDH15 ^A , FZD6, PCDH7 ^A , PCDH20 ^A , CDH20 ^A , DCHS1 ^A , CDH17 ^A , CDH4 ^A , CDH9 ^A , CDH23 ^A , CTNNA2, PCDHGB1 ^A , PCDHGC5 ^A , PCDHGC4 ^A , PCDHGA2 ^A , PCDHGA1 ^A , PCDHA7 ^A , PCDHA13 ^A , PCDHAC1 ^A , PCDHB2 ^A , PCDHB3 ^A , PCDHB7 ^A , PCDH88 ^A , PCDHA2 ^A , PCDHA1 ^A , PCDHA3 ^A , CELSR3 ^A , FAT1 ^A , FAT2 ^A , FER, FZD10, CDHR2 ^A , FAT3 ^A , YES1, PCDH11X ^A
	ECM-receptor interaction	BioSystems: KEGG (ID 83068)	2.66E-0 6	6.55E-03	9/26	CD36, SV2B, COL1A2°, COL1A1°, COL5A1°, COL6A3°, COL4A2°, DAG1°, COL6A6°, RELN°, TNN°, FN1°, THBS3, TNXB°, HMMR, HSPG2°, ITGA1, LAMB1°, LAMA4°, LAMA5°, LAMA2°, LAMA3°
	Cell Cycle G2/M Checkpoint	MSigDB C2: BioCarta (ID M8560)	1.45E-0 5	3.58E-02	13/20 (*)	ATM, <u>ATR</u> , BRCA1, CDC25A, CDKN1A, PRKDC, <u>EP300</u> , CHEK2, RPS6KA1, TP53
	Wnt signaling pathway	PantherDB (ID P00057)	1.60E-0 5	3.95E-02	36/66 ^(*)	MYH13, PCDH15 ^A , FZD6, PCDH7 ^A , MYH7, PCDH20 ^A , CDH20 ^A , DCHS1 ^A , CDH17 ^A , CDH4 ^A , CDH9 ^A , CDH23 ^A , PRKCZ, <u>PPP2R5E</u> , PPP3R2, CREBBP, CTNNA2, PLCB4, PCDHGB1 ^A , PCDHGC5 ^A , PCDHGC4 ^A , PCDHGA2 ^A , PCDHGA1 ^A , DVL3, PCDHA7 ^A , PCDHA13 ^A , PCDHAC1 ^A , PCDHB2 ^A , PCDHB3 ^A , PCDHB7 ^A , PCDHB8 ^A , PCDHA2 ^A , PCDHA1 ^A , PCDHA3 ^A , <u>EP300</u> , CELSR3 ^A , FAT1 ^A , FAT2 ^A , SRCAP, FZD10, INO80, TP53, CDHR2 ^A , FAT3 ^A , PCDH11X ^A , KREMEN1, ITPR2, MYH14, PLCB1
3	Extracellular matrix organization	BioSystems: REACTOME (ID 576262)	1.71E-0 5	4.21E-02	22/51	ACTN1, ACAN°, COL6A5°, DDR2, LTBP4°, ADAMTS9°, COL1A2°, COL1A1°, COL15A1°, COL17A1°, COL9A3°, PDGFB, COL9A1°, COL5A1°, COL6A3°, COL4A2°, PLEC, VCAN°, DAG1°, ADAMTS16°, ADAMTS18°, COL6A6°, BCAN °, PSEN1, DSPP°, TNN°, PTPRS, FBN2°, FGA, FN1°, <u>ADAMTS5</u> °, TNXB°, ADAM18, LEPREL1°, HSPG2°, <u>ICAM4</u> , ITGA1, LOXL4, LAMB1°, LAMA4°, LAMA5°, LAMA2°, LAMA3°, FBN3°

Mutations of DNA repair and cell cycle check-point genes in primary Plasma Cell Leukemia 9/12 (75%)

Copy Number Alterations in pPCLs: *a WES based approach*

Most frequently biallelically affected genes

Gene	Cytoband	Affected samples				
TP53	17p13.1	PCL-017	PCL-018	PCL-027	PCL-0 30	
DIS3	13q22.1	PCL-019	PCL-036			
MUC4	3q29	PCL-017	PCL-019			
BIRC2	11q22	PCL-019	PCL-016			
TRAF3	14q32.32	PCL-017	PCL-032			

 \circ mutation + deletion

o biallelic deletion

CIFOLA et al. Oncotarget, 2015

IGH Trx

Hyperdiploidy

Genetic complexity, intraclonal diversity and clonal evolution in Myeloma Maximise use of current drugs

Adapted from Weinhold et al. BLOOD vol 128, sept, 2016, pag 1735

Acknowledgments

Department of Oncology and hemato-oncology University of Milan Hematology 1 Fondazione IRCCS Policlinico Milano

> Luca Agnelli Marta Lionetti Domenica Ronchetti Sonia Fabris Marzia Barbieri Martina Manzoni

Institute of CancerResearch London Gareth Morgan Brian Walker Ping Wu

Institute for Biomedical Technologies, National Reserach Council, University of Milan Gialuca De Bellis Cristina Battaglia Ingrid Cifola

GIMEMA Myeloma Working Party

Centro di riferimento Oncologico della Basilicata IRCCs Rionero in Vulture (PZ) Pellegrino Musto Katia Todoerti Vittorio Simeon

Research Network AIRC 5 x 1000

A research platform for miRNA-based treatment of multiple myeloma and chronic lymphocytic leukemia

