

Neoplasie Mieloproliferative: I Nuovi Agenti Terapeutici

Alessandro M. Vannucchi

CRIMM- Center of Research and Innovation of MPN
Azienda Ospedaliera Universitaria Careggi
University of Florence, Italy

I Nuovi Agenti Terapeutici

- Nuovi JAK2 inibitori
- Nuove idee per Ruxolitinib
- Nuovi target
- Cocktails

I Nuovi Agenti Terapeutici

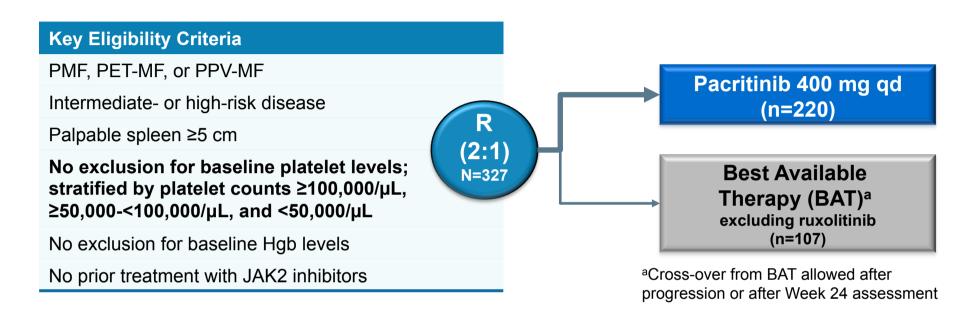
- Nuovi JAK2 inibitori
- Nuove idee per Ruxolitinib
- Nuovi target
- Cocktails

JAK2 Inhibitors: Molecules and Clinical Trials

JAK inhibitor (Company)	MF	PV/ET	Note
CEP701 (Cephalon)			STOPPED
AZD1480 (AstraZeneca)			STOPPED
XL019 (Exelixis)			STOPPED
NS-018 (NS Pharma)	I, ongoing		STOPPED
BMS-911543 (BMS)	I/II, ongoing		STOPPED
LY2784544 (Lilly)	II, ongoing	I finished	STOPPED
Momelotinib (Gilead)	III, ongoing		ONGOING
Pacritinib (CTI)	III, ongoing		COMPLETED, on Hold
Fedratinib (Sanofi)	III, completed	I/II completed	STOPPED
Ruxolitinib (Incyte/Novartis)	III, completed (2) II, ongoing (low plt)	II, completed (ET,PV) III, completed (PV)	MF, APPROVED

Pacritinib

• Pacritinib is a kinase inhibitor with specificity for JAK2, FLT3, IRAK1, and CSF1R that has demonstrated minimal myelosuppression in clinical trials¹⁻⁴

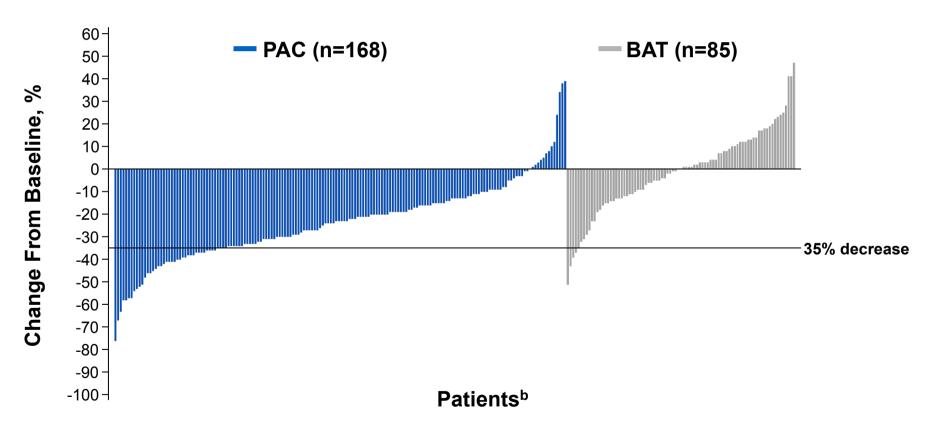

Structure of Pacritinib

In Vitro Activity of Pacritinib			
Kinase	IC ₅₀ (nM)		
JAK1	1280		
JAK2 ^{wt}	6.0		
JAK2 ^{V617F}	9.4		
JAK3	18.3		
TYK2	27.0		
FLT3-ITD	13.4		
FLT3 ^{D835Y}	4.7		
CSF1R	39.5		
IRAK1	13.6		

CSF1R, colony stimulating factor 1 receptor; FLT, FMS-like tyrosine kinase; IC_{50} , half-maximal inhibitory concentration; IRAK1, interleukin-1 receptor–associated kinase; ITD, internal tandem duplication; JAK, Janus kinase; TYK, tyrosine kinase.

^{1.} Hart S, et al. Leukemia. 2011;25:1751-1759. 2. Komrokji RS, et al. Blood. 2015;125:2649-2655. 3. Mesa RA, et al. ASCO 2015. Abstract LBA7006. 4. Singer JW, et al. ASH 2014. Abstract 1874.

PERSIST-1 Study Design

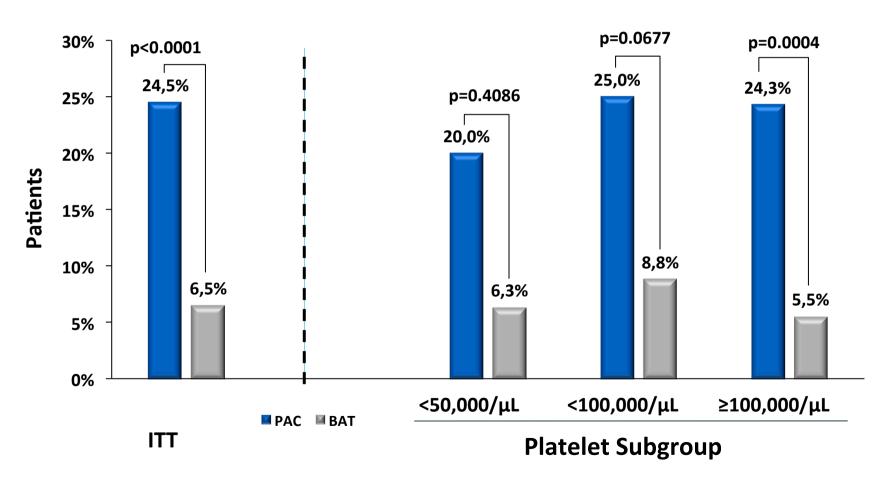


- Stratification at randomization: platelet count category, risk category, and region
- Study endpoints
 - Primary: proportion of patients achieving a ≥35% reduction in spleen volume (by MRI/CT) from baseline to Week 24
 - Secondary: proportion of patients with a ≥50% reduction in Total Symptom Score (TSS) from baseline to Week 24 on the Myeloproliferative Neoplasm Symptom Assessment Form v 2.0
- Trial conducted in US, Europe, Russia, and Oceania

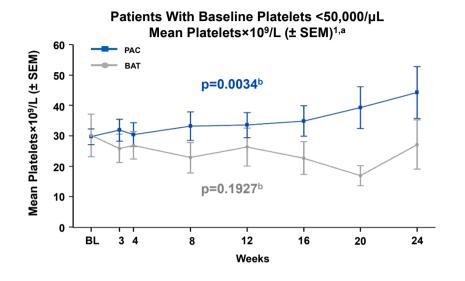
CT, computed tomography; Hgb, hemoglobin; JAK, Janus kinase; MRI, magnetic resonance imaging; PET-MF, post-essential thrombocythemia myelofibrosis; PMF, primary myelofibrosis; PPV-MF, post-polycythemia vera myelofibrosis; R, randomized.

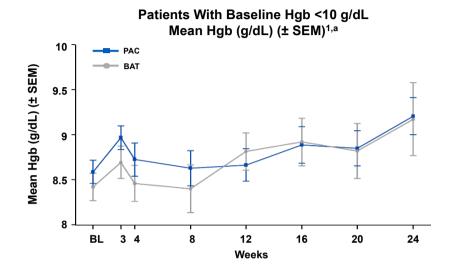
Primary Objective: Spleen Volume Reduction

- ITT population: 19.1% vs. 4.7%, PAC vs. BAT (p=0.0003)
- Evaluable population^a: 25.0% vs. 5.9%, PAC vs. BAT (p=0.0001)

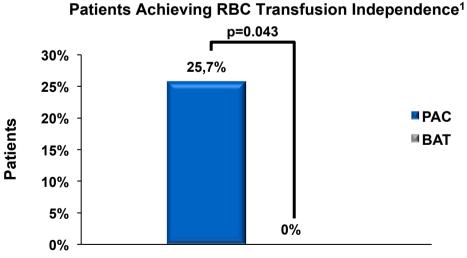

^aEvaluable population: patients had both baseline and Week 24 spleen assessment by MRI or CT; n=168 for PAC and n=85 for BAT. ^bAs of last patient's 24 week visit.

BAT, best available therapy; CT, computed tomography; ITT, intent to treat; MRI, magnetic resonance imaging; PAC, pacritinib. Mesa RA, et al. ASCO 2015. Abstract LBA7006.


Secondary Objective: Symptom Improvement


Patients Achieving ≥50% Reduction in TSS

At Week 24 (ITT Population)

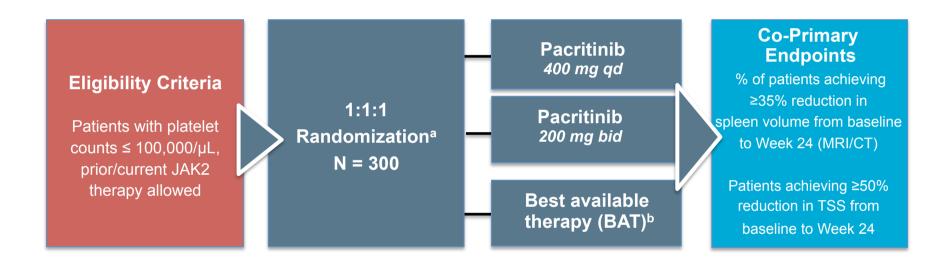


Hematological Toxicity

 At baseline, 15.9% of PAC and 14.0% of BAT patients were RBC transfusion dependent, per Gale criteria (≥6 units/90 days²)

^aBy central laboratory. ^bBased on linear regression using mixed model. BAT, best available therapy; BL, baseline; Hgb, hemoglobin; PAC, pacritinib; RBC, red blood cell.

1. Mesa RA, et al. ASCO 2015. Abstract LBA7006. 2. Gale RP, et al. Leuk Res. 2011;35:8-11.

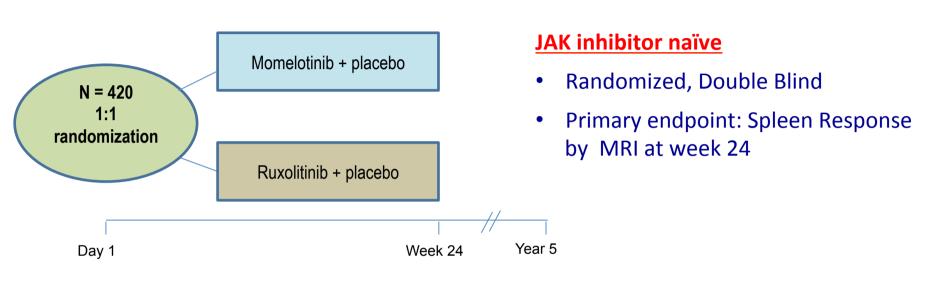

Most Common (>10%) Adverse Events

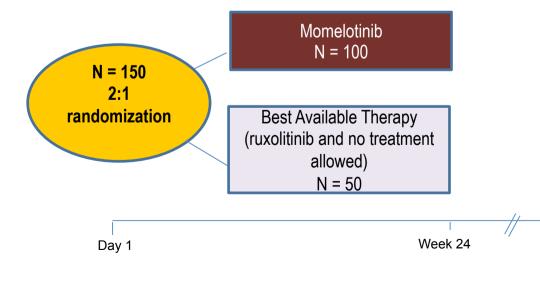
Within 24 Weeks

	All Grades		Grade 3		Grade 4	
Adverse event, n (%)	PAC (n = 220)	BAT (n = 106)	PAC (n = 220)	BAT (n = 106)	PAC (n = 220)	BAT (n = 106)
Gastrointestinal disorders						
Diarrhea	117 (53.2)	13 (12.3)	11 (5.0)	0	0	0
Nausea	59 (26.8)	7 (6.6)	2 (0.9)	0	0	0
Vomiting	35 (15.9)	6 (5.7)	2 (0.9)	0	0	0
Blood and lymphatic system						
disorders						
Anemia	49 (22.3)	21 (19.8)	32 (14.5)	13 (12.3)	5 (2.3)	3 (2.8)
Thrombocytopenia	37 (16.8)	14 (13.2)	12 (5.5)	7 (6.6)	14 (6.4)	3 (2.8)

PERSIST-2

Study Design


Sites: North America, Europe, Russia, and Australia


Anticipated patient accrual: ~ 300

^aCrossover from BAT allowed after progression or assessment of the primary endpoint.

^bBAT may include ruxolitinib at the approved dose for platelet count

Momelotinib: Phase 3 Studies

Previous JAK inhibitor exposure

- Randomized, Open Label
- Required ruxolitinib dose adjustment to < 20mg BID and concurrent hematologic toxicity
- Primary endpoint: Spleen Response by MRI at week 24

200 mg Tablet QD

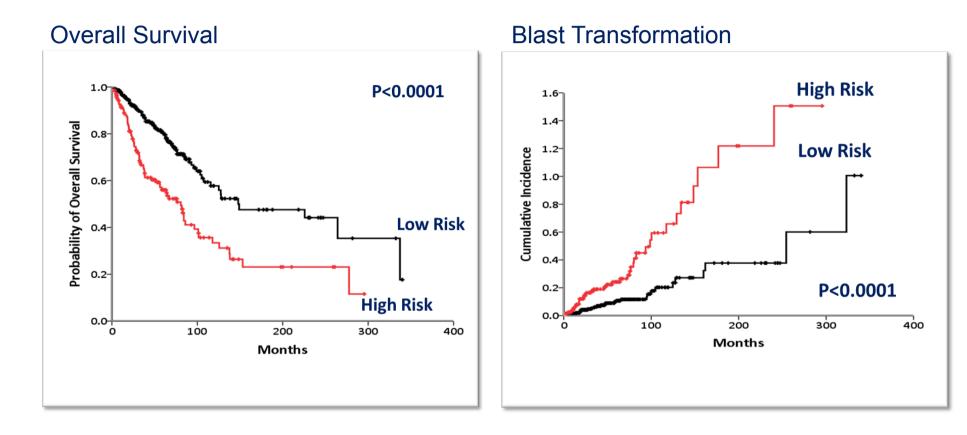
Year 5

Characteristics of Type II JAKi CHZ868

CHZ868

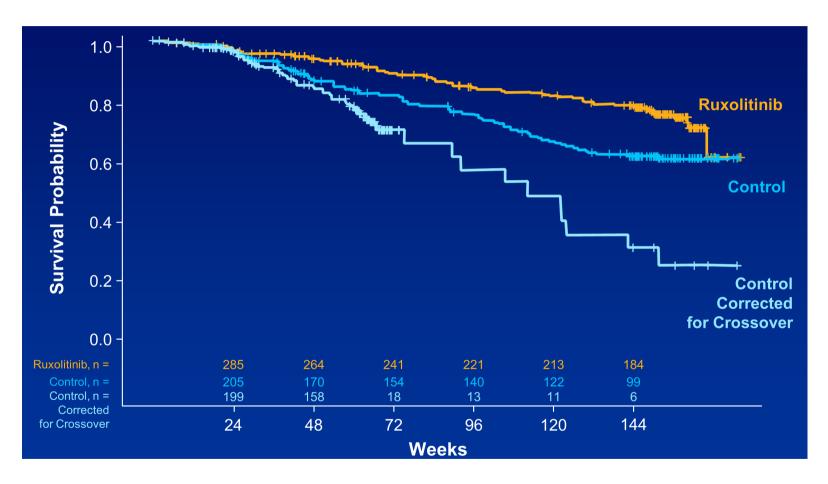
A novel Type II JAKi under development that inhibits proliferation and JAK2 signaling of naive MPN cells

- Is an alternative mode to target hyperactive JAK2
- Is effective in naive JAK2V617F^{mut} and MPLW515L^{mut} cells
- Abrogates persistent JAK signaling, inhibits proliferation and induces apoptosis in persistent JAK2V617F^{mut} and MPLW515L^{mut} cells
- Is active in different preclinical MPN models
- Reduces mutant allele burden and reticulin fibrosis in Jak2V617F and MPLW5151L MPN models

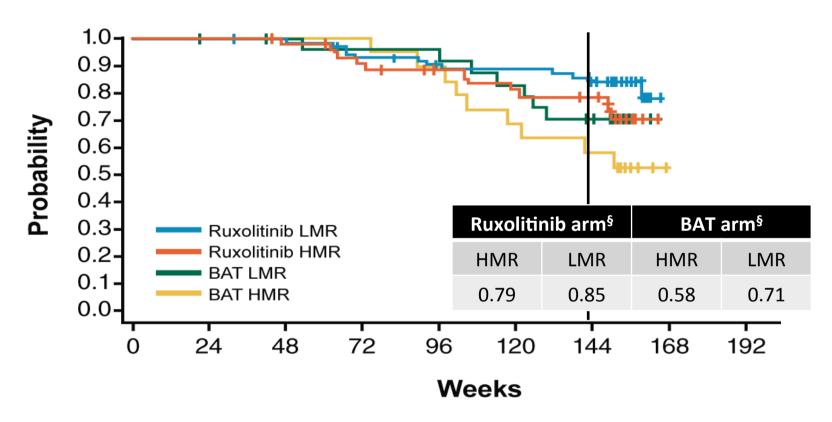

There is no planned clinical study at this time

I Nuovi Agenti Terapeutici

- Nuovi JAK2 inibitori
- Nuove idee per Ruxolitinib
- Nuovi target
- Cocktails


High Molecular Risk Prognostic Category

harboring ≥1 mutation in any one of *ASXL1*, *EZH2*, *SRSF2*, *IDH1*/2


 A HMR status is associated with reduced OS and increased risk of blast transformation in PMF patients independent of IPSS/DIPPS-plus

Rank Preserving Structural Failure Time (RPSFT) Analysis of Survival in COMFORTs

- Ruxolitinib vs control (ITT): HR = 0.65; 95% CI, 0.46-0.90; P = .01.
- Ruxolitinib vs control (RPSFT-corrected for crossover) HR = 0.29; 95% CI, 0.13-0.63; P = .01.

Survival Estimates in Patients in COMFORT-II Stratified by Treatment and Molecular Score

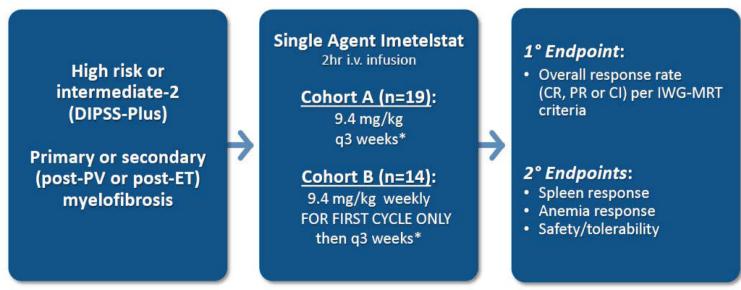
• In multivariate analysis of overall survival by treatment and molecular risk, the HR for treatment (ruxolitinib vs BAT) was 0.57 (95%CI= 0.30-1.08) and for LMR vs HMR the HR was 0.62 (95%CI=0.33-1.16)

ReTHINK Trial Design

 ReTHINK is a phase III randomized, double-blind, placebo-controlled study evaluating the efficacy and safety of ruxolitinib in early MF Pts and HMR mutations

I Nuovi Agenti Terapeutici

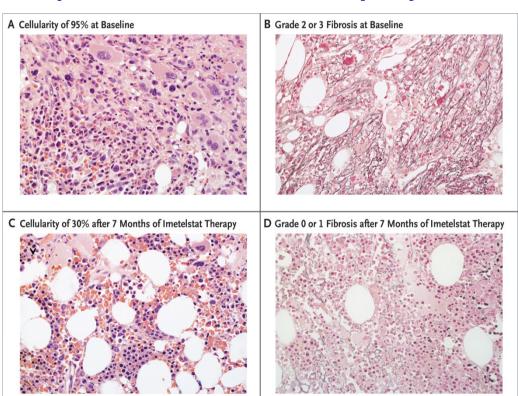
- Nuovi JAK2 inibitori
- Nuove idee per Ruxolitinib
- Nuovi target
- Cocktails


New Targets for MPN

Class	Agent*	Target
PI3K pathway inhibitors	BKM120/BuparlisibRAD001/Everolimus	PI3K/Akt/ mTOR
Histone deacetylase (HDAC) inhibitors	PanobinostatVorinostatGivinostatPacrinostat	HDACs (different classes) HSP90
DNA methyltransferase inhibitors	AzacitidineDecitabine	DNA methyltransferase
Hedgehog inhibitors	• LDE225	Smo
Telomerase inhibitors	• Imetelstat	Telomerase
Bone marrow fibrosis inhibitors	PentraxinLXO inhibitors	Various

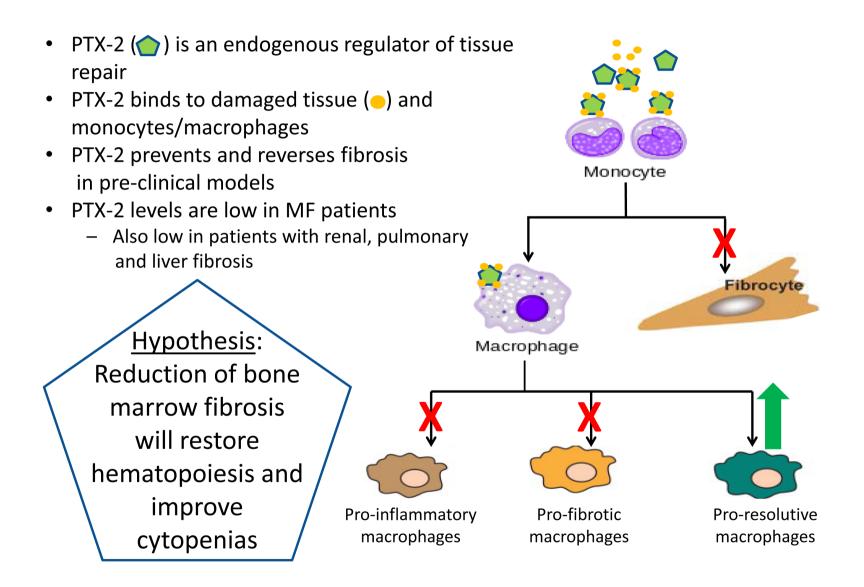
^{*} list not exhaustive

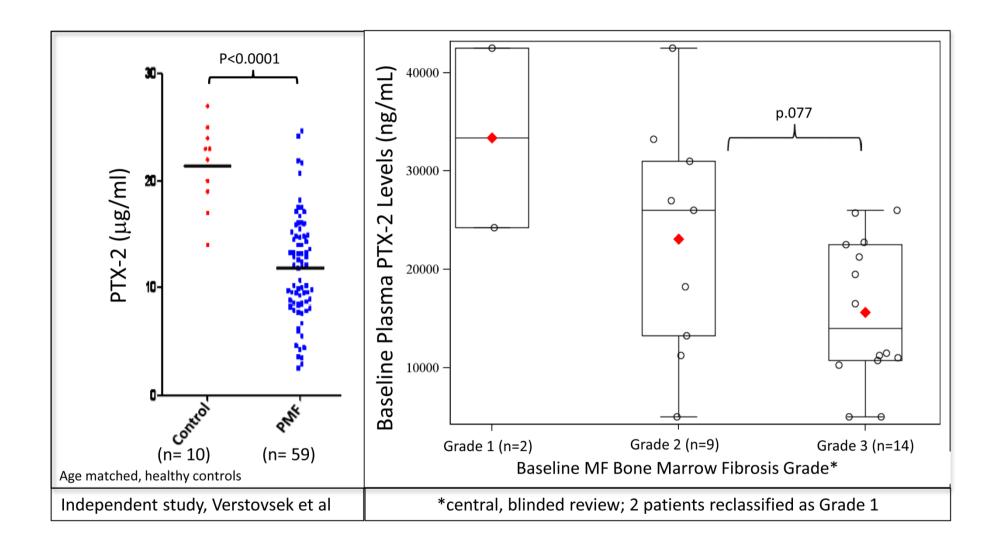
Inhibition of Telomerase Activity in MPN


- Upregulated telomerase activity favours proliferation and replication immortality of neoplastic progenitor cells
- MPN cells have evidence of dysregulated telomerase activity
- **IMETELSTAT** is the first telomerase inhibitor in clinical development
- Competitively binds to RNA template of telomerase and inhibits is activity
- IMETELSTAT inhibited growth of spontaneous CFU-MK from ET pts

Tefferi A et al, NEJM 2015; 373:908-919

Complete/Partial Responses Induced by Imetelstat


 Imetelstat induced complete or partial responses in 21% of patients with refractory myelofibrosis.


- In some patients, reversal of marrow fibrosis was documented and the burden of mutant clones decreased.
- Myelosuppression was the key toxic effect.

A phase-2 study in Ruxo-resistant patients with 2 dose levels is ongoing

PRM-151: Recombinant Analog of PTX-2

Reduced PTX-2 Levels in Patients with MF

PRM-151: Results of a Phase 2 Study in MF

- PRM-151 treatment resulted in:
 - Decreases in bone marrow fibrosis
 - Improvements in hemoglobin and platelets, including transfusion independence
 - Modest reductions in symptoms
 - Modest reductions in splenomegaly
- Benefits increase with longer treatment duration
 - Increased number of patients benefit
 - Increased magnitude and duration of benefit
 - Monthly Rx equal to weekly Rx
- PRM-151 was safe and well-tolerated alone and in combination with a stable dose of ruxolitinib

I Nuovi Agenti Terapeutici

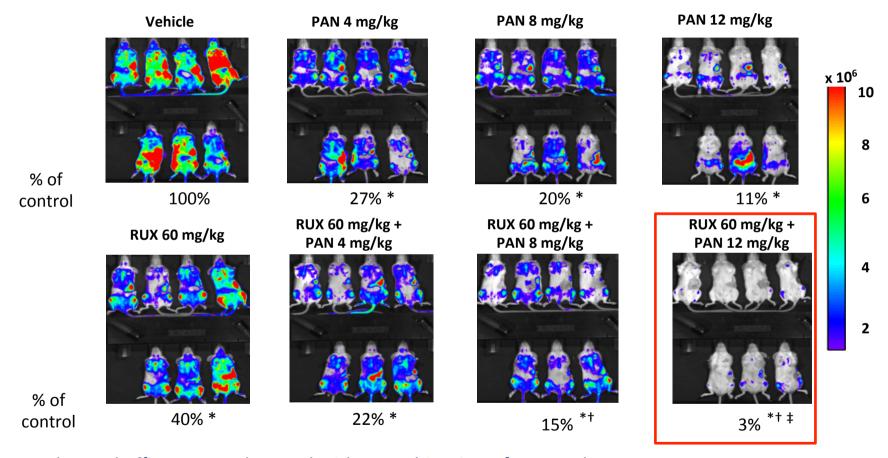
- Nuovi JAK2 inibitori
- Nuove idee per Ruxolitinib
- Nuovi target
- Cocktails

Rationale for New Drugs and Drug Combinations

- Activation of JAK/STAT pathway does not explain the full spectrum of MPN-associated abnormalities: targeting other pathways might be rewarding
- JAK2 inhibitors have remarkable clinical efficacy but they do not induce molecular remission, and changes in allele burden are modest at all
- Dose maximization is limited by hemato toxicity due to inhibition of wild-type JAK2

Phase Ib, Dose-Finding Study of Ruxolitinib Plus Panobinostat in MF Patient

Proposed Dose Level	Proposed Combination Treatment Dose
Cohort 1	RUX 5 mg BID, PAN 10 mg TIW/QOW
Cohort 2	RUX 10 mg BID, PAN 10 mg TIW/QOW
Cohort 3	RUX 15 mg BID, PAN 10 mg TIW/QOW
Cohort 4	RUX 15 mg BID, PAN 15 mg TIW/QOW
Cohort 5	RUX 15 mg BID, PAN 20 mg TIW/QOW
Cohort 6 (potential RPIID)	RUX 15 mg BID, PAN 25 mg TIW/QOW


^a A total of 38 patients were enrolled across 6 cohorts in the dose-escalation phase.

BID, twice daily; MTD, maximum tolerated dose; PAN, panobinostat; RPIID, recommended phase II dose; RUX, ruxolitinib; TIW/QOW, 3 times a week, every other week. Harrison CN, et al. EHA 2012 abst. 0364.

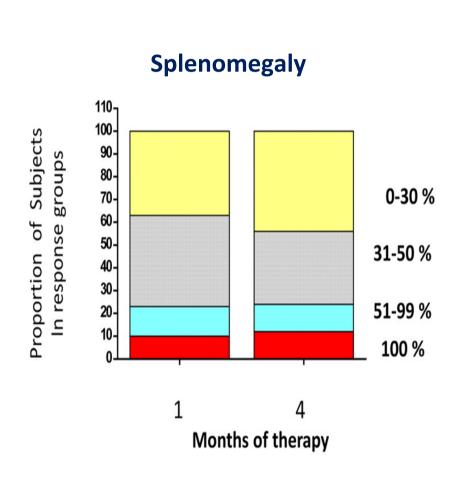
^b The MTD is defined as the highest drug dose not causing medically unacceptable, dose-limiting toxicity in more than 33% of the patients treated in the first cycle of treatment.

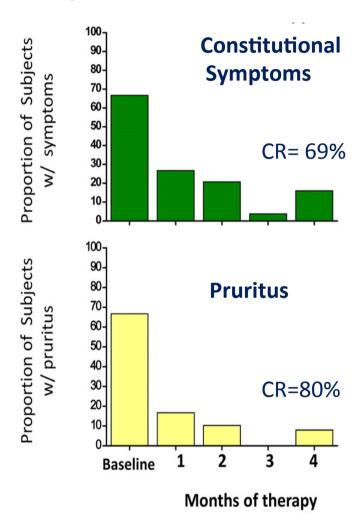
^c The RPIID is defined as a dose less than or equal to the MTD/last dose level evaluated after at least 22 patients have been treated at this dose.

Combined Effects of Ruxolitinib and Panobinostat in an In Vivo Model of JAK2V617F Mutated MPN

- Enhanced efficacy was observed with a combination of RUX and PAN
- There was no major change in tolerability, as assessed by body weight, between panobinostat alone or in combination with ruxolitinib
- *P* < 0.05 vs. vehicle control; † *P* < 0.05 vs. ruxolitinib;
- ‡ P < 0.05 vs .panobinostat at same dose

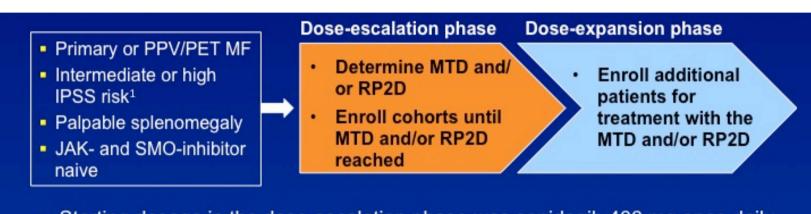
A Phase Ib Dose Finding Evaluation of Oral Combination of Ruxolitinib and BKM120 in MF




On Cycle 7 Day 1, patient must meet below two criteria to continue on study treatment:

- Patient is benefitting from treatment per PI
- No evidence of disease progression defined as spleen length increase of > 40% from baseline as assessed by palpation

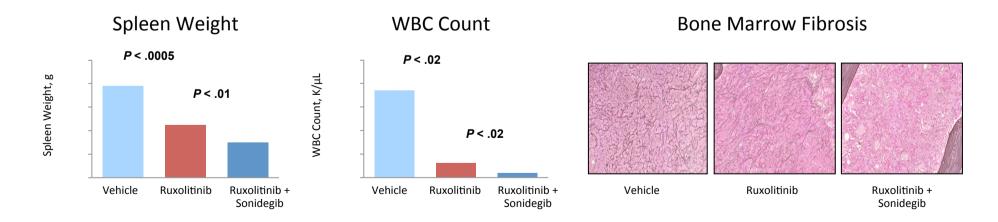
Phase I/II Trials of Everolimus in Myelofibrosis: Clinical Activity



IWG-MRT Responses (ITT):

Overall 23%, PR 3%, CI 20%, SD 77%

Phase 172 Study of Sonidegib (LDE225) in Combination with Ruxolitinib in MF

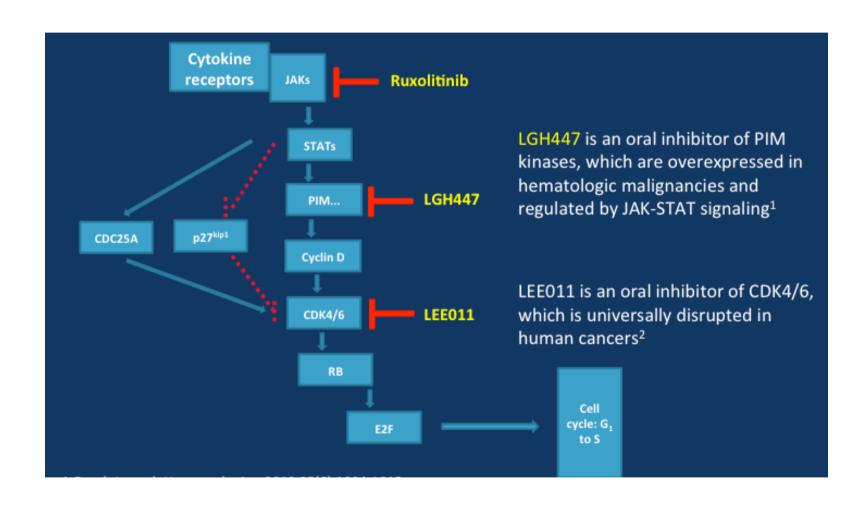


 Starting dosage in the dose-escalation phase was sonidegib 400 mg once daily (QD) + ruxolitinib 10 mg twice daily (BID); dosages for subsequent groups were guided by a Bayesian model

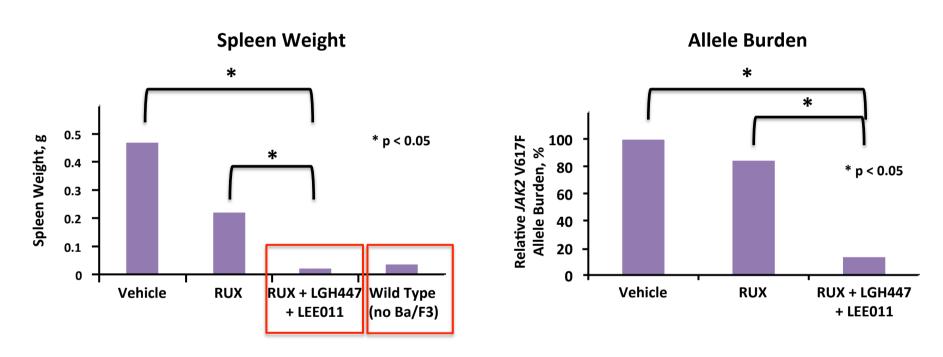
	Combination Treatment Dosage		
Dose Level	Sonidegib	Ruxolitinib	
1	400 mg QD	10 mg BID	
2	400 mg QD	15 mg BID	
3	400 mg QD	20 mg BID	

Study Rationale

- The Hh pathway is involved in hematopoietic stem cell proliferation and is active in hematologic malignancies¹
 - In a murine model of MF, ruxolitinib in combination with the Hh pathway inhibitor sonidegib (selectively inhibits SMO²) improved splenomegaly and bone marrow fibrosis better than ruxolitinib alone³


- Tibes R. Mesa RA. J Hematol Oncol. 2014:7:18.
- 2. Pan S, et al. ACS Med Chem Lett. 2010;1:130-134.
- 3. Bhagwat N, et al. *Blood*. 2013;122(21) [abstract 666].

Safety and Efficacy of Ruxolitinib Combinations


	RUX-PAN	RUX-LDE	RUX-BKM naive	RUX-BKM pretreat
Spleen Response (at 24w)	56.5%	44.4%	45.5%	22.2%
Mean spleen reduction at 24w	41.7%	30.8%	38.8%	26.5%
Adverse events	 Diarrhea: 68%, 18% gradoe3/4 Astenia:50%, 12% grade 3/4 Fatigue: 29%, 6% grade 3/4 	 Raised CK 37%, 18,5% grade 3/4 Myalgia:29,6%, 7,4% grade 3/4 Diarrhea: 25,9%, 3,7% grade 3/4 Fatigue: 25,9%; 0 grade 3/4 	 Anxiety 15,9%, 4,8% grade 3-4 Depression: 14,3%, 3,2% grade 3/4 Iperglycemia: 12,7%; 3,2% grade 3/4 	

Kiladjian; et al, ASH 2014 Durrant; et al, ASH 2014 Gupta et al, ASH 2014

If 2 is good, 3 may be even better???

Ruxolitinib + LGH447 + LEE011 Reduced Spleen Size and Allele Burden to a Greater Degree than Ruxolitinib Alone

- The triple combination resulted in greater reductions in spleen size compared with ruxolitinib alone, reducing spleen weight to levels at or below those in wt animals
- The triple combination solely resulted in a substantial reduction in *JAK2* V617F allele burden in Ba/F3-JAK2^{V617F} mice compared with ruxolitinib monotherapy

A phase-1b study in Ruxo-resistant patients is ongoing