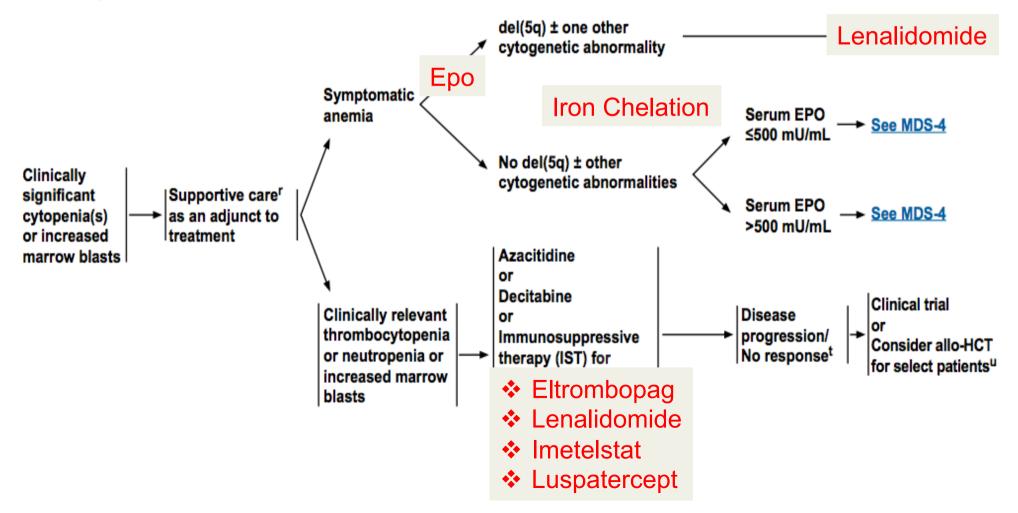
MDS: Opzioni per il paziente Low-Risk

Maria Teresa Voso
Dipartimento di Biomedicina e Prevenzione
Università Tor Vergata
Roma

Treatment of LR-MDS

NCCN Guidelines Version 1.2017 Myelodysplastic Syndromes

NCCN Guidelines Index
Table of Contents
Discussion


PROGNOSTIC CATEGORY^o

TREATMENT

IPSS: Low/Intermediate-1

IPSS-R: Very Low, Low, Intermedia Intermediate: if managed as LR and fails, move to HR-treatment

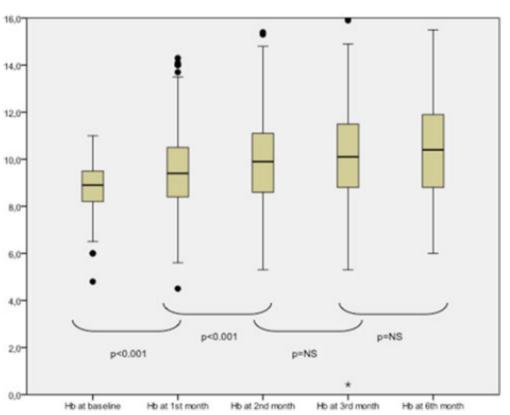
WPSS: Very Low, Low, Intermediate

Real-life use of erythropoiesis-stimulating agents in myelodysplastic syndromes: a "Gruppo Romano Mielodisplasie (GROM)" multicenter study

Francesco Buccisano ^{1,2} • Anna Lina Piccioni ³ • Carolina Nobile ⁴ • Marianna Criscuolo ⁵ • Pasquale Niscola ⁶ • Caterina Tatarelli ^{7,8} • Luana Fianchi ⁵ • Nicoletta Villivà ⁹ • Benedetta Neri ⁶ • Ida Carmosino ¹⁰ • Svitlana Gumenyuk ¹¹ • Stefano Mancini ¹² • Maria Teresa Voso ¹ • Luca Maurillo ¹ • Massimo Breccia ¹⁰ • Gina Zini ⁵ • Adriano Venditti ¹ • Susanna Fenu ¹³ • Maria Antonietta Aloe Spiriti ⁷ • Roberto Latagliata ¹⁰ • on behalf of GROM (Gruppo Romano Mielodisplasie)

- ❖ 543 patients, DG between 2002-2010
- ❖ Median age : 75 yrs (69-80yrs)
- ❖ IPSS:

low 46%


int-1 43%

Int-2 10%

High 1%

- α-Epo: 62%, β-Epo: 35%, Darb: 3%
- ❖ High-dose: 33.5%, SD-dose: 66.5%
- ❖ Erythroid R: in 326 of 543 (60%) at

a median of 3 months of TH (1.8-5.7)

Multivariable Analysis Leukemia-free Survival Overall survival Odds rati pCumulative Leukemia-free Transfusion requirement (no vs. yes) < 0.001 0.453 Sex (female vs. male) 0.001 1.927 IPSS (low/int-1 vs. int-2/high) 0.008 0.458 Response (responders vs. non-responders) 0.023 1.576 Non-responders Responders Leukemia-free survival 40.0 Months from ESAs start BM blasts (>5 vs. <5 %) < 0.001 0.357 **Overall Survival** Response (responders vs. non-responders) 0.001 2.445 Response to ESAs Cumulative Overall Survival Creatinine level (normal vs. abnormal) < 0.001 5.976 Transfusion requirement (no vs. yes) < 0.001 4.077 Endogenous EPO levels (<250 vs. >250 mcg/ml) 0.002 2.416 ESA initial dose (high vs. standard) 0.005 2.377 0.2

Buccisano et al, Ann Hematol 2016

0.0

20

40

100

Months from ESAs start

120

Eltrombopag for the Treatment of Thrombocytopenia of Low and Intermediate-1 IPSS Risk MDS: Phase II multicenter, prospective, placebo-controlled single-blind study

	Eltrombopag	Romiplostim	
Molecule	Oral, non-peptide agonist	Peptide s.c. agonist	
Binding site	Transmembrane domain of the TPOR and of c-MPL different from TPO binding site	Extracellular domain, same as endogeneous TPO binding site	
Endogenous TPO competitor	No yes		
Signal transduction	Different than that of endogenous TPO	Similar pathway of endogenous TPO	

Oliva et al, Oral Abs: Eltrombopag for the Treatment of Thrombocytopenia of Low and Intermediate-1 IPSS Risk Myelodysplastic Syndromes: Interim Results on Efficacy, Safety and Quality of Life of an International, Multicenter Prospective, Randomized, Trial

Study design

- Low/Int-1 MDS, PLT count <30 Gi/L</p>
- Ineligible or relapsed or refractory to receive other treatment options
- ESAs or G-CSF allowed during the study as per accepted standards.
- ECOG Performance Status 0-3
- Adequate baseline organ function
- Dose start: 50 mg with increases every 2 weeks up to 300 mg daily
- Random: Eltrombopag vs BSC, 2:1

Platelet Response

Platelet Response at 8 and 24 Weeks

Pachanca	8 weeks	24 weeks
Response	Elt 41:placebo 17	Elt 24:Placebo11
R, n	12 : 0	5:3
CR, n	9:0	8:0
NR	20 : 17	11 : 8
Total responses, n	21 : 0	13 : 3
WHO bleeding grade ≥ 2, events	1:2	3 : 1

Time to Response (TTR):

Eltrombopag: median 14 (IQR 8-39) days

Placebo: median 85 (IQR 41-193) days (p =0.023) *

Median daily eltrombopag dose at response: 50 (IQR 50-150) mg.

Other Responses

Response	8 weeks, Elt n=41 : Plac=17	24 weeks, Elt n=24: Plac=11
Erythroid response	4:0	4:0
Neutrophil response	4:1	1:1

Lenalidomide in del(5q) LR-MDS

Long-term outcomes (median follow-up 3.2 years) in 148 patients with del(5q) LR-MDS treated with lenalidomide in the MDS-003 trial.

❖ RBC-TI > 8 weeks: 65%

❖ Median time to RBC-TI: 1.3 months (1.1-1.5)

❖ RBC-TI: IPSS Low-risk: 69%

Int-1: 68%

Int-2/high: 33%

❖ RBC-TI: Baseline K: Isolated del(5q) 71%

Del(5q) plus 1 abn. 48 %

Del(5q) plus 2 abn 58%

Cytogenetic response:

Complete 45.5%

Partial 26%

Prognostic factors for LEN response in 5q- MDS

	Transfusion independence	Overall Survival	AML progression
Isolated del(5q) vs >1 abn	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Complete Citogenetic Response	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Transf-independence			$\sqrt{}$

5q-MDS Critical Break Lenalidomide Chromosome 5 Regions CDC25C EGR1 MDS with 5q Deletion RPS14 CSF1R Haplodeficiency in 5g31 and 5g33 **Defective** Decreased PP2A and Heterozygous **RPS 14** Micro-RNA CDC25C haploinactivation of haplodeificiency Expression insufficiency other genes ribosomal Casein biogenesis - Reduced miR-145: kinase 1A1 Inactivation of: Erythroid Impaired targeting of FLI-1 gene differentiation · Impaired cell → dyserythropoesis EGR1: Inactivation→ Haplocycle regulation blockade Increased TIRAP → ↑TRAF-6 increased hematopoet 2- Reduced miR146a: stem cell self renewal Insufficiency † sensitivity to Conservation of Increased NF-κB and autoimmunity lenalidomidemegakaryopoiesis Increased TRAF-6 APC: Inactivation→ induced G2/M and mutations myeloproliferative P53 activation → arrest and Elevated TRAF-6: phenotype in mice erythroid cell apoptosis MDM₂ 1- MDS-like clinical pictureAML and apoptosis BM failure (animal studies) NPM1: Inactivation→ 2- Increased IL-6→ survival advantage dysplastic erythropoesis degradation of abnormal clones and paracrine and genomic instability mediated dysplastic hematopoiesis 3- Increased NFkB **P53** overexpression From Gaballa and Mesa, **Ann Hematol 2014**

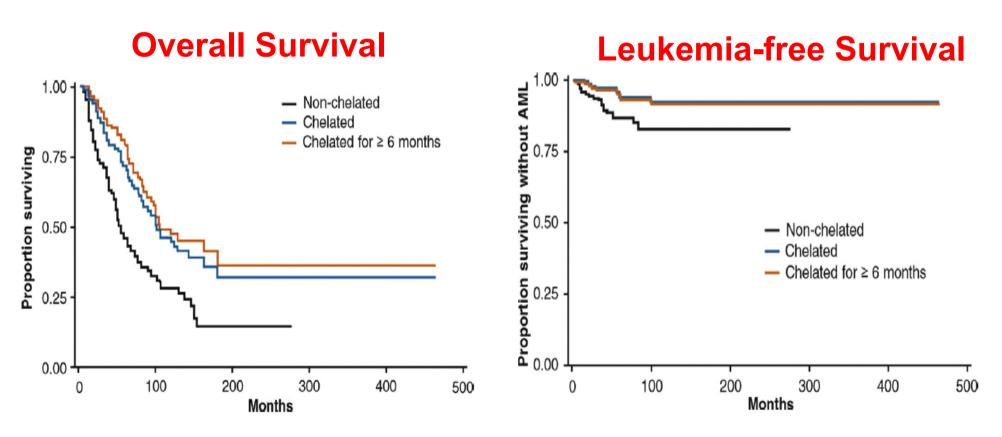
Lenalidomide in TD non-del(5q) LR-MDS (MDS-005 Trial)

- ❖ 239 patients were randomly assigned (2:1) to treatment with 10 or 5 mg lenalidomide (n = 160) or placebo (n = 79) once per day (on 28-day cycles)
- ❖ RBC-TI >8 weeks was achieved in 26.9% and 2.5% of patients in the lenalidomide and placebo groups, respectively (p: 0,001). Ninety percent of patients achieving RBC-TI responded within 16 weeks of treatment.
- ❖ Median duration of RBC-TI with lenalidomide was 30.9 weeks (95% CI, 20.7-59.1).
- ❖ At week 12, mean changes in HRQoL scores from baseline did not differ between treatment groups, which suggests that lenalidomide did not adversely affect HRQoL.
- The most common treatment-emergent adverse events were neutropenia and thrombocytopenia.

Iron Chelation Therapy

Deferasirox for transfusion-dependent patients with myelodysplastic syndromes: safety, efficacy, and beyond (GIMEMA MDS0306 Trial)

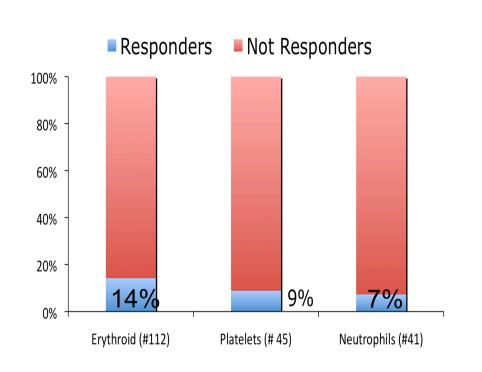
Emanuele Angelucci¹, Valeria Santini², Anna Angela Di Tucci¹, Giulia Quaresmini³, Carlo Finelli⁴, Antonio Volpe⁵, Giovanni Quarta⁶, Flavia Rivellini⁷, Grazia Sanpaolo⁸, Daniela Cilloni⁹, Flavia Salvi¹⁰, Giovanni Caocci¹¹, Alfredo Molteni¹², Daniele Vallisa¹³, Maria Teresa Voso¹⁴, Susanna Fenu¹⁵, Lorenza Borin¹⁶, Giancarlo Latte¹⁷, Giuliana Alimena¹⁸, Sergio Storti¹⁹, Alfonso Piciocchi²⁰, Paola Fazi²⁰, Marco Vignetti²⁰, Sante Tura²¹

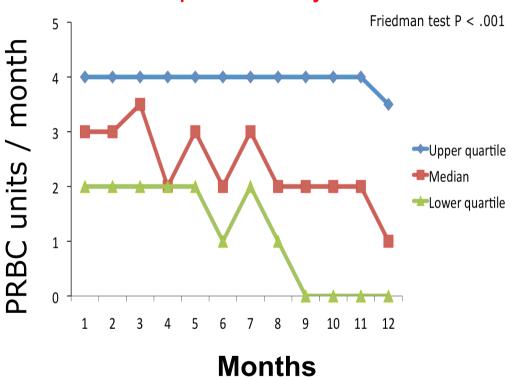

- Multicenter study
- ❖ 152 transfusion-dependent patients with MDS (62 low-IPSS, 90 int-1)
- ❖ 96 males, 56 females, median age 72 years
- ❖ EXJADE starting dose: 20 mg/kg/die
- **❖ Transfusion-independence:** al least 3 consecutive months without transfusion support and stable Hb 9 g/dl.
- Patients receiving other MDS treatment were excluded from the study

Significant reduction of median ferritin levels from 1966 ng/ml to 1475 ng/ml, p< 0.0001.

Comparison of 24-month outcomes in chelated and non-chelated lower-risk patients with myelodysplastic syndromes in a prospective registry

Roger M. Lyons a,b,*, Billie J. Marek b,c, Carole Paley d, Jason Esposito d, Lawrence Garbo b,e, Nicholas DiBella b,f, Guillermo Garcia-Manero g


- 600 lower-risk MDS patients with transfusional iron overload
- At baseline, cardiovascular comorbidities were more common in nonchelated pts and MDS therapy was more common in chelated patients



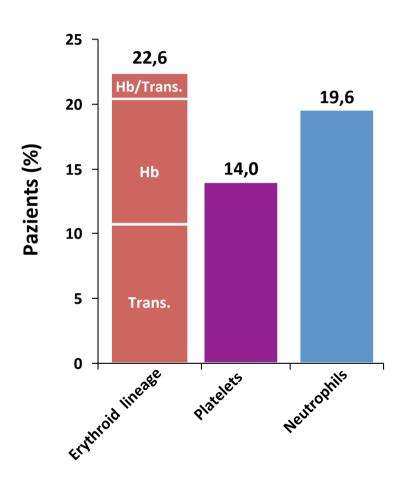
Leukemia Research 2014

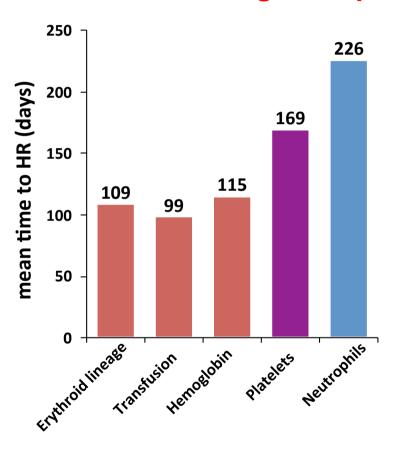
Hematologic Response

RBC Units In 68 pts after 1 year

- ❖ Reduction of transfusion needs from 3 (2-5) median PRBC/month to 1 (0-4) after 1 year (P= 0.0001)
- ❖ 22 pts obtained TI: probability 5.5%, 15.7% and 19.7% at 6, 9 and 12 months

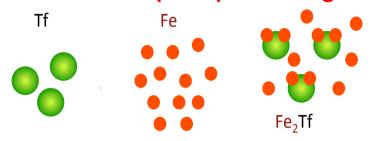
Angelucci et al, EJH 2014

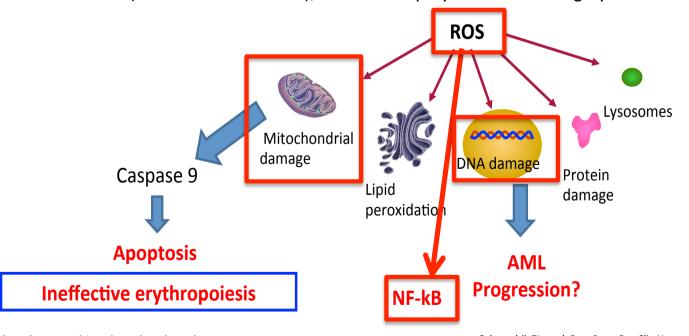

Table 1 Major features indicated in the clinical studies reporting hematologic improvement (HI) during deferasirox treatment


Reference	No. pts	НІ-Е	HI-plts	HI-PMN	Biological parameters
EPIC [22]	247	53 (21.7 %) 11.8 % TI 8.9 % ↑ Hb	13 (13 %)	50 (22 %)	No significant changes in SF and LIP between responders and non-responders
US03 [23]	173	26 (15 %)	17/77 (22 %)	8/52 (15 %)	No significant changes in SF and LIP between responders and non-responders
German [24]	50	2/33 (6 %)	3/10 (30 %)	-	_
GIMEMA [25]	152	16/152 (11 %)	18/125 (15 %)	1/41 (3 %)	No significant changes in SF between responders and non-responders
Italian cooperative group [26]	105	41/105 (44.5 %)	nr	nr	HI not related to SF changes
REL [27]	53	19 (35.1 %)	8/13 (61 %)	13/17 (76.4 %)	No correlations
GROM Maurillo et al, EJH 2015	118	15 (17.6%) (TI n:6, 7.1%)	5.9%	7.1%	Correlations to higher DFO dose

Modified from Breccia, et al. Ann Hematol 2015

Hematologic Response EPIC Study

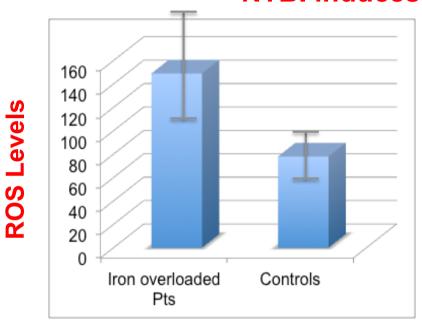

Time to Hematologic Response

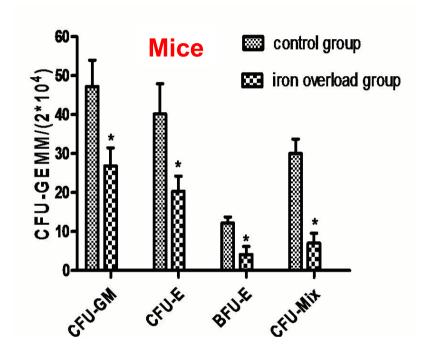


Damage due to Iron Overload: 1. Iron-dependent

Non-transferrin-bound iron (NTBI) induces generation of ROS

NTBI appears in plasma when transferrin is almost completely saturated (saturation > 60–70%); it is taken up by cells* and is highly toxic

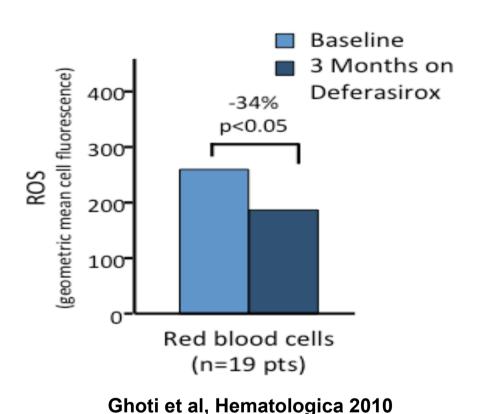

^{*} Through L-type calcium-dependent channels.

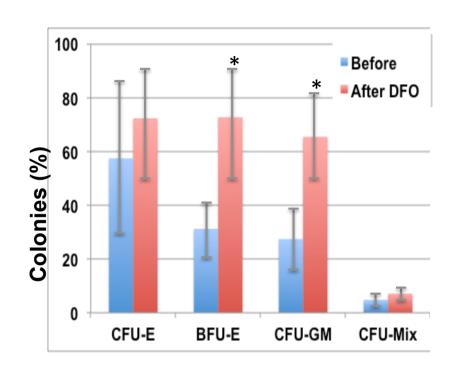

Cabantchik ZI, et al. Best Pract Res Clin Haematol. 2005;18:277-87.

Zuo Y, et al. Cell Res. 2009;19:449-57.

Damage due to Iron Overload: 1. Iron-dependent

NTBI induces generation of ROS

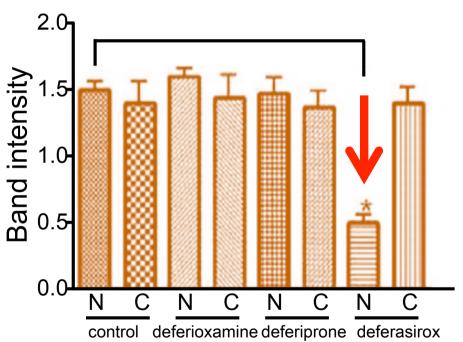



Lu et al, Eur J Hematol 2013

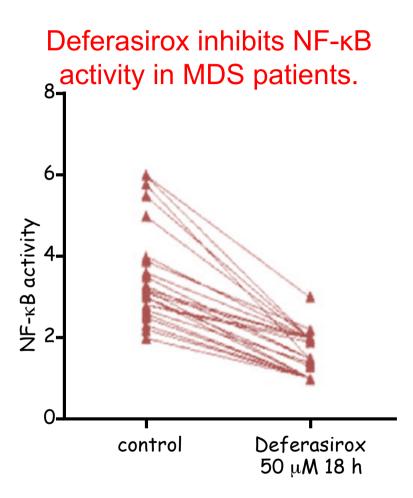
Chai et al, Blood 2013

✓ Iron overload is associated to higher ROS levels and to reduced CFU capacity

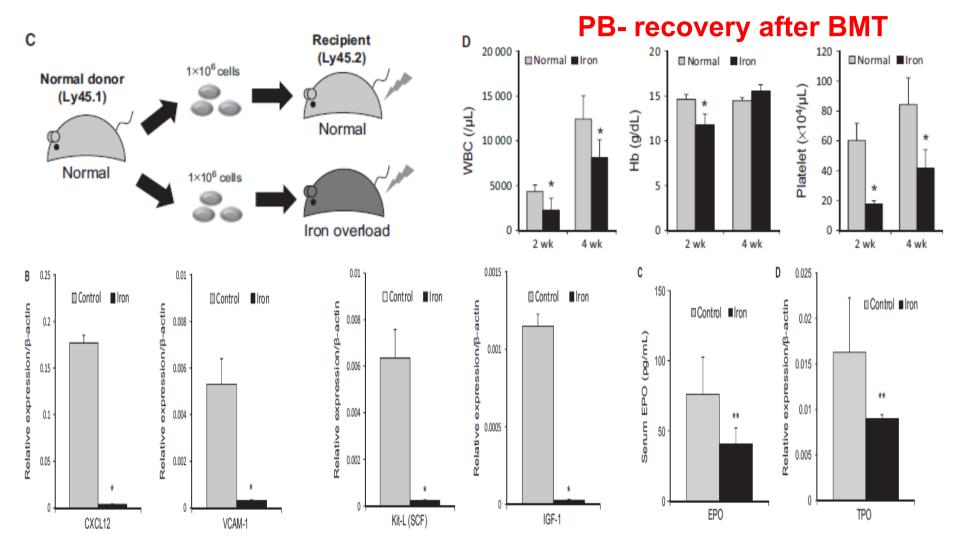
Iron Chelation and Inhibition of ROS Production



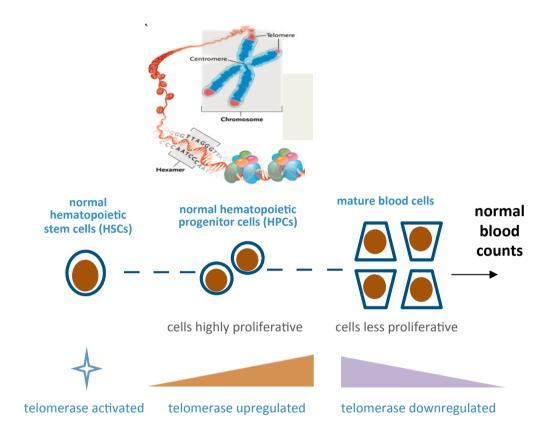
Lu et al, Eur J Hematol 2013


✓ Iron chelation decreases ROS levels and increases CFU capacity

Damage due to Iron Overload: 2. Iron-independent: NF-KB inhibition, damage to Chromosomal DNA


Deferasirox decreases localization of NF-kB to the nucleus, thus inhibiting NF-kB signaling.

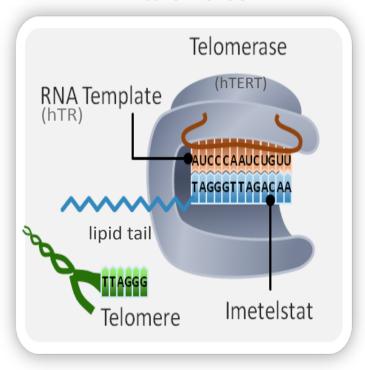
Western blot using NF-kB antibody for the detection of proteins in either nuclear (N) or cytoplasmic (C) extracts in K562 cells.



Damage due to Iron Overload: 3. Damage to the microenvironment

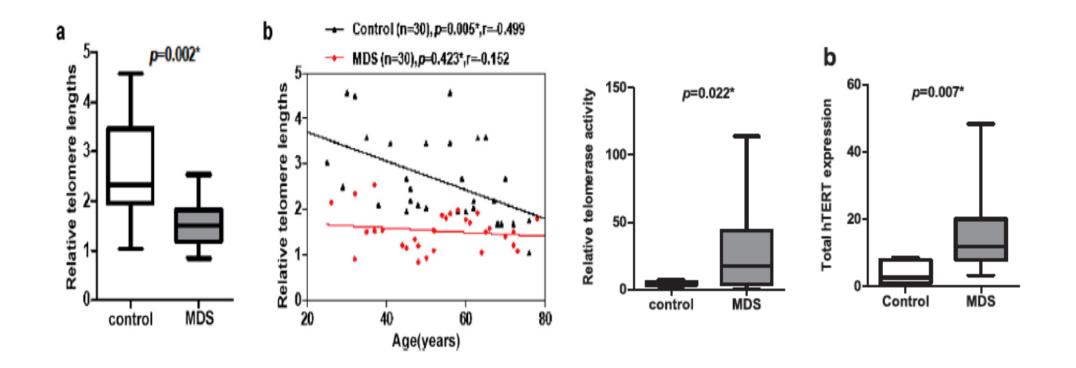
- ✓ Iron overloaded mice have delayed reconstitution after SCT
- ✓ And reduced production of cytokines

Telomerase and Imetelstat



Telomerase enzyme:

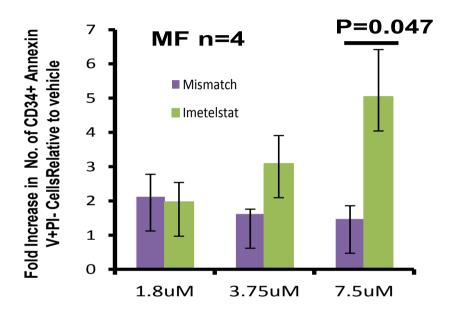
- Reverse transcriptase comprised of an RNA component (hTR) and a reverse transcriptase catalytic protein subunit (hTERT)
- ❖Binds to the 3' strand of DNA and adds TTAGGG nucleotide repeats to offset the loss of telomeric DNA occurring with each replication cycle
- ❖Not active in somatic cells; transiently upregulated in normal hematopoietic progenitor cells to support controlled proliferation
- Highly upregulated in malignant progenitor cells, enabling continued and uncontrolled proliferation

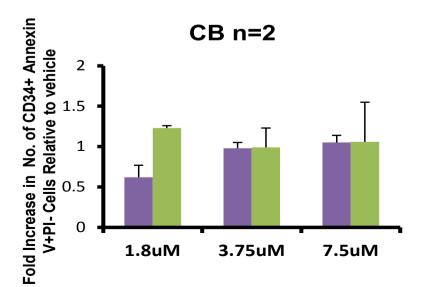

IMETELSTAT A Telomerase Inhibitor

Imetelstat binds to RNA template preventing maintenance of telomeres

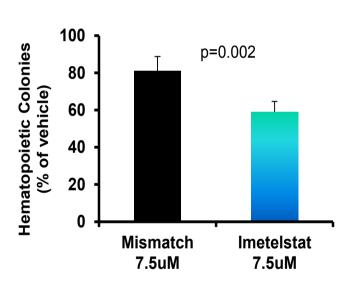
- Proprietary: 13-mer thio-phosphoramidate oligonucleotide complementary to hTR, with covalently-bound lipid tail to increase cell permeability/tissue distribution
- Long half-life in bone marrow, spleen, liver (estimated human t½ = 41 hr with doses 7.5 – 11.7 mg/kg);
- Potent competitive inhibitor of telomerase: IC50 = 0.5-10 nM (cell-free)

Telomerase Activity and Telomers in MDS




Telomerase activity increased in MDS, independent of

- ✓ IPSS
- ✓ Cytogenetics
- ✓ WHO subtype


Differential effects of Imetelstat on hematopoietic progenitor cells from MF patients and normal cord blood

Imetelstat Induces Apoptosis of MF but not CB CD34⁺ Cells

Imetelstat Inhibits Hematopoietic Colony Formation by MF CD34+ Cells

Imetelstat in MDS (n=9) 7.5mg/kg 2 hr i.v D1 of every 28-day cycle

	MDS (n=9)
Median Age (range; yrs)	70 (54-93)
Male	7 (77.8%)
Transfusion dependent	8 (88.9%)
Median Hb (range; g/dL)	8.4 (6.7-9.8)
IPSS Risk Category	
INT-1	7 (77.8%)
INT-2	2 (22.2%)
Previously treated	7 (77.8%)
Median # of Prior Treatments (range)	3 (1-4)
Prior ESA	6 (66.7%)
Prior Lenalidomide	3 (33.3%)
Abnormal Karyotype	2 (22.2%)

Median duration of treatment = 49 wks (25-77 wks)

4 patients remain on treatment

TI response: 3/8 = 37.5%

Median TI duration in 3 pts: 24 wks (9-28)

Hematologic Toxicity	Worst Grade	MDS: #pts (%)
Anemia	3	6 (66.7%)
	4	-
Neutropenia	3	4 (44.4%)
	4	2 (22.2%)
Thrombocytopenia	3	2 (22.2%)
	4	1 (11.1%)

Grade ≥3 Non-Hematologic AEs

	MDS (n=9)	
Fatigue	1 (11.1%)	
Lung infection	0	
Hyperkalemia	0	
Atrial fibrillation	0	
Heart failure	1 (11.1%)	
Hypotension	1 (11.1%)	
Dyspnea	0	
Febrile neutropenia	0	
Hyperuricemia	0	
Hyponatremia	0	
Sepsis	0	
Abdominal pain	0	
aPTT prolonged	0	
Cardiac arrest	1 (11.1%)	
GGT increased	0	
Hyperglycemia	1 (11.1%)	
Hypokalemia	0	
Hypoxia	0	
Lipase increased	0	

Worst postbaseline CTC Grade (MDS, n=9)

	Any Worsening	1	2
ALT	5 (55.6%)	4 (44.4%)	1 (11.1%)
AST	5 (55.6%)	4 (44.4%)	1 (11.1%)
Alkaline Phosphatase	3 (33.3%)	3 (33.3%)	0
Total Bilirubin	0	0	0

Worsening defined as CTC grade elevated after baseline OR baseline result > ULN and result >= 1.5xbaseline.

iMERGE Study Design

N~200

Part 1
Phase 2, single arm, open label n up to 30

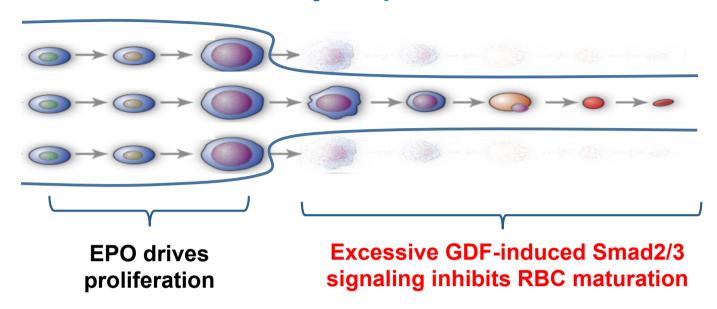
Imetelstat

7.5 mg/kg IV q4w; after 3 cycles escalate to 9.4 mg/kg IV q4w

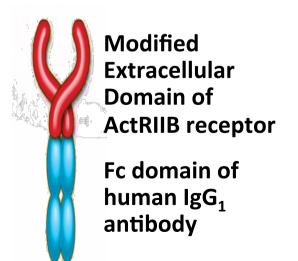
Ongoing Data Review:

- Futility: ≤4 pts achieve TI
- Other clinical evidence of activity

Part 2
Phase 3, randomized,
double-blind, placebo-controlled
n~170

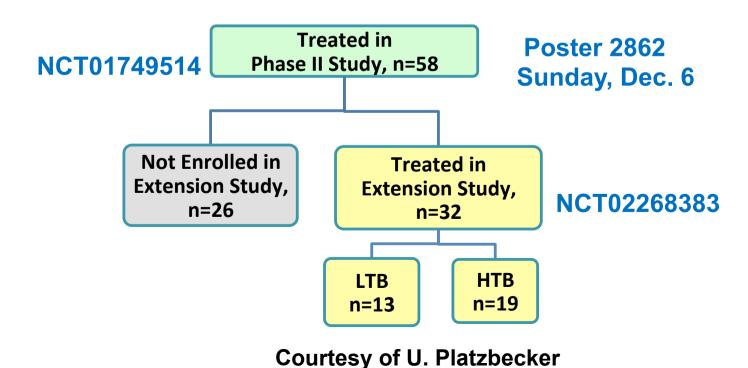

Stratification:

- Transfusion burden (4 / >4 units)
- Prior lenalidomide (yes / no)


Pre-medication: diphenhydramine, hydrocortisone 100-200mg (or equiv) Supportive care: RBC transfusions, myeloid growth factors per local guidelines

Ineffective Erythropoiesis in LR-MDS

Luspatercept

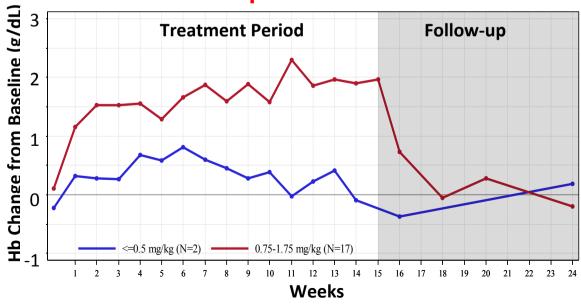


- Luspatercept (ACE-536), a modified activin receptor type IIB (ActRIIB) fusion protein, acts as a ligand trap for GDF11 and other TGF-β family ligands to suppress Smad2/3 activation;
- increased Hb in healthy volunteers
- In a murine model of MDS, murine analog RAP-536 corrected ineffective erythropoiesis, reduced erythroid hyperplasia and increased Hb

Courtesy of U. Platzbecker

Luspatercept in Low/Int-1-Risk MDS TD, Refractory or relapsing after ESA, ECOG 0-2

- Subcutaneous (SC) injection every 3 weeks
- ❖ Base study (Phase II, n=58): 3 months of treatment
 - ✓ Dose escalation phase (n=27): 0.125, 0.25, 0.5, 0.75, 1.0, 1.33, 1.75 mg/kg
 - √ 1st Expansion cohort (n=31): starting dose 1.0, titration up to 1.25 mg/kg
- **Extension study (n=32):** additional 24 months of treatment (ongoing)
 - ✓ Starting dose 1.0 mg/kg or current dose, titration up to 1.25 mg/kg


Phase II study (n=58): 3 months of treatment

Category n (%)	Overall N=58			
WHO Subtypes				
RARS	11 (19%)			
RCMD-RS	29 (50%)			
RCMD	6 (10%)			
RAEB-1	8 (14%)			
Other (RAEB- 2, del(5q), MDS/ MPN)	4 (7%)			
IPSS				
Low	27 (47%)			
Int-1	30 (52%)			
Int-2	1 (2%)			
IPSS-R				
Very Low	2 (3%)			
Low	31 (53%)			
Intermediate	21 (36%)			
High	3 (5%)			
Very High	1 (2%)			

Responses (over 8 weeks)	0.125-0.5 mg N=9, n (%)	0.75-1.75 mg N=49, n (%)
Low Transf. Burden (< 4U/8wk)		
IWG HI-E, Hb increased ≥ 1.5 g/dL	0/2 (0%)	8/17 (47%)
RBC TI	0/0 (0%)	6/8 (75%)
High Transf. Burden (≥ 4U/8wk)		
IWG HI-E (≥ 4U reduction)	2/7 (29%)	16/32 (50%)
RBC TI	1/7 (14%)	8/32 (25%)

Neutrophil responses (IWG HI-N) in 4 of 8 (50%) patients with baseline neutrophil count < 1.0 X 10⁹/L

LTB patients

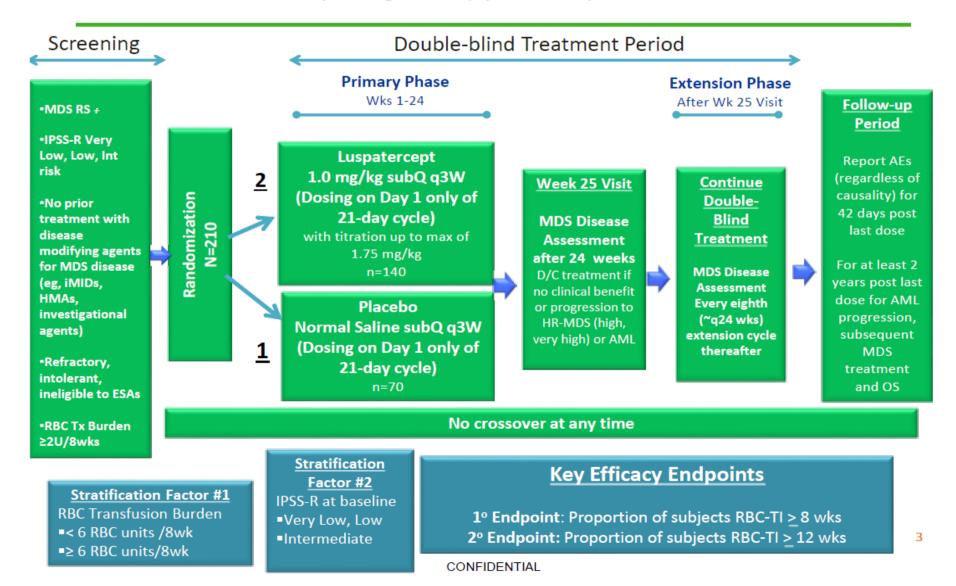
Platzbecker et al, Poster 2862

Extension study (n=32)

✓ Starting dose 1.0 mg/kg or current dose, titration up to 1.25 mg/kg, additional 24 months

Category	N=32 n (%)				
WHO Subtype	WHO Subtypes				
RARS	8 (25%)				
RCMD-RS	19 (59%)				
RCMD	2 (6%)				
RAEB-1	3 (9%)				
IPSS					
Low	22 (69%)				
Int-1	10 (31%)				
IPSS-R					
Very Low	9 (28%)				
Low	14 (44%)				
Intermediate	8 (25%)				
High	1 (3%)				

	n (%)	IWG HI-E N=32	RBC-TI* N=22	
	All Patients	22/32 (69%)	11/22 (50%)	
l	RS positive	21/29 (72%)	10/19 (53%)	
	Baseline EPO	aseline EPO		
Γ	< 200 U/L	16/20 (80%)	7/13 (54%)	
	200-500 U/L	5/7 (71%)	2/4 (50%)	
	> 500 U/L	1/5 (20%)	2/5 (40%)	
Γ	rior ESA Treatment			
	Yes	12/19 (63%)	7/14 (50%)	
	No	10/13 (77%)	4/8 (50%)	


Giagounidis et al, Oral Abs: Luspatercept Treatment Leads to Long Term Increases in Hemoglobin and Reductions in Transfusion Burden in Patients with Low or Intermediate-1 Risk Myelodysplastic Syndromes (MDS): Preliminary Results from the Phase 2 PACE-MDS Extension Study

Celgene ACE536-MDS-001 The Medalist Trial

MEDALIST: Study Design

Phase 3 Study Design in RS(+) LR-MDS pts

Summary

- ❖ Most LR-MDS respond to EPO, which still represents the first treatment choice in LR-MDS with anemia
- ❖ Lenalidomide has high efficacy in patients with isolated del(5q), who often achieve TI and cytogenetic response, indicating the complex mechanism of action of the drug on the 5q- clone
- Iron chelation improves survival and induces hematologic response, due both to iron-dependent and iron-independent mechanisms (probably)
- New drugs will be soon available