

Immune lessons from allo-HSCT: MESENCHYMAL STROMAL CELLS

Maria Ester Bernardo

San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget) Pediatric Immunohematology Unit Ospedale San Raffaele, Milano bernardo.mariaester@hsr.it

1° Cuneo City Immunotherapy Conference, May 17-19, 2018

PROPERTIES of MESENCHYMAL STROMAL CELLS

- Multipotent cells
 capable of differentiation into several mesenchymal
 lineages
- Remarkable expansion after ex vivo culture
- Enhancement of hematopoietic stem cell engraftment
- Immunosuppressive properties
- Tissue repair properties

What happended since Friedenstein (1968)?

TIMELINE REPRESENTATION OF MAJOR DISCOVERIES THAT SHAPED THE UNDERSTANDING OF MSCs

IDENTIFICATION OF MARKERS FOR THE PROSPECTIVE ISOLATION of MSCs from BM:

- CD146, CD271: human (Sacchetti et al.; Tormin et al.)
- Nestin: murine (Mendez-Ferrer et al.)

THE MSCs' PARADIGM SHIFT

THE OLD PARADIGM

Mougiakakos and Le Blanc, Nat Rev Immunol 2012

MSCs from IMMUNOREGULATORY to ANTI-INFLAMMATORY CELLs

MSCs: SENSORS and SWITCHERS of INFLAMMATION

Bernardo and Fibbe, Cell Stem Cell 2013

in vitro & in vivo

MSCs POLARIZE MONOCYTES M0 INTO M1 & M2

CLINICAL APPLICATIONS of MSCs IN HSCT (& BEYOND)

- I. Co-infusion of MSCs and HSCs to enhance hematopoietic engraftment after allo-HSCT in HAPLO- and CB-HSCT
- **II.** Treatment of steroid-resistant acute GvHD
- III. Ex-vivo expansion of CD34+ cells on MSCs for improved engraftment
- **IV. Treatment of acute tissue damage after allo-HSCT**

(case reports in hemorragic cystitis, pneumothorax and pneumomediastinum, peritonitis)

& BEYOND...REGENERATIVE MEDICINE

repair of bone and cartilage degenerative disorders, Crohn's disease, kidney and liver repair

CLINICAL APPLICATIONS of MSCs IN HSCT (& BEYOND)

- I. <u>Co-infusion of MSCs and HSCs to enhance hematopoietic</u> <u>engraftment</u> after allo-HSCT
- **II.** Treatment of steroid-resistant acute GvHD
- III. Ex-vivo expansion of CD34+ cells on MSCs for improved engraftment
- **IV. Treatment of acute tissue damage after allo-HSCT**

(case reports in hemorragic cystitis, pneumothorax and pneumomediastinum, peritonitis)

& BEYOND...REGENERATIVE MEDICINE

repair of bone and cartilage degenerative disorders, Crohn's disease, kidney and liver repair

MSCs and ENGRAFTMENT in MICE Co-Tx of human fetal lung- and BM-derived MSCs enhances engraftment of human UCB CD34+ cells in NOD/SCID mice

Noort W. ... and Fibbe W.E. Exp. Hematology 2002 and 2003

Phase I/II trial of Co-infusion of Haploidentical HSCs and MSCs in pediatric patients

	Patients (n = 20)	Controls (n = 52)
Transplant years (range)	Dec. 2004 - July 2007	March. 1998- Nov. 2004
Mean age (range) years	8 (1-16)	8 (1-17)
Patient gender		
Male	14 (70%)	31 (60%)
Female	6 (30%)	21 (40%)
Original diseases		
Haematological malignancies	16 (80%)	40 (77%)
AML	7 (35%)	12 (30%)
MDS	2 (10%)	5 (12.5%)
ALL	7 (35%)	23 (34.5%)
Immune deficiencies	2 (10%)	2 (4%)
Other non-malignant disorders	2 (10%)	10 (19%)
Conditioning regimen		
TBI-based vs. Chemotherapy-based	12:8 (60 vs. 40%)	30:22 (58 vs. 42%)
Donor gender		
Male : Female	10 : 10	29 ; 23

Ball L, Bernardo ME, ... Locatelli, et al. Blood 2007

MSC Co-transplantation in Haploidentical SCT Patients (n = 20) Controls (n = 52)

	Pullenis (n - 20)		Controls(n - 52)
Transplant years (range)	Dec. 2004 - July 2007		March. 1998- Nov. 2004
Graft characteristics			
Number of CD34+ cells infused x 10 ⁶ /kg (median, range)	21.3 (11.2 - 38.6)		23.0 (12.1 - 47.5)
Number of CD3+ cells infused × 10 ⁵ /kg	0.3 (0.3)		0.5 (0.7)
Number of MSC x 10 ⁶ /kg (median, range)	1.6 (1-3.3)		0
Haematopoietic recoverv			
Days to Leukocyte count> 1,000/ml	11.5 (9-16)	p=0.01	16.5 (14.1-17.9)
Days to PMN recovery	12 (10-17)	-	14 (9-28)
Days to PLT recovery	11 (9-24)		13 (9-100)
Days to reticulocyte recovery	12 (10-31)		23 (9-41)
Post-HSCT complications			
Graft failure	0 (0%)	p=0.03	11 (20%)
Primary		•	7
Secondary			4
Acute GvHD			
Grade I-II	2 (10%)		12 (23%)
Grade III-IV	0 (0%)		2 (`3%)
Chronic GvHD	1 (5%)		6 (12%)

Ball L, Bernardo ME et al. Blood 2007

Phase I/II study of Co-Tx of UMBILICAL CORD BLOOD-derived HSCs and MSCs

Patient characteristics

	Patients		Controls		Т	otal
Number of patients	9		27		36	
Gender: M / F	6/3		12 / 15		18 / 18*	
Median age (years, and range)	4	(0.8 – 14)	4	(0.3 – 10)	4	(0.3 – 14)
Diagnosis:						
ALL	5	(56%)	15	(56%)	20	(56%)*
Hemoglobinopathies	2	(22%)	6	(22%)	8	(22%)
Other inborn errors	2	(22%)	6	(22%)	8	(22%)
Disease status at HSCT:						
1 st CR	3	(33%)	3	(12%)	6	(17%)*
2 nd or 3 rd CR	2	(22%)	12	(44%)	14	(39%)
Disease present	4	(45%)	12	(44%)	16	(44%)
Nucleated cells (x 10 ⁷ /Kg):	4.4	(1.4 – 13)	3.9	(2 – 18)	4	(1.4 – 18)
CD34+ cell (x 10⁵/Kg):	2.4	(0.6 - 6.6)	2	(0.6 – 6)	2.2	(0.6 – 6.6)

MSC (x 10⁶/Kg): 1.9 (1 – 3.3)

* Chi-square P = N.S.

Bernardo ME et al. Bone Marrow Transpl. 2010

Bernardo ME et al. Bone Marrow Transpl. 2010

Grade II-IV acute graft-versus-host disease

Bernardo ME et al. Bone Marrow Transpl. 2010

I. MSCs TO PROMOTE ENGRAFTMENT: summary of PHASE I-II TRIALS

Table 1

Clinical applications of MSCs to facilitate HSC engraftment in phase I/II clinical trials,

Clinical context	MSC	source	N of pts	Outcome	Refs,
Breast cancer; autologous HSCT	BM	Auto Allo	28	No tox, Rapid haematopoietic recovery	[68]
Hematological disorders; haploT-cell depleted HSCT	BM	Haplo	40 14 C	No tox, Frompt naematopoletic recovery No tox, Graft rejection prevention, Accelerated	[9]
Hematological disorders; UCBT Hematological disorders; UCBT	BM BM	Haplo Haplo	8 C 13 C	leukocyte recovery No tox, Prompt haematopoietic recovery No tox, No effect on engraftment and haematopoietic	[70] [10]
Hematological disorders; UCBT + 3rd-party HSCs SAA, haplo HSCT Hematological malignancy; haplo HSCT	BM UCB UCB	Haplo 3° party 3° party	9 21 50 also c	recovery, GVHD prevention No tox, No effect on kinetics of engraftment and GvHD No tox, Sustained donor engraftment No tox, Sustained donor engraftment	[71] [72] [73]

N of pts; number of patients enrolled; c; children; HSCT; haematopoietic sten cell transplantation; BM; bone marrow; UCB; umbilical cord blood; tox,; toxicity; UCBT; umbilical cord blood transplantation; aGvHD; acute graft-versus-host disease; A haematopoietic stem cell.

Bernardo and Fibbe, Immunol Lett.2015

Ph. I/h. HAPLO-Tx in 50 pts. with relapsed MALIGNANCIES

- PMN engraftment: d+12 (9-20)
- PLT engraftment: d+15 (10-28)
- Grade II-IV aGvHD: 24%
- PFS at 2 yrs: 66% (no increased risk of relapse)

Wu Y, et al. Ann Hematol 2013

CLINICAL APPLICATIONS of MSCs IN HSCT (& BEYOND)

- I. Co-infusion of MSCs and HSCs to enhance hematopoietic engraftment after allo-HSCT in HAPLO- and CB-HSCT
- **II.** Treatment of steroid-resistant acute GvHD
- III. Ex-vivo expansion of CD34+ cells on MSCs for improved engraftment
- **IV. Treatment of acute tissue damage after allo-HSCT**

(case reports in hemorragic cystitis, pneumothorax and pneumomediastinum, peritonitis)

& BEYOND...REGENERATIVE MEDICINE

repair of bone and cartilage degenerative disorders, Crohn's disease (IBD), kidney and liver repair, ARDS

MSCs FOR THE TREATMENT OF STEROID-RESISTANT, SEVERE, GRADE II-IV ACUTE GVHD (1)

Seminal case: treatment of severe aGvHD with third-party haploidentical MSCs

Le Blanc K, et al. The Lancet 2004

MSCs FOR STEROID-RESISTANT, SEVERE, GRADE II-IV ACUTE GVHD: largest PHASE II STUDY (2)

55 patients, adults+peds, gr. III/IV aGvHD

	Measure						
Donors							
Number of donors	45						
Donor sex (male/female)	25/20						
Donorage	36 (1-67)						
Number of infusions by donor type							
HLA-identical sibling	5						
HLA-haploidentical donor	18						
Unrelated HLA-mismatched donor	69						
Volume of bone marrow harvested (mL)	60 (32-220)						
Median MSC cell dose (×10 ^s /kg, range)	1-4 (0-4-9)						
Culture passage at MSC harvest							
Passage 1	14						
Passage 2, 2+3	42,7						
Passage 3, 3+4	23, 2						
Passage 4	4						
Number of MSC infusions							
One	27						
Two	22						
Three	4						
Four	1						
Five	1						
Data are number or median (min-max range). MSC-mesenchymal stem cell.							
Table 3: Mesenchymal-stem-cell donor and	Table 3: Mesenchymal-stem-cell donor and graft characteristics						

3°-party BM-MSCs

	Children (n=25)	Adults (n=30)	All patients (n=55)			
Complete response	17	13	30			
Partial response	4	5	9			
Stable disease	2	1	3			
Progressive disease	2	11	13			
Overall response	21	18	39			
Survival*	13	8	21			
Limited chronic GVHD	2	0	2			
Extensive chronic GVHD	4	2	6			
*At last data collection, March, 2007.						
Table 4: GVHD response ar	nd outcome					

Overall response: 39/55 (71%)

Le Blanc K, ... Bernardo ME, Locatelli F, et al. Lancet 2008

MSCs FOR THE TREATMENT OF STEROID-RESISTANT, aGVHD in PEDs (3): PHASE II STUDY

PROBABILITY of OS for CHILDREN with CR after MSC is SIGNIFICANTLY SUPERIOR to that of CHILDREN with PR/NR

TREND for a LOWER TRM in CHILDREN with EARLY MSC as compared with CHILDREN with LATE MSC

37 patients (all peds)

Ball LM, Bernardo ME, et al. Br J Haematol 2013

3rd-PARTY BM-MSCS EXPANDED IN <u>PLATELET LYSATE</u> FOR <u>CHILDREN</u> WITH STEROID-RESISTANT aGvHD (4)

Response correlates with levels of TNF-α and IFN-y

Lucchini G et al. BBMT 2010

PLASMA BIOMARKERS AND LEVELS OF IDC CORRELATE WITH MORTALITY AFTER MSC INFUSION

Ph. II study: 48 patients

Table 3.	Biomarkers that associate with 1-year mortality						
	Outcome 1-year mortality						
	Variable	Cl	P-value				
Day 0 Day 14	Age Levine biomarker formula Immature mDC1 at day 14 ST2 at day 14	1.032 2.924 0.554 2.389	1.005–1.059 1.485–5.758 0.389–0.790 1.144–4.989	0.02 0.002 0.001 0.02			

- Ferrara biomarker panel levels were predictive for mortality when measured before MSC treatment
- Increase in immature myeloid DC early after MSC treatment associated with decreased mortality

te Boome et al. Leukemia 2015

MSCs TO TREAT ACUTE GVHD: summary of CLINICALTRIALS

Table 2. Clinical ap	plications of MSCs to treat GvHD
----------------------	----------------------------------

	Clinical context	MSC source	N of pts	Outcome	Ref. n.
	Grade IV aGvHD after allogeneic HSCT	BM haplo	1 c	Complete resolution of grade IV acute GVHD	75
H	Grade II-IV aGvHD after allogeneic HSCT/DLI	BM 3 rd party	55 also c	OR: 69%; improved OS in responders	16
0	Grade II-IV aGvHD after allogeneic HSCT/DLI	BM 3 rd party	37 c	CR 59%; improved OS, especially if early MSC treatment	76
g	Grade II-IV aGvHD after allogeneic HSCT/DLI	BM 3rd party (PL)	11 c	OR: 71%; CR: 24%	77
Ĕ	Grade II-IV aGvHD after allogeneic HSCT/DLI	BM 3rd party (PL)	40 also c	OR: 67.5%; CR: 27.5%. Better in children and grade II	78
	Grade II-IV aGvHD after allogeneic HSCT/DLI	BM 3 rd party	240also c	No significant increase of CRs as compared with placebo;	-
	(Phase III)			better if gastrointestinal and liver GvHD	
	Ext. Sclerodermatous cGvHD after allogeneic HSCT	BM 3 rd party	4	Improvements of the signs of cGvHD (intrabone	80
	Refractor GvHD after allogeneic HSCT	BM 3 rd party	23	injection)	81
				OR: 20/23 treated pts. Increase in Bregs	

N of pts: numb versus-host disea extensive. N of pts: numb versus-host disease; OR: overall response; OS, overall survival; CR, complete response; PL: platelet lysate expanded MSC; Ext: Bernardo and Fibbe, Immunol Lett.2015

OSIRIS: company-driven RANDOMIZED trial of MSCs for steroid-resistant aGvHD

- 2:1 **randomization**, 163 patients received 8 infusions of 3rd-party BM-MSCs and 81 were given placebo.
- Infusional toxicity, infection rates, and incidence of recurrent malignancy were similar in the two arms.
- <u>No difference</u> was observed in achieving the primary end-point of a <u>durable complete</u> response for 28 days (35 vs. 30%), although there was a <u>trend in favor of MSCs for patients</u> with VISCERAL INVOLVEMENT.

MSCs FOR THE TREATMENT OF <u>CHRONIC</u> GVHD

23 pts with mainly extensive cGvHD: 20/23 CR or PR Response to MSC is associated with an increase in CD5+ regulatory B cells producing IL-10

	cGVHD (N = 23)	Non-GVHD (N = 11)	P-value	a	60
Median age, year (range)	31 (14–51)	34 (15–49)	0.83		50
Sex (%)			0.72	(%	•••
Females	5 (21.7)	3 (27.3)		<u>s</u>	40
Male	18 (78.3)	8 (72.7)		Se l	
Median time post-HSCT,	12.5 (6–56)	11 (5.5–44)	0.54	m	30
month (range)				13	20
Source of araft (%)			0.70	្រប	20
Peripheral blood	20 (87.0)	9 (81.8)	0.70		10
Bone marrow	3 (13.0)	2 (18.2)			
Transplant type (%)			< 0 00		0
Myeloablative	22 (95.7)	10 (90.9)	/0.55		
Nonmyeloablative	1 (4.3)	1 (9.1)			
HLA matchina (%)			>0.99		
Matched, unrelated	2 (8.7)	1 (9.1)			
Matched, related	19 (82.6)	9 (81.8)			
Mismatched	2 (8.7)	1 (9.1)			
Prophylaxis (%)			_		
CsÁ	3 (13.0)	_			
CsA+prednisolon	18 (78.3)	—			
CsA+prednisolon +MM	2 (8.7)	—			
Disease (%)			0.07		
AMI	8 (34.8)	6 (54.4)	0.97		
ALL	4 (17.4)	2 (18.2)			
CML	6 (26.1)	3 (27.3)			
NHL	1 (4.3)	0 (0)			
Other	4 (17.4)	1 (9.1)			

Peng et al. Leukemia 2015

CLINICAL APPLICATIONS of MSCs IN HSCT (& BEYOND)

- I. Co-infusion of MSCs and HSCs to enhance hematopoietic engraftment after allo-HSCT in HAPLO- and CB-HSCT
- **II.** Treatment of steroid-resistant acute GvHD
- III. Ex-vivo expansion of CD34+ cells on MSCs for improved engraftment
- **IV. Treatment of acute tissue damage after allo-HSCT**

(case reports in hemorragic cystitis, pneumothorax and pneumomediastinum, peritonitis)

& BEYOND...REGENERATIVE MEDICINE

repair of bone and cartilage degenerative disorders, Crohn's disease, kidney and liver repair

III. EX-VIVO EXPANSION of CB-CD34+ CELLs and IMPROVED ENGRAFTMENT

3rd-party BM-MSCs

Table 2. Engraftment in Recipients of Ex Vivo Expanded Cells and MDACC and CIBMTR Controls.

Engraftment	Recipients of Ex Vivo Expanded Cells (N = 24)	MDACC Controls (N = 60)	P Value*	CIBMTR Controls (N=80)	P Value†
Neutrophil engraftment					
No. of patients	23	51		67	
Time to engraftment — days					
Median	15	21	0.08	24	< 0.001
Range	9-42	6-45		12-52	
Cumulative incidence — % (95% CI)					
By 26 days	88 (66–96)	62 (48-73)	0.006	53 (41-63)	<0.001
By 42 days	96 (74–99)	83 (71-91)	0.05	78 (67–86)	0.005
Platelet engraftment					
No. of patients	18	38		37	
Time to engraftment — days					
Median	42	41	0.33	49	0.03
Range	15-62	26-126		18-264	
Cumulative incidence — % (95% CI)					
By 60 days	71 (48-85)	52 (38-63)	0.10	31 (21-41)	< 0.001
By 180 days	75 (53-88)	63 (50-74)	0.28	46 (35-58)	0.01

DOUBLE CBT: 1 expanded, 1 unmanipulated Median NC/Kg= 8.34 x 10⁷ Median CD34+/Kg= 1.81 x 10⁶

De Lima, et al. New England J Medicine 2012

CLINICAL APPLICATIONS of MSCs IN HSCT (& BEYOND)

- I. Co-infusion of MSCs and HSCs to enhance hematopoietic engraftment after allo-HSCT in HAPLO- and CB-HSCT
- **II.** Treatment of steroid-resistant acute GvHD
- III. Ex-vivo expansion of CD34+ cells on MSCs for improved engraftment
- **IV. Treatment of acute tissue damage after allo-HSCT**

(case reports in hemorragic cystitis, pneumothorax and pneumomediastinum, peritonitis)

& BEYOND...REGENERATIVE MEDICINE

repair of bONE and CARTILAGE degenerative disorders, Crohn's disease (IBD), kidney and liver repair, ARDS

IV. MSC TO TREAT TISSUE DAMAGE IN ALLOGENEIC HSCT RECIPIENTS

MSC possess anti-inflammatory properties which can be employed to heal therapy-induced tissue toxicity after allo-HSCT:

- Hemorrhagic cystitis -
- **Pneumomediastinum** _
- **Perforated colon with perotonitis** -

Ringden et al. Leukemia 2007 Yin et al. Stem Cells 2014

CONCLUSIONS FROM MSC TRIALS TO IMPROVE OUTCOME IN ALLO-HSCT

- ✓ Infusion of MSCs appeared to be <u>safe</u> and no major toxicities were observed.
- ✓ 3rd-party BM-MSCs may provide an <u>effective therapy for patients with</u> <u>severe aGvHD</u> who do not respond to treatment with corticosteroids (Phase III ongoing). *The earlier the better*
- ✓ Randomized clinical trials are needed to define the role of MSCs in steroidresistant GvHD and to identify pts. that will benefit most from the treatment
- ✓ MSC may be employed to expand HSC and to repair tissue damage after allo-HSCT
- Current MSC in vitro assays are not predictive of the efficacy in vivo. Need for identification of **potency assays** in vitro able to predict outcome in patients
- ✓ Need for **harmonization** in MSC manifacturing across Europe:

EMBT survey on MSC manufacturing

Working towards harmonisation On behalf of CTIWP Trento C, Bernardo ME, Bonini C, Dazzi F

Participants to the survey: N. 17 EBMT centers

- Germany
- Israel
- Italy
- Netherlands
- Belgium
- Austria
- United Kingdom
- Lithuania
- Sweden

Considered variables:

- MSC source,
- MSC donor matching,
- medium additives for ex-vivo expansion,
- data on MSC product specification for clinical release

Manufacture of MSCs

mainly BM, mainly ALLOGENEIC/THIRD PARTY, mailny FROZEN

■ only frozen ■ fresh/frozen

Trento C, Bernardo ME, et al. Submitted

Media used for manufacture

mainly PLATELET LYSATE

Trento C, Bernardo ME, et al. Submitted

Product specification

Variability in release criteria for clinical use Only 27% performs POTENCY ASSAY

Trento C, Bernardo ME, et al. Submitted

CONCLUSIONS FROM THE EBMT SURVEY ON MSC

- ✓ Very few centers have developed a <u>potency assay</u> that could predict patient's outcome
- ✓ Data collected highlight the <u>high variability in MSC manufacturing</u> as clinical product and the <u>need for harmonization</u>.
- ✓ Until more meaningful potency assays become available, a more <u>homogenous approach to cell production</u> may at least reduce variability in clinical trials and improve interpretation of results.

FUTURE: MSC to optimize the outcome of HSC-GENE THERAPY

• MSC support of gene-edited (GE) HSPC in 2D co-culture

MSC significantly increase the number of <u>primitive</u> GE-HSPC, identified as Lin- CD34high, CD90+ and CD45RA-

In vivo ossicle 3D model with humanized niche to support engraftment of GE-HSPC

- humanized BM niche present at 5 weeks after the implantation of scaffolds pre-seeded with huMSC and EC into non-irradiated NSG mice

- huCD45+ cells were detected in PB already at6 weeks after HSCT

In collaboration with L. Naldini. Confidential

Acknowledgements

SR-TIGET, PEDIATRIC IMMUNOHEMATOLOGY UNIT, SAN RAFFAELE HOSPITAL, MILAN

- S. Crippa
- V. Rossella
- S. Rivis
- S. Pirroni
- A.AIUTI

DEPARTMENT OF HEMATOLOGY AND STEM CELL PROGRAMME, SAN RAFFAELE HOSPITAL C. BONINI F. CICERI DEPARTMENT OF ONCOHEMATOLOGY, IRCCS BAMBINO GESU' CHILDREN HOSPITAL, ROME F. LOCATELLI M. Algeri A. Conforti

N. Starc

LEIDEN UNIVERSITY MEDICAL CENTER W.E. FIBBE H. Roelofs L.M. Ball A.Lankester

KING's COLLEGE, London C. Trento F. DAZZI

PLASMA BIOMARKERS FOR aGVHD RESPONSE AFTER MSC THERAPY

TNFRI, **IL2Ralpha** and **ELAFIN** can be employed as biomarkers for monitoring patients' response to MSC therapy

Dander E et al., Leukemia 2012

CLINICAL APPLICATIONS of MSCs as ANTI-INFLAMMATORY AGENTS in REGENERATIVE MEDICINE

In REGENERATIVE MEDICINE:

- •repair of BONE and CARTILAGE degenerative disorders
- •IBD (Crohn's disease)
- •Kidney and liver repair
- Hemophagocytic Lymphohistiocytosis
- •Acute Respiratory Distress

IN PHASE II STUDIES GVHD RESPONSE CORRELATES WITH OS

TABLE 2.

· · · · ·

Response rates and survival

A	⁸⁰ 7					
~	60 -				<u>.</u>	
%) SO	40 -					
	20-				r=0).91 0.01
	0+			1	-	
	0	20	40	60	80	100
			CR	(%)		
В						
	⁸⁰ 7					
	60 -					
(%)						
S	407		•		•	
0		•	*			
	20-				r=().20
					p=0	0.72
	0+					
	0	10	20	30	40	50
OS (%)	_		PR	(%)		
5/8 (63)	-					
)/16 (0)						

			Outcome		Survival			0	10	20	30	40	50
First Author		CR (%)	PR (%)	MR (%)	Relapse (%)	TRM ^a (%)	OS (%)			PR	. (%)		
Ringden (2006)	pts co	6/8 (75) NM			0/8 (0) NM	3/8 (38) NM	5/8 (63) 0/16 (0)						
Fang (2007)		5/6 (83)			1/6 (17)	1/6 (17)	4/6 (66)						
Le Blanc (2008)		30/55 (55)	9/55 (16)		3/55 (5)	CR 11/30 (37) PR/NR 18/25 (72) ^b	16/30 (53) 4/25 (16) ^b						
Von Bonin (2009)		1/13 (8)	1/13 (8)	5/13 (38)	0/13 (0)	9/13 (21)	4/13 (31)						
Resnick (2013)		17/50 (34)	16/50 (32)		1/50 (2)	CR/PR 6/33 (18)	NM						
Sanchez (2014)		11/25 (44)	6/25 (24)		2/25 (8)	CR/PR 7/17 (41) NR 5/8 (71)	8/11 (67) 3/14 (21)						
Introna (2014)		11/40 (27)	16/40 (40)		6/40 (15)	18/40 (45)	16/40 (40)	Munn	ieke et	al. Tre	anspla	ntation	2016
Zhao (2015)	pts	17/28 (61)	4/28 (14)		2/28 (7) ^c	12/28 (43)	/28 (46) ^d						
	CO	5/19 (26)	3/19 (16)		1/19 (3) ^c	13/19 (68)	/19 (26)	Hash	mi et a	l. Lan	cet He	matol .	2016
Te Boome (2015)		12/48 (25)					/48 (44)						

MSCs ATTENUATE SEPSIS VIA PGE2-DEPENDENT REPROGRAMMING OF HOST MACROPHAGES

Nemeth et al, Nat Med 2009