1st CUNEO CITY IMMUNOTHERAPY CONFERENCE (CCITC) - IMMUNOTHERAPY IN HEMATOLOGICAL MALIGNANCIES 2018 Cuneo, 17-19 maggio 2018

DICHIARAZIONE

Relatore: Giulia Casorati

Come da nuova regolamentazione della Commissione Nazionale per la Formazione Continua del Ministero della Salute, è richiesta la trasparenza delle fonti di finanziamento e dei rapporti con soggetti portatori di interessi commerciali in campo sanitario.

- Posizione di dipendente in aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Consulenza ad aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Fondi per la ricerca da aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Partecipazione ad Advisory Board (Vaxxilon AG, Reinach, Switzerland)
- Titolarietà di brevetti in compartecipazione ad aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Partecipazioni azionarie in aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)

CD1 restricted T cells

Giulia Casorati

San Raffaele Scientific Institute Milano

1st CUNEO CITY IMMUNOTHERAPY CONFERENCE (CCITC) – IMMUNOTHERAPY IN HEMATOLOGICAL MALIGNANCIES 2018

Cuneo, May 17-19, 2018

CD1 locus

Porcelli et al. 1999

CD1-restricted T cells recognize microbial and stress-altered self-antigens (*autoreactivity*)

OSPEDALE SAN RAFFAELE

Pathophysiological relevance of lipid-specific T cell response for human health

CD1 expression pattern

Group I CD1a, b, c	Group II CD1d
 Cortical immature tymocytes 	 Cortical tymocytes
•mDCs (CD1a, b, c)	•mDCs
 Langherans cells (CD1a, c) 	
 Mono/Macrophages (CD1a, b, c variable) 	 Mono/Macrophages
•B cells (CD1c on a subset)	•B cells (most)
Group 1 CD1a,b,c	KeratinocytesHepatocytes
	 Vascular smooth cells (gut, liv)

OSPEDALE SAN RAFFAELE •Schwann cells

CD1 molecules are frequently expressed by primary acute leukemia blasts

Malignancy	Number	Patients with CD1-expressing blasts			
		CD1a	CD1b	CD1c	CD1d
		%	%	%	%
Pediatric patien					
AML	9	0	45	45	0
B-ALL	23	4	22	26	4
T-ALL	8	75	75	12	50
Adult patients					
AML	33	3	54	51	24
B-ALL	7	0	0	71	29

Data refer to circulating blasts. Similar CD1 expression frequencies were observed in bone marrow biopsy samples.

CD1a

CD1c self-reactive T cell clones recognize acute leukemia expressing CD1c

OSPEDALE Methoxy group

Lepore, de Lalla et al. 2014

CH3

mLPA-specific T cells kill malignant cells in vitro and impair leukemia progression in vivo

-O- + anti CD1c mAb

T cell adoptive immunotherapy of acute leukemia (AML, BCP-ALL, T-ALL)

- Acute leukemia are treated with chemotherapy and allogeneic hematopoietic stem cell transplantation (HSCT)
- The major unmet clinical need is post-transplant recurrence
 of residual leukemia
- Allogeneic T cell transfer can control leukemia recurrence, but can causes detrimental GVHD

 Need strategies to target T cell responses against malignant cells

Advantages of leukemia targeting by CD1 self-reactive T cells

Factor Reviews 36 (2017) 117–123

Retargeting allogeneic T cells against relapsed CD1c⁺ leukemia by transduction with a selected mLPA-specific TCR

2. Identification of the lead mLPA-specific TCR

Recognition of K562 cells by Jurkat 76 β 2m⁻ cells transduced with mPLA-specific TCRs

+ K562-CD1c + K562 WT

Consonni M. unpublished

Primary T cells transduced with mPLA-specific TCRs specifically recognize leukemia cell lines

CD4⁺ & CD8⁺ T cells transduced with lead mPLA-specific TCR kill CD1c⁺ leukemia cell lines

Primary T cells transduced with lead mLPA-specific TCR kill primary CD1c⁺ leukemia blasts

killing of CD1c⁺ AML blasts (CD33⁺) by TCR transduced primary T cells

De Lalla C. Consonni M. unpublished

Primary T cells transduced with lead mLPA-specific TCR impair CD1c⁺ leukemia cell progression in vivo

Safety issues

1. On-target off-tumor recognition

Absent CD1c expression in non-hematopoietic tissues of healthy individual

Lepore, de Lalla et al. JEM 2014

Absence of CD1c expression in normal hematopoietic precursors

Cord Blood cells from healthy donors

Lepore, de Lalla et al. JEM 2014

Assessing efficacy and safety of ACT with T cells engineered with mLPA-specific TCRs in syngeneic animal models

Porcelli et al. 1999

Humanized CD1c transgenic mice

Mouse T cells engineered with lead human mLPA-specific TCR recognize and kill mouse CD1c⁺ lymphoma cells

OSPEDALE SAN RAFFAELE

Consonni M. unpublished

Conclusions

- 1. Polyclonal T cells are efficiently retargeted against CD1c-expressing leukemia in vitro and in vivo (NSG mice) by mLPA-specific TCR transfer
- 2. We have identified a lead mLPA specific TCR for further clinical development
- 3. CD1 humanized mice allow assessing efficacy and safety of ACT with T cells engineered with mLPA-specific TCRs

Ongoing experiments

1. Assessing efficacy of ACT with engineered T cells against primary AML-ALL xenografts in NSG mice

2. Investigating leukemia control and safety by mLPA-specific T cells in CD1 humanized mice

Acknowledgments

Experimental immunology unit Giulia Casorati and Paolo Dellabona

Michela Consonni

Claudia de Lalla

Claudio Garavaglia

Alessandra Bigi

Alessandra Mancino

University of Basel Marco Lepore Lucia Mori Gennaro De Libero

Kunming Institute of Botany, Chinese Academy of Sciences Chengfeng Xia

Experimental Hematology Unit Chiara Bonini

Innovative Immunotherapies Unit

Monica Casucci Laura Falcone Barbara Camisa Attilo Bondanza

Hematology and BMT Unit

Fabio Ciceri Massimo Bernardi Luca Vago Cristina Toffalori

San Matteo Hospital, Pavia Daniela Montagna

Bambin Gesù Hospital, Rome Franco Locatelli

Cohort	Disease Name	Cases	Normal
		77	400
ACC	Adrenocortical carcinoma	11	128
BLCA	Bladder urothelial carcinoma	404	28
BRCA	Breast invasive carcinoma	1085	291
CESC	Cervical and endocervical cancers	306	13
CHOL	Cholangiocarcinoma	36	9
COAD	Colon adenocarcinoma	275	349
DLBC	Lymphoid Neoplasm Diffuse Large B-cell Lymphoma	47	337
ESCA	Esophageal carcinoma	182	286
GBM	Glioblastoma multiforme	163	207
HNSC	Head and Neck squamous cell carcinoma	519	44
KICH	Kidney Chromophobe	66	53
KIRC	Kidney renal clear cell carcinoma	523	100
KIRP	Kidney renal papillary cell carcinoma	286	60
LAML	Acute Mveloid Leukemia	173	70
LGG	Brain Lower Grade Glioma	518	207
LIHC	Liver hepatocellular carcinoma	369	160
LUAD	Lung adenocarcinoma	483	347
LUSC	Lung squamous cell carcinoma	486	338
OV	Ovarian serous cystadenocarcinoma	426	88
PAAD	Pancreatic adenocarcinoma	179	171
PCPG	Pheochromocytoma and Paraganglioma	182	3
PRAD	Prostate adenocarcinoma	492	152
READ	Rectum adenocarcinoma	92	318
SARC	Sarcoma	262	2
SKCM	Skin Cutaneous Melanoma	461	558
STAD	Stomach adenocarcinoma	408	211
TGCT	Testicular Germ Cell Tumors	137	165
THCA	Thyroid carcinoma	512	337
THYM	Thymoma	118	339
UCEC	Uterine Corpus Endometrial Carcinoma	174	91
UCS	Uterine Carcinosarcoma	57	78

CD1c expression in human cancers vs normal tissues

Targeting any CD1c⁺ acute leukemia with T or iNKT cells engineered with mLPA-specific TCR Selection of the optimal recipient effector T cell subset

- Home to the bone marrow

- Promote GVL while preventing GVHD *(de Lalla 2011; Chaidos 2012; Rubio 2012; Morris 2005; Pillai 2007)*

- Reprogram cancer-opposing functions in the tumor microenvironment

TCR transduction of in vitro expanded CD4⁺ and CD8⁺ $T_{CM/EM}$ cells (anti-CD3/CD28 beads + IL-7/IL-15)

Efficient iNKT cell transduction with the lead mLPA-specific TCR DN4.99

mLPA is enriched in leukemia and in Mo-DCs

Lepore, de Lalla et al. JEM 2014

Differential recognition of normal and malignant cells by mLPA-specific T cells

T cells transduced with DN4.99 TCR do not kill monocytes and DC

self-reactive CD1c restricted T cells recognize also relapsed leukemia blasts

Generation of retrogenic mice expressing mLPA specific TCR and CD1c molecules

Consonni M. unpublished

Mouse Tg DCs, but not B cells, stimulate CD1c self-reactive human T cell clones

Consonni M. unpublished

B cells from Lupus patients are recognized by mLPA specific T cells

B cells were purified with α -CD19 beads

48 hrs co-culture 37[°]C

Normal B cells activated in vitro by CD40L + IL-21 stimulate mLPA specific T cell clones

Methyl lysophosphatidic acid (mLPA) stimulates CD1c self-reactive T cells

Lepore, de Lalla et al. JEM 2014

iNKT cells fail to reconstitute post-hHSCT in relapsing patients

iNKT cells rapidly acquire anti-tumor effector competence post-hHSCT

CD1 molecules display MHC-I like structures

Brigl & Brenner Annu Rev Immunol 2004

Unravel possible pathways of mLPA synthesis (inhibition of target enzymes by shRNA or CRISPR/Cas9)

with Massimo Degano (Biocrystallography Unit) Andrea Graziani (Lipid Signaling in cancer and metabolism Unit) Annapaola Andolfo (Protein Microsiquencing Facility)

Strategies to overcome mispairing with endogenous TCR $\alpha\beta$ chains

Define the epigenetic and transcriptional control of CD1 genes in normal APCs vs ALL

(by ATAC and RNAseq, with G. Natoli Humanitas Inst; OSR Translational Genomics and Bioinformatics)

Malignancy	Number	Patients with CD1-expressing blasts			
		CD1a	CD1b	CD1c	CD1d
		%	%	%	%
Pediatric patien	ts				
AML	9	0	45	45	0
B-ALL	23	4	22	26	4
T-ALL	8	75	75	12	50
Adult patients					
AML	33	3	54	51	24
B-ALL	7	0	0	71	29

Data refer to circulating blasts. Similar CD1 expression frequencies were observed in bone marrow biopsy samples.

CD69 expression on Jurkat 76 cells transduced with TCRs DN4.99 and DN4.2 T cell clones

DN4.99 TCR

DN4.2 TCR

ON co-culture with K562-CD1c cells loaded with 4µg/ml of indicated lipids

Transduction of Jurkat 76 cell line with the CD1c-self reactive TCRs

CD1 present both exogenous (bacterial) and endogenous (self) lipid antigens

		Source	Antigen	CD1 isoform	Refs
	(Mycobacterium tuberculosis and other mycobacteria	Mycolic acids	CD1b	3
			Glucose monomycolate	CD1b	132
			Sulpholipid (diacylated sulphoglycolipid)	CD1b	8
		Phosphatidylinositol mannosides	CD1b, CD1d	5,133	
		Mannosylated lipoarabinomannan	CD1b	5	
			Mannosyl-β1-phosphomycoketides	CD1c	6,134
			Didehydroxymycobactin	CD1a	124
		Sphingomonas spp.	α -Glucuronosylceramide	CD1d	9,10
	Borrelia burga	Borrelia burgdorferi	α -Galactosyldiacylglycerol	CD1d	11
		Leishmania donovani	Lipophosphoglycan	CD1d	12
IS	$\left(\right)$	Mammalian (self)	Phosphatidylinositol	CD1d	18
			Phosphatidylglycerol	CD1d	18
			Phosphatidylethanolamine	CD1d	18
			GM1	CD1b	20,21
)		GD3	CD1d	22
			Sulphatide	CD1a, CD1b, CD1c	19
			Isoglobotrihexosylceramide	CD1d	10,23
	\mathcal{L}	Synthetic or marine sponge	α-Galactosylceramide	CD1d	125

Exogenous (Bacterial)

Endogenous (self)

Barral DC, Brenner MB. Nat Rev Immunol. 2007