1st Cuneo City Immunotherapy Conference (CCITC)

Immunotherapy in Hematological Malignancies 2018

CUNEO May 17-19, 2018 Centro Incontri Passive Immunotherapy: Targeting tumor cells

CD20 in Lymphoma and Chronic Lymphocytic Leukemia: Groundwork and outlook

Umberto Vitolo

Hematology University Hospital Città della Salute e della Scienza Torino, Italy

Organized by Prof. Massimo Massaia, SC Ematologia AO S. Croce e Carle, Cuneo, Italy and Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), Torino, Italy

Disclosures – Umberto Vitolo

Research Support/P.I.	Roche, Celgene
Employee	N/A
Consultant	N/A
Major Stockholder	N/A
Conferences/ Educational Activities	Janssen, Roche, Celgene, Takeda, Gilead
Scientific Advisory Board	Janssen, Roche, Celgene

Treatment with antiCD20 in B-cell lymphomas and CLL

Consolidated results New antiCD20 antibodies Association with IMIDs Future development

Long-term results of the GELA study

LNH-98.5 study

R-CHOP vs. CHOP in Older Patients with Diffuse Large B-Cell Lymphoma

EFS – Median follow-up 7 y 42% vs. 24% OS – Median follow-up 7 y >50% vs. 35%

What outcome can we expect with R-CHOP in DLBCL ?

Patients with DLBCL treated with R-CHOP-21 at BCCA (n=1476)

BC Cancer Agency Database Sehn Hematology 2012

R-chemotherapy first-line induction

 Addition of Rituximab to chemotherapy improves treatment response (both overall and complete responses)

- Addition of Rituximab to chemotherapy prolongs PFS
- Addition of Rituximab to chemotherapy allows better survival and better

control of the disease

			Overall survival (%)				
Study	Regimen	FU	ORR (%)	CR (%)	Control	Rituximab	<i>p</i> -value
Marcus R Blood 2005	CVP vs R- CVP	4 yrs	57 vs 81	10 vs 41	77	83	0.029
Hiddemann W Blood 2005	CHOP vs R-CHOP	5 yrs	90 vs 96	17 vs 20	84	90	0.0493
Herold M JCO 2007	MCP vs R- MCP	4 yrs	75 vs 92	25 vs 49	74	86	0.0205
Salles G Blood 2008	CHVP/IFN vs R-CHVP/IFN	5 yrs	86 vs 94	44 vs 73	79	84	0.025 (high- risk pts)
Shulz H, et al: Cochrane Database Syst Rev, 200 Sacchi S, et al: Cancer, 200							

Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3, randomised controlled trial

Gilles Salles, John Francis Seymour, Fritz Offner, Armando López-Guillermo, David Belada, Luc Xerri, Pierre Feugier, Réda Bouabdallah, John Vincent Catalano, Pauline Brice, Dolores Caballero, Corinne Haioun, Lars Moller Pedersen, Alain Delmer, David Simpson, Sirpa Leppa, Pierre Soubeyran, Anton Hagenbeek, Olivier Casasnovas, Tanin Intragumtornchai, Christophe Fermé, Maria Gomes da Silva, Catherine Sebban, Andrew Lister, Jane A Estell, Gustavo Milone, Anne Sonet, Myriam Mendila, Bertrand Coiffier, Hervé Tilly

(Median follow-up 3 years)

Salles GA, et al. Lancet 2011;377:42-51.

Long Term Follow-up of the PRIMA Study: Half of Patients Receiving Rituximab Maintenance Remain Progression Free at 10 Years

- ▶ 51% of pts in R-maintenance arm (vs 35%) free of disease progression
- Benefit of R-maintenance was significant in all patient strata

Median TTNT not reached in Rituximab maintenance arm with 53% pts not having received a new treatment (vs 41%)

- No new safety signals were indentified with additional 4 years of FU
- OS was identical (80%) in each arm

Obtaining truly durable response with 1st line induction and R-maintenance remains an appealing treatment strategy for FL pts

Addition of Rituximab to Fludarabine and Cyclophosphamide in patients with chronic lymphoytic leukemia: a randomized open-label phase III trial

Hallek M et al. Lancet 2010; 376;1164–1174.

Treatment with antiCD20 in B-cell lymphomas and CLL

Consolidated results New antiCD20 antibodies Association with IMIDs Future development

Novel Anti-CD20 MoAbs for Relapsed/ Refractory Indolent NHL

MoAb	Phase	Efficacy			
	1/11	Dose (ORR): 300 mg (63%), 500 mg (33%), 700 mg (20%), 1000 mg (50%)			
Ofatumumab	П	ORR: 11%, 6-mo PFS in 116 patients with rituximab-refractory FL			
Voltuzumob	1/11	IV administration: ORR: 44%; CR: 27% DOR in patients with FL: 19.7 mos			
Veltuzumab		Subcutaneous administration: ORR: 53% CR: 20% in patients with indolent NHL			
Ocrelizumab	1/11	ORR: 38%; PFS: 11.4 mos in patients with FL			
GA101	II	Low dose (400 mg; n = 18): 17% ORR High dose (1600/800 mg; n = 22): 55% ORR			

GA101: Designed for increased antibody-dependent cellular cytotoxicity (ADCC) and Direct Cell Death

Extensive clinical development program to evaluate the superiority of GA101 over rituximab in multiple head-to-head trials

1. Niederfellner G, et al. Blood 2011; 118:358–367. 2. Mössner E, et al. Blood 2010; 115:4393–4402.

Hypothetical model for CD20 binding of Type I and Type II CD20 antibodies explaining the impact of FcγRIIb on internalization

A) Type I antibodies such as Rituximab may bind to CD20 in a conformation that allows simultaneous binding to FcγRIIb and subsequent signaling followed by internalization in lipid rafts.

B) Type II antibodies such as GA101 may bind in a conformation that does not allow simultaneous binding to FcγRIIb, thus resulting in reduced internalization.

CD20 internalisation

Type I-anti-CD20 mAbs could mediate the internalisation of CD20 into B Cells.

- May lead to degradation of the mAb-CD20 complex.
- Occurred more rapidly in CLL and MCL cells than in FL and DLBCL cells.
- There may, therefore, be less CD20 molecules available on the B-cell surface to bind to mAb in MCL and CLL.

Type II-anti-CD20 mAbs remain almost exclusively on the cell surface and do not internalise.

CLL, chronic lymphocytic leukemia; MCL, mantle cell lymphoma; FL, follicular lymphoma; DLBCL, diffuse large B cell lymphoam. Graphical elaboration from text data, Beers SA, et al. Seminars Hematol 2010; 47(2):107-114; Beers SA, et

GA101: Designed through glycoengineering to increase affinity to, and activation of, immune effector cells

- The presence of certain sugar residues on the Fc region of an antibody may interfere with its ability to bind to immune effector cells^{1,2}
- Removal of these sugars via glycoengineering may increase binding affinity between the Fc region of therapeutic antibodies and the Fc receptors on immune effector cells, such as macrophages and natural killer cells³
- In preclinical studies, glycoengineering of the Fc region of GA101 has demonstrated up to a 100-fold increase in ADCC over nonglycoengineered mAbs^{2,3}

1. Ferrara C, et al. J Biol Chem 2006; 281:5032–5036; 2. Ferrara C, et al. Proc Natl Acad Sci U S A 2011; 108:12669–12674 3. Mossner E et al. Blood. 2010;115(22): 4393-4402

GA101-induced ADCC

GA101 exhibited up to 100-fold higher ADCC potency than rituximab and ofatumumab on Z138 and SU-DHL4 cell lines

Obinutuzumab for the First-Line Treatment of Follicular Lymphoma

1202 enrolled pts

Median age 58-60 years (range 23-88)

Marcus R, et al; NEJM 2017

Obinutuzumab for the First-Line Treatment of Follicular Lymphoma

34% reduction in the risk of progression, relapse or death

Marcus R, et al; NEJM 2017

Obinutuzumab for the First-Line Treatment of Follicular Lymphoma

Event	Overall Trial;		Induction Phase		Maintenance and Observation Phases	
	Obinutuzumab Group (N=595)	Rituximab Group (N=597)	Obinutuzumab Group (N= 595)	Rituximab Group (N=597)	Obinutuzumab Group (N=548)	Rituximab Group (N=535)
No. of events	10,311	9343	7012	6533	3002	2578
Patients with ≥ 1 adverse event — no. (%)						
Any event	592 (99.5)	587 (98.3)	580 (97.5)	577 (96.6)	501 (91.4)	458 (85.6)
Event of grade 3 to 5	444 (74.6)	405 (67.8)	357 (60.0)	336 (56.3)	205 (37.4)	169 (31.6)
Event of grade 5‡	24 (4.0)	20 (3.4)§	4 (0.7)	3 (0.5)	10 (1.8)	10 (1.9)
Patients with ≥ 1 serious adverse event — no. (%)	274 (46.1)	238 (39.9)	166 (27.9)	144 (24.1)	134 (24.5)	110 (20.6)
Treatment-related adverse event — no. (%)						
Any event	564 (94.8)	547 (91.6)	_	—	—	—
Event leading to withdrawal of treatment	75 (12.6)	65 (10.9)	_	—	_	_
Event leading to any dose reduction	103 (17.3)	89 (14.9)	—	—	_	—
Serious adverse event leading to withdrawal of treat- ment — no. (%)	44 (7.4)	36 (6.0)	—	—	—	—
Serious adverse event leading to dose reduction — no. (%)	12 (2.0)	10 (1.7)	_	—	_	_

• More pts in GA101-group had grade 3-5 AE or SAEs but AEs that led to the discontinuation

of treatment were similar in the 2 arms

Marcus R, et al; NEJM 2017

JOURNAL OF CLINICAL ONCOLOGY

Early Relapse of Follicular Lymphoma After Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone Defines Patients at High Risk for Death: An Analysis From the National LymphoCare Study

Casulo C et al, JCO 2015

Early Disease Progression Predicts Poorer Survival in Patients with Follicular Lymphoma (FL) in the GALLIUM Study

 G-chemo was associated with a reduced relative risk of a POD24 event by 42% compared to R-chemo: demonstration of the superiority of G-chemo over R-chemo

Post-progression survival for POD24 pts appeared to be similar in the 2 arms: suggestion that post-progression survival is not compromised by 1st line G-chemo

Launonen A, et al; ASH 2017

ASH

How to improve R-CHOP results in DLBCL

...substitute with different antiCD20 antibody

The GOYA study:

International, open-label, randomized Phase III study in 1L DLBCL pts

Scientific support from the Fondazione Italiana Linfomi

• Number of CHOP cycles pre-planned in advance for all pts at each site

• Randomization stratification factors: planned number of CHOP cycles, IPI, geographic region

Investigator-assessed PFS (primary endpoint)

Kaplan-Meier plot of investigator-assessed

	R- CHOP, n=712	G- CHOP, n=706
Pts with event, n (%)	215 (30.2)	201 (28.5)
1-yr PFS, %	79.8	81.6
2-yr PFS, %	71.3	73.4
3-yr PFS, %	66.9	69.6
HR (95% CI), p-value*	0.92 (0.7 p=0.3	76, 1.11), 3868

Median follow-up: 29 months

*Stratified analysis; stratification factors: IPI score, number of planned chemotherapy cycles

CLL11: Obinutuzomab plus Chlorambucil in patients with CLL and coexisting conditions

- GA101: 1000 mg days 1, 8, and 15 cycle 1; day 1 cycles 2–6, every 28 days
- Rituximab: 375 mg/m2 day 1 cycle 1, 500 mg/m2 day 1 cycles 2–6, every 28 days
- Chlorambucil: 0.5 mg/kg day 1 and day 15 cycle 1–6, every 28 days
- Patients with progressive disease in the Clb arm were allowed to cross over to G-Clb

Adapted from Supp. Material - Goede et al., N Engl J Med.* 2014 Jan 8 * This article is copyrighted by the Massachusetts Medical Society. All rights reserved. It is provided for your personal informational use only

NCT01010061 - http://www.clinicaltrials.gov/ct2/show/NCT01010061?term=NCT01010061&rank=1, Last Access Jan 2014

CLL11 stage II : Response Rate and Progression free Survival

Figure 2. Response Rates and Progression-free Survival with Obinutuzumab-Chlorambucil versus Rituximab-Chlorambucil.

Panel A shows response rates at 3 months after the end of treatment. Complete response included complete response with incomplete bone marrow recovery; partial response included nodular partial response. Panel B shows molecular response rates; MRD denotes minimal residual disease. Panel C shows progression-free survival, as assessed by the site investigators. P values were calculated with the use of a stratified log-rank test. G-Clb denotes obinutuzumab-chlorambucil, and R-Clb rituximab-chlorambucil.

> Goede et al., N Engl J Med.* 2014 Jan 8 * This article is copyrighted by the Massachusetts Medical Society. All rights reserved. It is provided for your personal informational use only

Ublituximab: Differentiating Anti CD20 mAB's Novel Type 1, Chimeric Anti CD 20

GENUINE Trial: Ublituximab + IB versus IB

Efficacy: IRC Assessed ORR, CR, & MRD-Negativity Best Overall Response Rate (ORR) **MRD-Negative** (p < 0.001)(Peripheral Blood) (p < 0.01) 78% 7% CR 19% Patients evaluable for 45% MRD included those enrolled 71% PR >4 months prior to data cutoff 45% PR 2% N=59 N=53 Ublituximab Ublituximab Ibrutinib Ibrutinib + Ibrutinib +Ibrutinib ITT ORR: p < 0.01

Treatment with antiCD20 in B-cell lymphomas and CLL

Consolidated results New antiCD20 antibodies Association with IMIDs Future development

IMiD enhancement of rituximab-dependent ADCC ex vivo is mediated via co-stimulation of NK-cells by DCs

Co-stimulation with DCs

Provides rationale for R2 regimen

Data is represented by means with error bars showing mean ± 1.0 SE.

ADCC, antibody-dependent cellular cytotoxicity; DC, dendritic cell; DMSO, dimethyl sulfoxide; IMiD, immunomodulatory drug; NK, natural killer; PBMC, peripheral blood mononuclear cells; SE, standard error.

Without co-stimulation with DCs

LENALIDOMIDE + RITUXIMAB in Recurrent FL

Phase II Randomized Multicenter Study of L vs. LR in Recurrent FL (CALGB 50401- Alliance)

Rituximab: 375 mg/m² IV d8, 15, 22, 29 of cycle 1

Primary endpoints: ORR and CR⁺ Secondary endpoints: TTP, OS, and safety

Leonard et al. JCO 2015

R2 in relapsed FL

• ORR was significantly improved for LR vs. L (P=0.029)

Leonard et al. JCO 2015

Safety and activity of lenalidomide and rituximab in untreated indolent lymphoma: an open-label, phase 2 trial

RELEVANCE trial: Rituximab and Lenalidomide vs any chemotherapy

International, phase 3, multi-centre, randomized study (Frank Morchhauser, Nathan Fowler)

- R-Chemo according to investigator choice of R-CHOP, R-CVP, R-B
- R + Lenalidomide 20 mg x 6 cycles; if CR then 10 mg; if PR 20 mg x further 3-6 cycles and then 10 mg for up to 18 cycles
- Co-primary end-points
 - surrogate end-point: CR/CRu rate at 1.5 years
 - PFS

NCT01476787. Available from: http://clinicaltrials.gov.

Lysarc

Lysa

CT/MRI, computed tomography/magnetic resonance imaging; ECOG PS, Eastern Cooperative Oncology Group performance status; F6, new formulation; IV, intravenous; MZL, marginal zone lymphoma; Obin, Obinutuzumab; QD, every day; RP2D, recommended phase 2 dose. ^aAn alternate dosing schedule with a formulated CC-122 capsule was examined in the 5th and 6th cohorts to assess safety.

CC-122-NHL-001: EFFICACY BY NHL TYPE

Response by Histology, n (%)	All Patients (N = 44)	DLBCL (n = 19)	FL + MZL ^a (n = 25)
ORR	30 (68)	9 (47)	21 (84) ^b
CR	12 (27)	2 (11)	10 (40)
PR	18 (41)	7 (37)	11 (44)
SD	5 (11)	3 (16)	2 (8)
PD	6 (14)	4 (21)	2 (8)
Not evaluable/missing	3 (7)	3 (16)	0
mPFS (mo, 95% CI) ^b	11.3 (3.7-21.2)	4.7 (1.8-NR)	16.2 (3.7-NR)
6-mo PFS (95% CI) ^b	55 (37-70)	40 (16-63)	68 (42-85)
mDOR (mo, 95% CI) ^b	19.4 (7.9-NR)	NR	19.4 (7.9-NR)

 aMZL n = 1; b3 FL patients with PR were not evaluable for PFS or DOR at the data cutoff Data cutoff was September 1, 2017

- ORR was 61%, including 12 patients (27%) with a CR
 - DLBCL patients ORR = 47%
 - FL + MZL patients ORR = 72%
- Median time to best response was 57 days (95% CI, 56-113)

CC-122-NHL-001 PATIENT #1011010

- Woman 47 years old with DLBCL/transformed FL
- Molecular profile: TP53, ARID1A and CREBBP mutations
- Previous treatment
 - R-CHOP (refractory)
 - R-DHAP (refractory)
 - EZH2i (Tazemetostat; refractory)

(-) 88 % CR

Phase 2 Studies of R2-CHOP in Front-line DLBCL

MAYO CLINIC

Agent	Dose	Route	Day of Cycle
_enalidomide	25 mg	ро	1-10
Rituximab	375 mg/ m²	IV	1
Cyclophosphamide	750 mg/ m²	IV	1
Doxorubicin	50 mg/ m²	IV	1
/incristine	1.4 mg/ m ²	IV	1
Prednisone	100 mg/ m²	ро	1-5
Pegfilgrastim	6 mg	SC	2
Aspirin	325 mg	ро	daily

Agent	Dose	Route	Day of Cycle
Lenalidomide	15 mg	ро	1-14
Rituximab	375 mg/ m²	IV	1
Cyclophosphamide	750 mg/ m²	IV	1
Doxorubicin	50 mg/ m²	IV	1
Vincristine	1.4 mg/ m²	IV	1
Prednisone	40 mg/ m²	ро	1-5
Pegfilgrastim	-	-	-
LMWH prophylaxis		SC	daily

Nowakowski, et al. *J Clin Oncol*. 2015;33:251-257. Vitolo, et al. *Lancet Oncol*. 2014;15:730-737.

Phase 2 Studies of R2-CHOP in Front-line DLBCL

Nowakowski, et al. *J Clin Oncol*. 2015;33:251-257. Vitolo, et al. *Lancet Oncol*. 2014;15:730-737.

Phase 2 Study of R2-CHOP in Newly Diagnosed DLBCL by COO by Nanostring Assay: EFS

			GCB		ABC		Unclassified	
Cohort	N	n (%)	EFS24	n (%)	EFS24	n (%)	EFS24	
MER R-CHOP	124	80 (65%)	71%*	31 (25%)	48%	13 (10%)	46%	
MC078E R ² -CHOP	50	33 (66%)	67%#	13 (26%)	69%	4 (8%)	50%	

DLC-002 (ROBUST) study design: COO categorization made on nanostring

Sponsor: Celgene Corporation. Team leader: FIL and Mayo Clinic. Pls: U. Vitolo, T. Witzig.

Writing committee: U. Vitolo, A. Chiappella, M. Spina, T. Witzig, G. Nowakowski.

- Newly diagnosed ABC DLBCL; IPI \geq 2; ECOG PS \leq 2; age 18–80 years
- Primary endpoint = PFS; N = 560
- 90% power to detect 60% difference in PFS (control median PFS estimate = 24 months)
- 208 sites expected to be involved

^aOption for 2 additional rituximab doses after completing treatment regimen (if considered standard of care per local practice). ABC, activated B-cell like; COO, cell of origin ; DLBCL, diffuse large B-cell lymphoma; ECOG PS, Eastern Cooperative Oncology Group performance status; GCB, germinal centre B-cell like; GEP, gene expression profile; IPI, International Prognostic Index; PFS, progression-free survival; PI, principle investigator; R-CHOP, rituximab plus cyclophosphamide, doxorubicin, vincristine, prednisone.

Treatment with antiCD20 in B-cell lymphomas and CLL

Consolidated results New antiCD20 antibodies Association with IMIDs Future development

MURANO Study Design

Primary Endpoint	INV-assessed PFS
Major Secondary	 IRC-CR ⇒ IRC-ORR ⇒ OS (hierarchical testing)
Endpoints	 IRC-assessed PFS and MRD-negativity
Key Safety Endpoints	Overall safety profile, focusing on serious adverse events and Grade \geq 3 adverse events
Interim Analysis	Approximately 140 INV-assessed PFS events (75% of total information)

NCT02005471

*High-risk CLL – any of following features: del(17p) or no response to front-line chemotherapy-containing regimen or relapsed ≤12 months after chemotherapy or within ≤24 months after chemoimmunotherapy.

Investigator-Assessed PFS Superior for VenR vs. BR

Median (range) duration of follow-up, 23.8 (0.0–37.4) months:
 Venetoclax + rituximab, 24.8 months; bendamustine + rituximab, 22.1 months

As of 8 May 2017 7

Phase 1b/2: Obinutuzumab, Ibrutinib, and Venetoclax in CLL - Treatment Naive Cohort: Study Design and Baseline

Inclusion criteria

- TN, symptomatic CLL
- ECOG PS ≤1
- Preserved end-organ and BM function

Exclusion criteria

- Uncontrolled autoimmune thrombocytopenia or anemia
- Clinically apparent Richter's Transformation
- CNS involvement by leukemia
- Use of Warfarin or potent CYP3A4 inhibitors or inducers ≤ 7 days prior to study treatment

N=25 N=25 Baseline Characteristics, % Characteristics, % 59 Median age, yrs 71 Unmutated IGHV (range) (24-77) Complex Male 60 24 karyotype Del(11)q Trisomy 12 20 12 Del(17)p 12 TLS Risk high 28 TLS Risk medium Del(13)q 20 72 **TLS Risk low** 0

Fourteen 28-day cycles OBI+IBR+VEN started sequentially over the first 3 cycles

- C1: OBI (D1: 100mg, D2: 900mg, D8,D15: 1,000mg, C2-8 D1: 1,000mg)
- C2: add IBR in C2 (C2-14 D1-28: 420mg)
- C3: add VEN in C3 with dose escalation according to its US label

Primary objective: MRD (-) CR after C14 are expected in May 2018

Phase 1b/2: Obinutuzumab, Ibrutinib, and Venetoclax in CLL - Treatment Naive Cohort: Disposition and Efficacy

- With median follow-up of 14.7 mo (range, 7.4-16.1), 22 patients remain on study
 - 1 discontinued treatment after C7 at the discretion of the treating physician
 - 1 after C10 for patient preference
 - 1 after C10 for AEs of neutropenia and colitis (deceased)
- 12 patients completed combination treatment

Responses post- C8, n (%)	N=25	MRD (−) Both*
ORR	24 (96)	14/24 (58%)
CR	5 (20)	9/12 (46)
CRi	8 (32)	8/13 (40)
PR	11 (46)	6/11 (55)
SD	0	
PD	0	
NR	1 (4)	

- CRi due to cytopenias with (4/8) or without (4/8) hypocellular marrow
- 6/11 PR patients met count and marrow requirements for CR but had LN >1.5 cm
- All but 1 patients had no morphologic evidence of CLL in bone marrow

*4-color flow cytometry on PB and BM.

UNITY-NHL in US, Italy, Spain, UK, Poland Bologna, Milan (IEO, San Rafaella), Torino, Rome, Ferrara

Structural characteristics of the CD20 CD3 TCB 2:1 format

"2:1" TCB format Fab range of motion in TCB Image: CD3 T cell engagement Image: CD3 T cell engagement Silent Fc for half-life extension Silent Fc for half-life extension

- Human/cyno cross-reactive humanized antibody GAZYVA-based CD20 binder and human/cyno cross-reactive humanized antibody CD3 binder
- Bivalency for tumor antigen (CD20); Head-to-tail geometry of CD20 and CD3 binders confers higher potency
- Fc-based TCB for half-life extension (fully silent Fc, P329G LALA); Production using standard processes (CHO)

Conclusions

- CD20 is still the best target for monoclonal antibodies in the treatment of B-cell lymphoma and CLL
- Rituximab has changed the outcome of DLBCL, FL and CLL
- Obinutuzumab is the first glycoengeenered antiCD20 antibody with a different mode of action than Rituximab
- ✓ Obinutuzumab has shown a greater clinical activity in FL and CLL
- Rituximab and Obinutuzumab can be safely combined with Lenalidomide as chemotherapy free regimen in FL or with RCHOP backbone with preliminary good results
- Future developments of antiCD20 include combination with novel small molecules, development of new antiCD20 antibodies and possibly bispecific antibodies allowing to restore T-cell cytotoxic activity against lymphoma cells.

Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Turin, September 13-14, 2018

Torino Incontra Centro Congressi

Scientific Board: Marco Ladetto (Alessandria) Umberto Vitolo (Turin)

