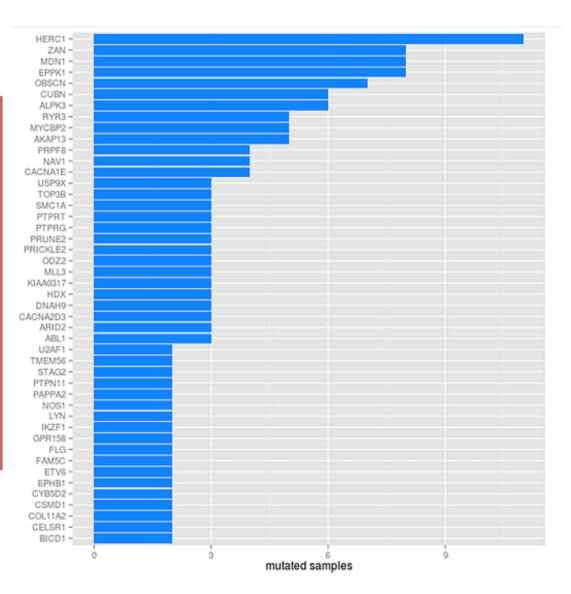


MUTATIONAL ANALYSIS OF MDS AND AML OCCURRING AFTER TREATMENT FOR ACUTE PROMYELOCYTIC LEUKEMIA (APL) - A REPORT OF 9 CASES

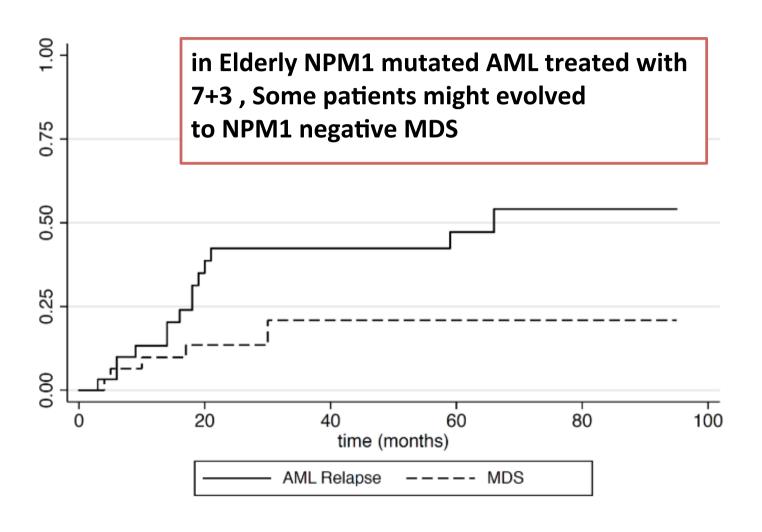
Philippe Attias, Aline Renneville, Xavier Thomas, Cecile Bally, Sandrine Hayette, Hassan Farhat, Virginie Eclache,, Alice Marceau, Bruno Cassinat, Jean Feuillard, Christine Terré, Eric Delabesse,, Sophie Park, Julie Lejeune, Sylvie Chevret, Lionel Ades, Claude Preudhomme, Pierre Fenaux

Background

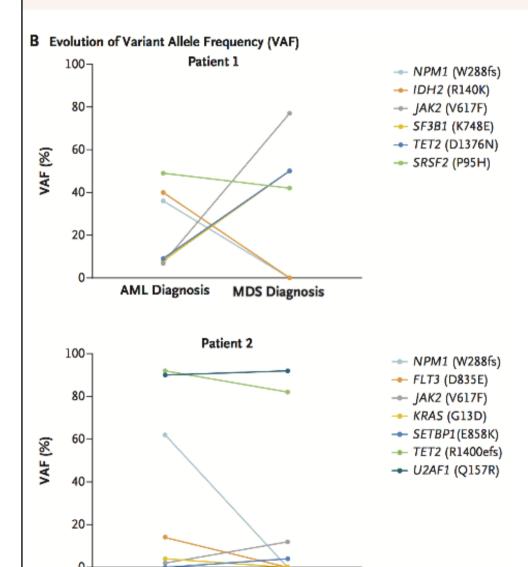

 1-2% of APL treated with ATRA-chemotherapy develop MDS/ AML (non APL), a problematic side effect for a highly curable disease

MDS with Complex Caryotype

Patient no.	Sex/ age	WBC (×10º /l) at APL diagnosis	Karyotype at APL diagnosis	FAB type	PML-RARα at APL diagnosis	Karyotype at diagnosis of MDS	Progression to AML	Survival from MDS diagnosis (months)
1	F/61	148	46, XX, del(3)(q24q26), del(5)(q23q32), t(7;11)(p11;p12), t(15;17)(q22;q21)	Classical APL	Positive	45, XX, del(5)(q21q34)-7	M0 AML after 6 months	11.5
2	F/56	0.8	46, XX, t(15;17)(q22;q21)	Classical APL	Positive	46, XX, del(5)(q22q34), t(15;21)(p11;q21), -17, +mar	No	25.4
3	M/52	0.7	46, XY, t(15;17)(q22;q21)	Classical APL	Positive	43, XY, del(5)(q12q35), add(11)(q23), dup(12) (q12q22), -17, -18, -22	M0 AML after 1 month	0.8
4	M/57	1.4	46, XY, del(9)(q21q31), t(15;17)(q22;q21)	Micro- granular variant APL	Positive	45, XY, -5, der(7)t(7;20) (q11;p? or q?), der(10)t(7;10;20) (q3?;q2?; p? or q?), -13, der(17)t(10;17)(q2?;p11), -20, del(20)(q11), +mar1, +mar3/47, idem, del (X) (q26), der(1) (1;?)(p36;?), +8, +mar2	No	24+
5	M/73	1.3	Failure	Classical APL	Positive	45, XY, -8, t(8;11)(q32;q21)	M0 AML after 18 months	7.5
6	M/54	0.9	46, XY, t(15;17)(q22;q21)	Classical APL	Positive	45, XY, t(3;17)(p11;q11), del(5)(q13q33), del(6)(p22),-17	No	4+


Mutational landscape in APL

high number of somatic mutations affecting more many different genes (mainly in a non-recurrent manner), suggesting that APL is a heterogeneous disease with secondary relevant changes



Mariam Ibáñez, PLOS one 2016

MDS following NPM1+ AML

MDS following NPM1+ AML

MDS Diagnosis

AML Diagnosis

- WES at AML
- WES at MDS evolution
- All NPM1+ at AML
- All NPM1- at MDS
- others Somatic mutations present at the MDS phase were already present at AML diagnosis, suggesting an underlying MDS (with secondary acquisition of NPM1 mutation at the time of AML).

Hypothesis

- We wondered whether MDS/AML after APL were
 - t-MDS/AML
 - or underlying MDS with APL progression.

Methods

- 956 newly diagnosed APL treated with ATRA-CT (APL 2006 trial)
- 9(1%) developed MDS/AML in 1st CR.
- Paired marrow samples
 - at APL
 - and MDS/AML diagnosis were analyzed on genomic DNA for the 30 most frequently mutated genes in MDS/AML, by NGS.

Patients characteristics

UPN	APL risk	Interval to MDS/ AML (months)	WHO classification	Karyotype
1	1 High		RCMD	Del(5q), Add(12)p, del(17p)
2	High	30	RCMD	Complex with Del5q)
3	Int	24	RAEB-2	-7
4	Low	47	RARS	complex with -5 and -7
5	Low	24	RARS	Complex, with del(5q), del(6), Del(7q), Del17p),
6	Low	64	AML	-7, Del(5q)
7	High	35	RAEB-1	Normal
8	High	42	RAEB-2	-7, abn 13
9	High	36	RAEB-2	-7

Mutations at diagnosis of APL

UPN	APL risk	Mutations frequency
1	High	None
2	High	DNMT3A, WT1, FLT3-ITD
3	Int	None
4	Low	PHF6
5	Low	None
6	Low	FLT3-ITD
7	High	FLT3-ITD
8	High	FLT3-ITD, FLT3-TKD
9	High	FLT3-TKD NRAS WT1

At APL diagnosis, karyotype found only t(15;17), and mutations were mostly FLT3-ITD or FLT3-TKD

Mutations at diagnosis of MDS

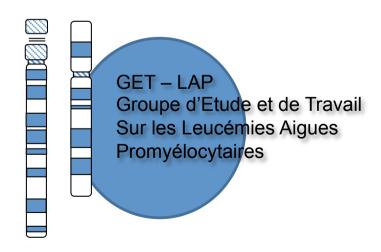
At MDS/AML diagnosis,
Karyotype was typical of tMDS/
AML
and/or
patients had MDS type
mutations.

WHO classification	Karyotype	Mutations (Variant allele frequency)
RCMD	Del(5q), Add(12)p, del(17p)	None
RCMD	Complex	None
RAEB-2	-7	ASXL1, CBL RUNX1
RARS	complex	DNMT3A TP53
RARS	Complex,	TP53
AML	-7, Del(5q)	TP53 ASXL1
RAEB-1	Normal	TET2, SMC1A
RAEB-2	-7, abn 13	PTPN11
RAEB-2	-7	EZH2 KRAS GATA2

Correlation between APL and MDS

APL	MDS	
None	None	
DNMT3A (45%) WT1 FLT3-ITD	None	
None	ASXL1 CBL (10%) RUNX1 (9%)	
PHF6 (15%)	DNMT3A (18%) TP53 (51%)	
None	TP53 (36%)	
FLT3-ITD	TP53 (13%),ASXL1	
FLT3-ITD	TET2 (31%), SMC1A (43%)	
FLT3-ITD FLT3-TKD (34%)	PTPN11 (43%)	
FLT3-TKD (40%), NRAS (2%) WT1 (30%)	EZH2 (34%) KRAS (28%), GATA2 (9%)	

None of the mutations identified at APL diagnosis was found at MDS/AML diagnosis, and vice versa, strongly suggesting that APL and MDS/AML arose from distinct clones.


Conclusion

- No evidence of underlying MDS was found at APL diagnosis Cytogenetic and mutational profiles of those MDS/AML were suggestive of tMDS/AML.
- Thus, MDS/AML occurring during the course of APL treated with ATRA and CT have characteristics of therapy-related cases.

Acknowlegments

- Centers of the European APL group in France, Switzerland and Belgium
- Aline Renneville & Claude Preudhomme
- Philippe Attias, who did this work!

- Chair of the APL Group
 - Pierre Fenaux

