Clinical significance of complex karyotype at diagnosis in Patients with Acute Promyelocytic Leukemia Treated with ATRA and chemotherapy based PETHEMA trials

Labrador J¹, Montesinos P¹, Bernal T¹, Vellenga E², Brunet S¹, González J¹, González M¹, Holowiecka A³, Esteve J¹, Bergua J¹, González JD¹, Gil C¹, Tormo M¹, Salamero O¹, Manso F¹, Milone G⁴, de la Serna J¹, Moreno MJ¹, Pérez-Encinas M¹, Krsnik I¹, Ribera JM¹, Cervera J¹, Calasanz MJ¹, Lowenberg B², Sanz MA¹;

¹PETHEMA; ²HOVON; ³PLAG and ⁴GATLA Groups.

Background and Aims

- APL is a special case of AML in which the presence of t(15;17)/ PML-RARA predicts sensitivity to treatment with all-trans retinoic acid and arsenic trioxide.
- Up to 30 percent of APL patients will have chromosomal abnormalities in addition to conventional t(15;17) ¹⁻¹⁰.
- The majority of studies have not shown a prognostic impact of ACA in APL patients treated with ATRA and chemotherapy-based front-line therapies ^{3-7, 9}.

ACA, Additional chromosomal abnormalities; APL, Acute promyelocytic leukemia; AML, Acute myeloid leukemia; ATO, Arsenic trioxide; ATRA, All-trans retinoic acid.

¹ Schoch C. Br J Haematol 1996; 94:493. ² Hiorns LR, et al. Br J Haematol 1997; 96:314. ³ Slack JL, J Clin Oncol 1997;15:1786. ⁴ De Botton S, Br J Haematol 2000; 111:801. ⁵ Hernandez JM. Haematologica. 2001;86:807. ⁶ Cervera J . Haematologica. 2010;95:424. ⁷ Ono T. Haematologica 2011;96:174. ⁸ Wienick PH. Med Oncol 2012;29:2095. ⁹ Lou Y. Leuk Res 2013 ;37:1451. ^{10.} Poire X. Leuk Lymphoma 2014;55:1523.

Two studies showed an adverse outcome after ATO + ATRA front-line

- Higher relapse rate among patients with ACA¹.
- Lower CR and OS in patients with complex karyotype (i.e, 2 lacksquareor more ACA)². 100 80 **Overall Survival Proportion** 60 40 20 Non-complex Karvotype N=179 Events=30 Log-rank **Complex Karvotype** N=15 0.001 Events=7 0 24 36 48 60 72 108 12 84 Months from Study Entry

ACA, Additional chromosomal abnormalities; ATO, Arsenic trioxide; ATRA, All-trans retinoic acid. CR, Complete remission; OS, Overall survival.

¹ Lu J, et al. Zhonghua Yi Xue Za Zhi. 2008. 19;88(32):2254. ^{2.} Poire X. Leuk Lymphoma 2014;55:1523.

Aims

• We aim to further investigate whether a complex karyotype could be related with a higher relapse incidence in APL patients treated with PETHEMA trials.

APL, Acute promyelocytic leukemia.

- Between 1996 and 2012, 1559 consecutive adult and pediatric patients were enrolled in the PETHEMA LPA 96, 99 and 2005 trials from the PETHEMA, HOVON, GATLA, and PALG groups.
- All patients with *de novo* genetic diagnosis of PML/RARa APL.
- Cytogenetic analyses in bone marrow samples at diagnosis were performed in local laboratories.
- Cytogenetic reports were available in 1128 patients (72%).

APL, Acute promyelocytic leukemia;

- Between 1996 and 2012, 1559 consecutive adult and pediatric patients were enrolled in the PETHEMA LPA 96, 99 and 2005 trials¹⁻⁴ from the PETHEMA, HOVON, GATLA, and PALG groups.
- All patients with *de novo* genetic diagnosis of PML/RARa APL.
- Treatment consisted of AIDA induction followed by riskadapted consolidation¹⁻⁴.

APL, Acute promyelocytic leukemia;

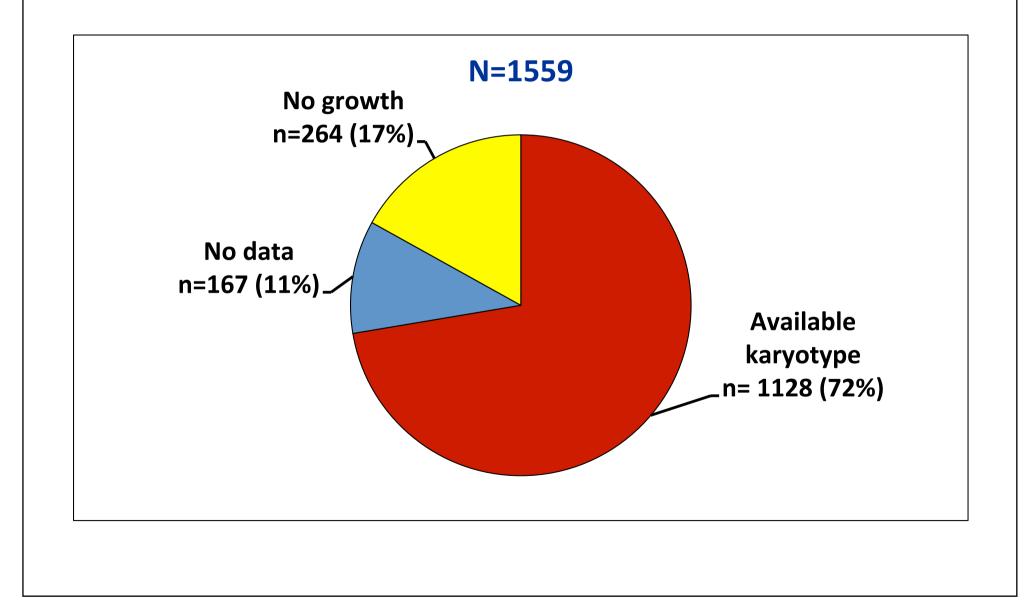
¹ Sanz MA. Blood 1999; 94: 3015. ^{2.} Sanz MA. Blood 2004; 103: 1237. ³ Sanz MA. Blood. 2008;112:3130 ^{4.} Sanz MA. Blood 2010; 115:5137.

- Treatment consisted of ¹⁻⁴:
- Induction therapy with oral ATRA (45 mg/m2/d) and intravenous idarubicin (12 mg/m2/d x4 days) followed by three courses of <u>consolidation</u> with anthracycline monochemotherapy.
 - In the PETHEMA 99 trial ATRA was added in each cycle of consolidation for intermediate and high risk patients, according to Relapse-risk score.
 - Ara-C was added in consolidation for high-risk patients in the LPA2005 trial.
- In all trials, <u>maintenance</u> therapy consisted of intermittent ATRA and low dose chemotherapy with methotrexate and 6mercaptopurine.

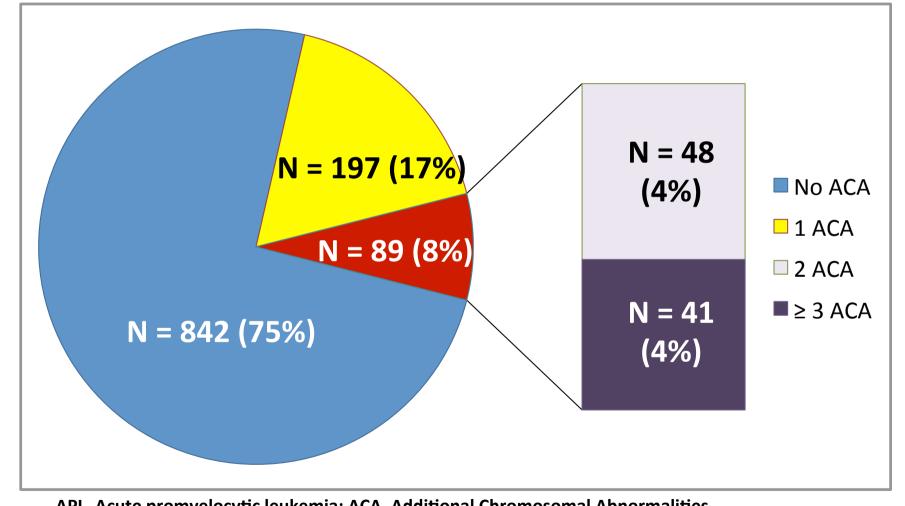
ATRA, All-trans retinoic acid.

¹ Sanz MA. Blood 1999; 94: 3015. ^{2.} Sanz MA. Blood 2004; 103: 1237. ³ Sanz MA. Blood. 2008;112:3130 ^{4.} Sanz MA. Blood 2010; 115:5137.

INDUCTION THERAPY		Relapse Risk	CONSOLIDATIONTION THERAPY		
		Group	Course 1	Course 2	Course 3
ATRA 45 mg/m²/d IDA 12 mg/m²d 2, 4, 6, 8	LPA96	All groups	IDA 5 mg/m²× 4d	MTZ 10 mg/m ² × 5d	IDA 12 mg/m ² × 1d
ATRA 45 mg/m ² /d IDA 12 mg/m ² d 2, 4, 6, 8	LPA99	Low	IDA 5 mg/m ² × 4d	MTZ 10 mg/m ² × 5d	IDA 12 mg/m ² × 1d
		Intermediate High	IDA 7 mg/m ² × 4 ATRA 45 mg/m ² x15	MTZ 10 g/m ² × 5 ATRA 45 mg/m ² x15	IDA 12mg/m ² x2d ATRA 45 mg/m ² x15
ATRA 45 mg/m²/d IDA 12 mg/m²d 2, 4, 6, 8	LPA2005	Low	IDA 5 mg/m ² × 4d ATRA 45 mg/m ² x15	MTZ 10 mg/m ² × 5d ATRA 45 mg/m2x15	IDA 12 mg/m ² × 1d ATRA 45 mg/m2x15
		Intermediate	IDA 5 mg/m ² × 4d ATRA 45 mg/m ² x15	MTZ 10 mg/m ² × 5d ATRA 45 mg/m ² x15	IDA 12 mg/m ² × 1d ATRA 45 mg/m ² x15
		High	Ara-C (Hish risk)		Ara-C (Hish risk)

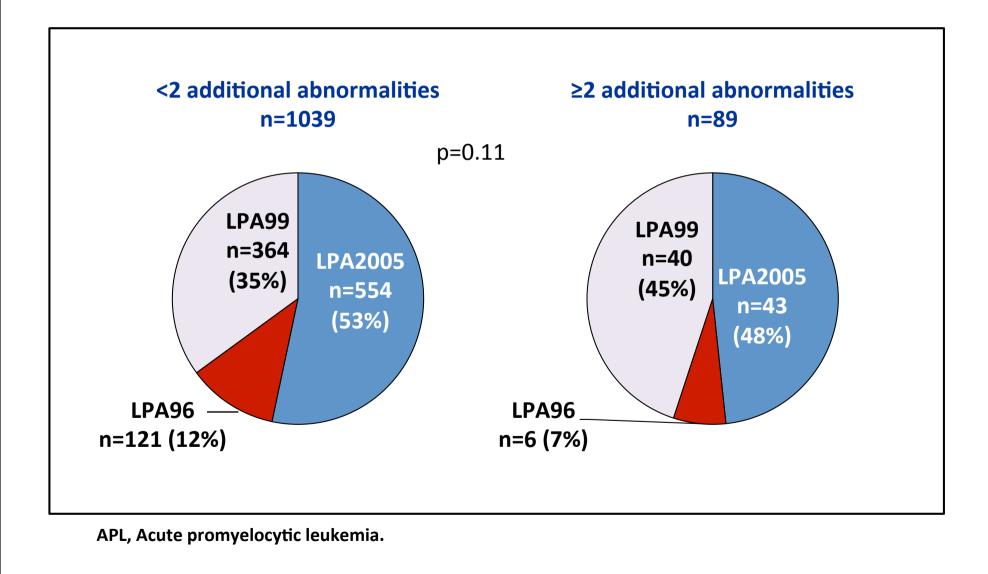

Treatment schedule of the LPA96, LPA99 and LPA2005 PETHEMA trials. Ara-C, cytarabine; ATRA, all-trans retinoic acid; IDA, idarubicin; MTZ, mitoxantrone.

¹ Sanz MA. Blood 1999; 94: 3015. ^{2.} Sanz MA. Blood 2004; 103: 1237. ³ Sanz MA. Blood. 2008;112:3130 ^{4.} Sanz MA. Blood 2010; 115:5137.


- Cytogenetic analyses in bone marrow samples at diagnosis were performed in local laboratories.
- Additional chromosomal abnormalities (ACA) were classified as follows:
 - Normal karyotype / t(15;17) alone were considered as no ACA.
 - Multiple rearrangements (i.e., triple rearrangements involving chromosome 15/17 and other) were considered as 1 ACA.
 - Abnormalities detected in FISH were considered as ACA.
- Complex karyotype: ≥2 ACA.
- Very complex karyotype: ≥3 ACA.

ACA, Additional chromosomal abnormalities. FISH, Fluorescence in situ hybridation.

Available cytogenetic report



Incidence of Additional Chromosomal Abnormalities n=1128

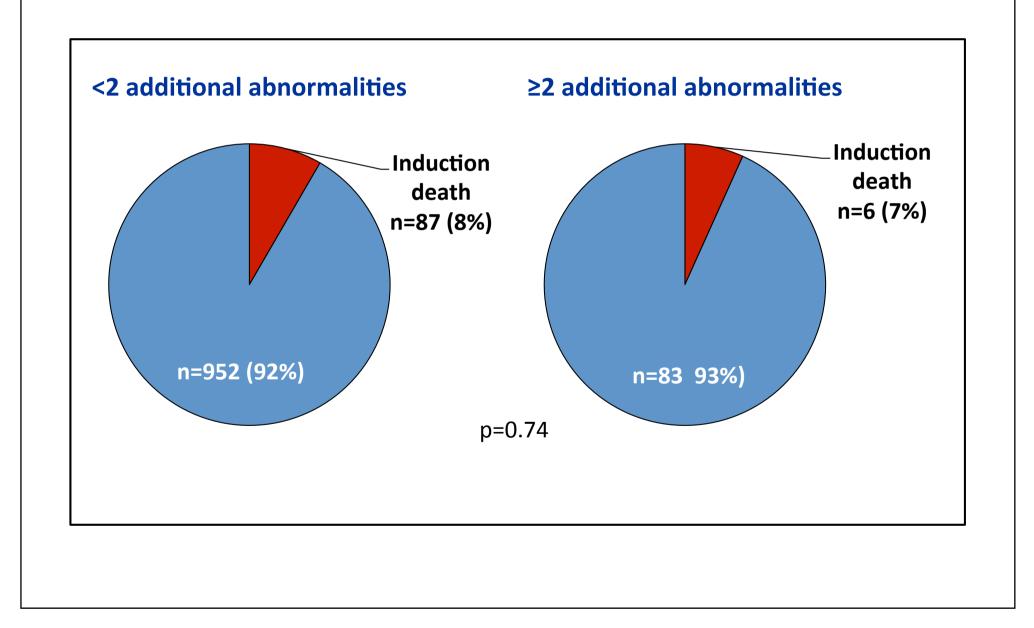
APL, Acute promyelocytic leukemia; ACA, Additional Chromosomal Abnormalities.

Distribution of complex karyotype patients according to PETHEMA trial

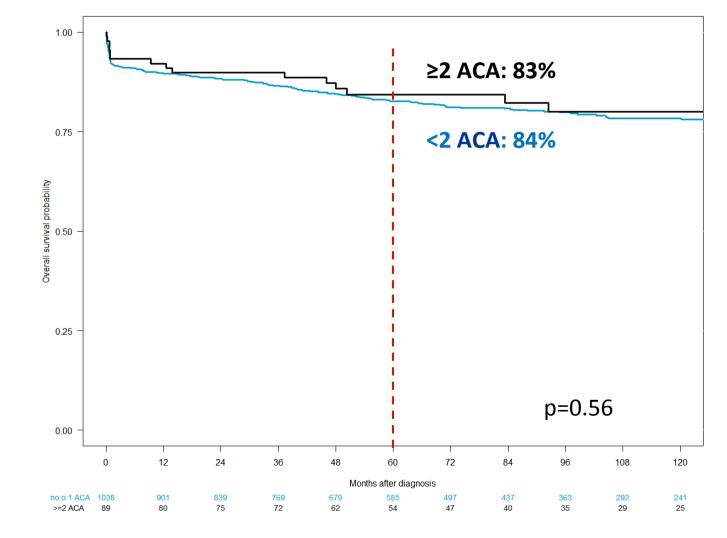
Baseline characteristics of patients according to presence of complex karyotype

Characteristic	0-1 ACA N (%)	≥2 ACA N (%)	P-value
Overall	1039 (92)	89 (8)	
Age, years (median, range)	42 (2-84)	40 (3-78)	0.18
Male gender	531 (51)	46 (52)	0.98
WBC count ≥ 10 x 10 ⁹ /L	287 (28)	19 (21)	0.31
Platelet count ≤ 40 x 10 ⁹ /L	780 (75)	70 (79)	0.55
Relapse-risk group Low Intermediate High	210 (20) 542 (52) 287 (28)	13 (15) 57 (64) 19 (21)	0.10

ACA, Additional Chromosomal Abnormalities; WBC, White blood cell.

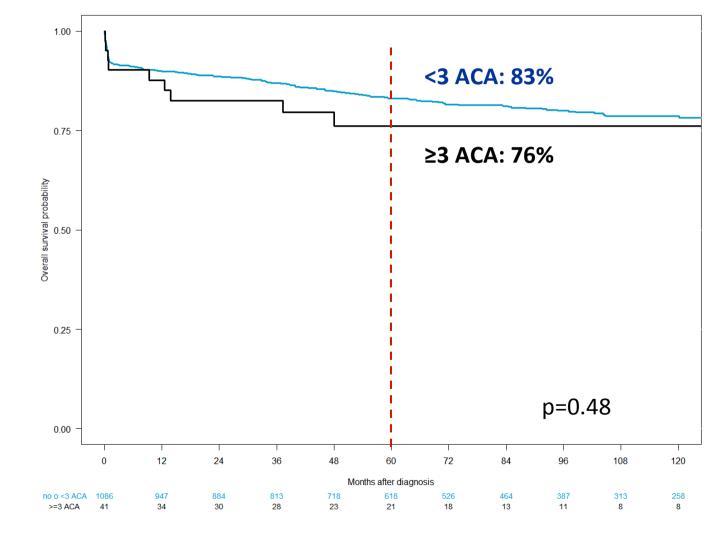

Baseline characteristics of patients according to presence of complex karyotype

Characteristic	0-1 ACA N (%)	≥2 ACA N (%)	P-value
Overall	1039 (92)	89 (8)	
Creatinine ≥ 1,3 mg/dL	36 (4)	1 (1)	0.39
ECOG <2	744 (79)	69 (82)	0.29
Albumin < 3,5 g/dL	171 (20)	10 (13)	0.21
Microgranular morphologic subtype	180 (18)	13 (15)	0.59
BCR3 isoform	355 (39)	38 (49)	0.17
CD34 + (>10%)	211 (25)	10 (14)	0.04

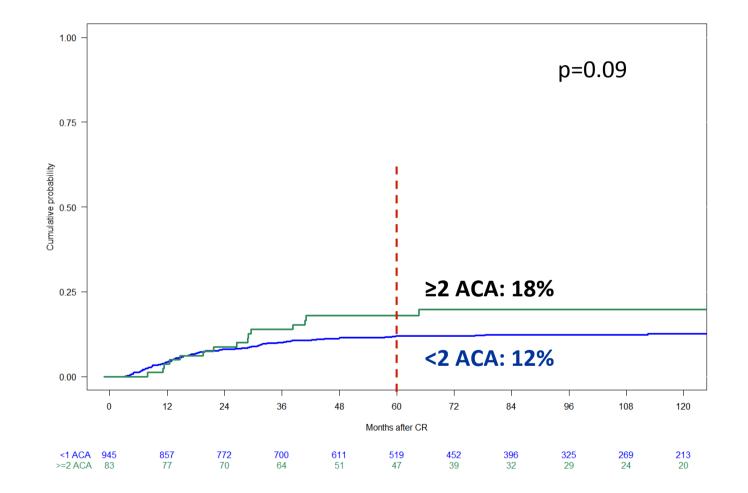

ACA, Additional Chromosomal Abnormalities; WBC, White blood cell.

The only clinical or biological characteristic associated with a complex karyotype was CD34 antigen negativity in leukemic blasts.

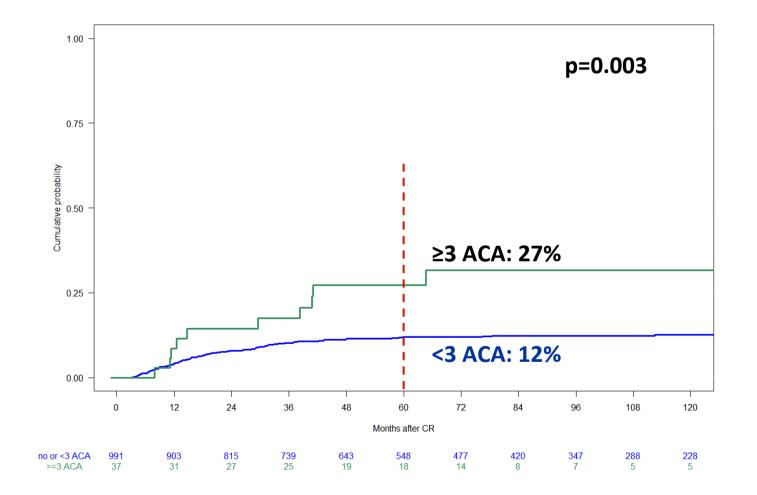
Induction death rate



Overall survival <2 ACA vs CK (≥2 ACA)


ACA, additional cytogenetic abnormalities; CK, Complex karyotype (2 or more additional abnormalities).

Overall survival <3 ACA vs very complex karyotype (≥3 ACA)


ACA, additional cytogenetic abnormalities.

Cumulative incidence of relapse <2 ACA vs CK (≥2 ACA)

ACA, additional cytogenetic abnormalities.

Cumulative incidence of relapse <3 ACA vs very complex karyotype (≥3 ACA)

ACA, additional cytogenetic abnormalities.

Cumulative incidence of relapse Multivariate analysis

Variable	<i>P</i> – multivariate	HR (95% CI)
Female gender	.008	0.6 (0.4-0.9)
Higher relapse-risk group	<.0001	2.1 (1.5-2.9)
Very Complex karyotipe (≥3 ACA)	.0009	2.7 (1.5-4.9)
PETHEMA LPA96&99 trials	0.05	1.4 (1,0-2,1)

ACA, Additional Chromosomal Abnormalities.

Conclusions

- This study shows, for the first time, an increased risk of relapse among patients with very complex karyotype (at least 3 additional abnormalities) among APL patients treated with ATRA plus chemotherapy front-line regimens.
- However, this increased risk of relapse did not influence on CR and OS.
- It should be noted that only 4% of patients with an evaluable cytogenetics had a very complex karyotype.

APL, Acute promyelocytic leukemia; ATRA, All-trans retinoic acid; CR, Comlete remission; OS, Overall survival.

Acknowledgements

All the participating institutions of the PETHEMA, HOVON, GATLA and PALG groups