

Thrombohemorrhagic disorders in APL: the unsolved issue

Pau Montesinos

Hospital La Fe. Valencia, Spain

7th International Symposium on Acute Promyelocytic Leukemia

Rome, Italy (September 2017)

Background

- ATRA/ATO/CT → significant improvements, but thrombohemorrhagic disorders remain as the unsolved issue:
 - APL is characterized by a life-threatening coagulopathy
 - Hemorrhagic syndromes contribute substantially to morbidity and mortality in APL
 - Thrombosis is a less frequently reported complication (but is also significant)

Outline

- To review the incidence, outcome and prognostic factors
 - Coagulopathy
 - Bleeding
 - Thrombosis
- To discuss the current consensus and controversies on their most appropriate management

Hemorrhagic syndrome in APL: pathogenic mechanism

- Tissue factor release
- Disseminated intravascular coagulation (DIC)
- Fibrinolysis
- Thrombocytopenia
- Fever, exacerbation by chemotherapy?

Incidence of DIC in APL vs AML

- <u>Definition of DIC = thrombocytopenia + both:</u>
 - prolonged prothrombin time and/or activated partial thromboplastin
 - hypofibrinogenemia and/or increased levels of fibrin degradation products or D-dimer
- Hospital La Fe (1978 to 2008; n=1164):

	Fibrinogen <170 mg/dL (%)	DIC (%)
APL	53	68
Non M3 AML	3	10

Incidence of DIC Patients enrolled in PETHEMA trials

- 1517 patients with available data
- DIC = 59% (+12% induction)
- Hypofibrinogenemia = 46% (+10% induction)
- Median time to resolution = 11 days (range 1-53)

Baseline characteristics in patients with DIC

	No DIC n=631	DIC n=886	P value
	Mean (range)	Mean (range)	
Age, years	44 (2-84)	41 (2-83)	.001
Blasts in PB, %	33 (0-100)	44 (0-100)	<.0001
LDH, UI/L	577 (58-5111)	760 (100-7260)	<.0001
WBC count 10 ⁹ /L	8.8 (0.3-460)	14.9 (0.2-188)	<.0001
Triglycerides, mg/dL	163 (22-600)	189 (35-850)	<.0001
GOT, UI/L	37 (5-432)	42 (7-447)	.007
CD34 expression %	12 (0-100)	15 (0-100)	.02
CD2 expression %	15 (0-100)	20 (0-100)	.02

 DIC also also associated to FLT3-ITD (.001), M3v (.03), female gender (<.0001)

Complications according to DIC

	No DIC n=631	DIC n=886	P value
	n (%)	n (%)	
Induction death	51 (8.1)	78 (8.8)	.40
Hemorrhage at presentation	443 (70)	753 (85)	<.0001
CNS bleeding	10 (1.7)	39 (4.6)	.004
Thrombosis at presentation	9 (1.4)	23 (2.6)	.01
CNS thrombosis	0 (0)	17 (2.1)	.05
CNS relapse	4 (0.6)	18 (2.1)	.04

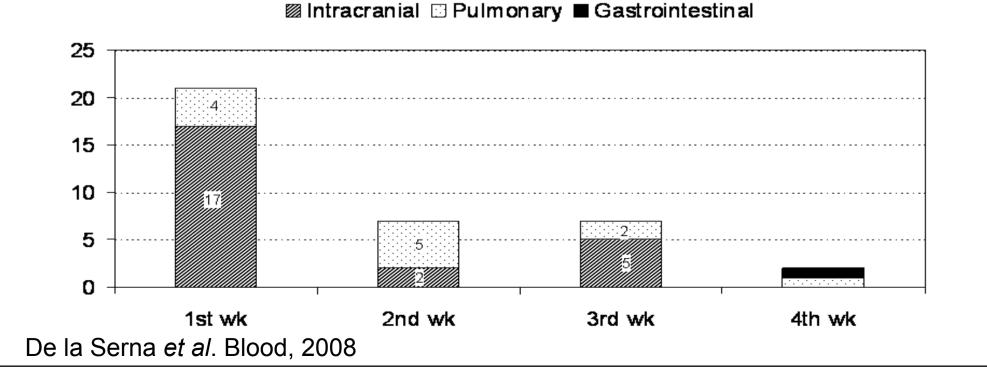
Incidence of fatal bleeding during induction

- Major cause of induction therapy failure in APL patients (5% of hemorrhagic death)
- In contrast with other AML types, in which infection is predominant cause of death

Fatal bleeding in APL before treatment

• The real incidence is unknown

	Total patients (N)	Very early hemorrhagic death (N)	Hemorrhagic death before ATRA start %
PETHEMA LPA96	183	5	2.7
PETHEMA LPA99	600	16	2.7
PETHEMA LPA2005	873	32	3.7
PETHEMA LPA2012	156	6	3.8


 Swedish registry: 12 out of 105 patients (11.4%) had early hemorrhagic death

PETHEMA LPA99 & LPA2005 Trials Induction outcome

	LPA99 (n = 562)	LPA2005 (n = 810)	Ρ
CR (%)	512 (91.2)	746 (92.1)	NS
Causes of failure			
Hemorrhage	28 (5.0)	33 (4.1)	NS
Infection	12 (2.1)	15 (1.9)	NS
Differentiation syndrome	8 (1.4)	7 (0.9)	NS
Other	2 (0.4)	8 (1.0)	NS

Time and localization of lethal bleeding

- Almost exclusively due to intracranial (65%) and pulmonary hemorrhages (32%)
- Early onset

Induction Therapy with AIDA Regimen Prognostic factors of induction death

B	lee	di	ng	

Creatinine > 1.4 mg/dL

PB blast count $\ge 30 \times 10^9/L$

Coagulopathy

Infection

Age \geq 60 yrs

Male gender

Fever

Differentiation syndrome

 $ECOG \ge 2$

Albumin $\leq 3.5 \text{ g/dL}$

De la Serna *et al*. Blood, 2008

Incidence of life-threatening bleeding after complete remission

- Similar to other AML (thrombocytopenia and other factors influencing)
- 4 out of 28 deaths (14%) during consolidation and maintenance courses in the PETHEMA protocols were due to intracranial hemorrhage

Thrombosis in APL: pathogenic mechanism

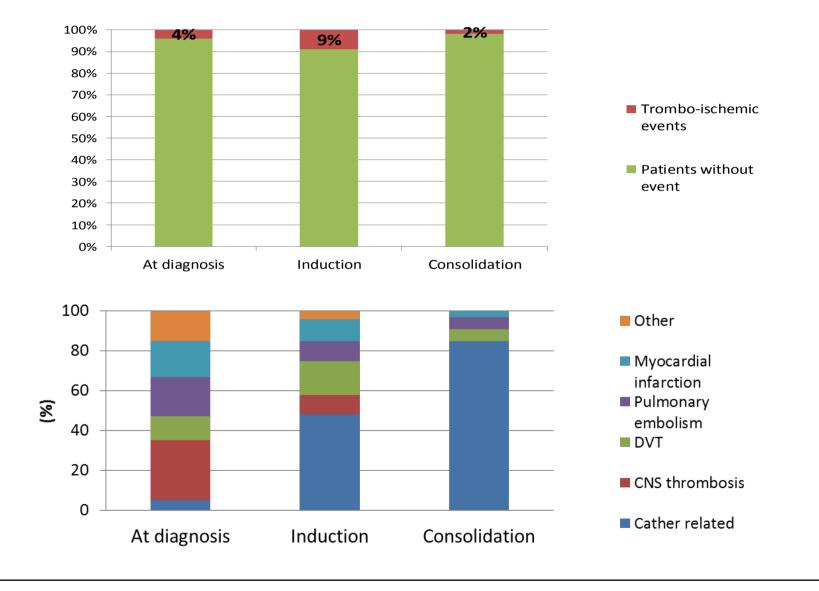
- Disseminated intravascular coagulation (DIC)
- Platelet activation
- Release of microparticles / tissue factor
- Exacerbation by ATRA therapy

Thrombosis rate in patients with APL

	Type of study	Patients	Thrombosis	Thrombosis
		(N)	at diagnosis	in induction
			%	%
Ziegler et al	Retrospective	49		6.1
2005				
De Stefano et al 2005	Prospective	31	9.6	8.4
Bergamo Study	Prospective	46	6.5	6.5
2006				
Breccia et al	Retrospective	124		5.4
2007				
Montesinos et al	Retrospective	760	0.9	4.2
2007				
Rodriguez-Veiga et al	Prospective	921	4.1	9.3
2014				

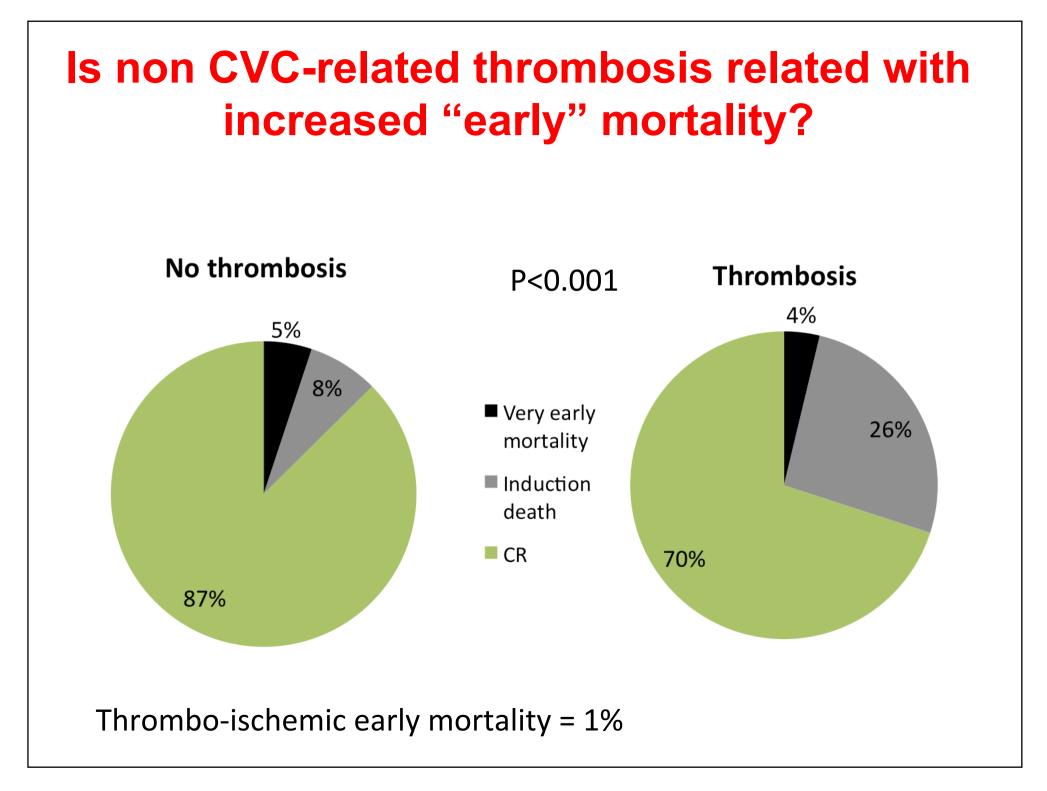
Risk factors for thrombosis

• Retrospective studies


Risk factors (n=124)	P value	Risk factors (n=740) P value
Higher WBC count	0.002	
Higher PML/RARa isoform (bcr3)	0.01	Fibrinogen < 170 mg/dl 0.001
FLT3-ITD	0.02	M3 variant 0.002
CD2 expression	<0.001	Tranexamic acid
CD15 expression	0.01	prophylaxis 0.049
Breccia et al. Leukemia (2007) 21, 79-83.		Montesinos P. et al. Blood (ASH anual meeting) 20

Is differentiation syndrome a risk factor for thrombosis in APL?

	Non-DS	Moderate DS	Severe	<i>P</i> value ^{&}
	(n = 556)	(n = 90)	(n = 93)	
Outcome and complications of DS				
Death due to hemorrhage no. (%)	22 (4)	5 (6)	10 (11)	0.02
Thrombosis during induction no. (%)	18 (3)	3 (3)	9 (10)	0.008
Platelet units during induction, mean@	40.7	44.5	58.9	0.007
Plasma units during induction, mean@	4.4	10.1	12.7	< 0.001
Red blood cell units during induction, mean@	9.2	10.3	12.3	< 0.001


Montesinos et al, Blood 2009

Timing & site of thrombo-ischemic events PETHEMA Prospective study, n=921

Risk factors for non CVC-related thrombosis Multivariate analysis

Risk factor	Odds ratio	P value
Higher platelet count	1.01	0.03
Hypoalbuminemia	1.51	0.03
Absence of hemorrhage at diagnosis	2.49	<0.001
Male sex	1.52	0.004
Worse ECOG	1.17	0.04

Management of thrombohemorrhagic syndromes

- Start differentiating agents
- Supportive measures to counteract the coagulopathy should be instituted immediately:
 - Fresh frozen plasma and/or cryoprecipitate
 - Fibrinogen concentration and platelet count above 100-150 mg/dL and 30 - 50×10⁹/L, respectively

Role of prophylactic heparines

- No benefit for the prevention of early hemorrhagic deaths in a retrospective analysis (GIMEMA group)
- No prospective randomized trials
- Anti-adhesive properties of LMWH could reduce the interaction of APL cells with the endothelium
 → preventive therapy for the DS?

Role of antifibrinolytic, factor VIIa and prothrombinic complex concentrates

- May enhance the thrombotic risk!
- Use of tranexamic acid no benefit to prevent bleeding
- Anecdotal in patients with APL case reports → rVIIa for life-threatening hemorrhage
- Prothrombinic complex instead of fresh frozen plasma in patients with DIC & fluid overload or DS

Therapy of venous Thrombosis in APL

- No ad hoc studies or guidelines are available
- Bleeding is predominant in APL!! (e.g hemorragic transformation of cerebral stroke)
- However, we should treat thrombosis
 - Remove catheter if applicable
 - Non-fractionated heparines
 - LMWH \rightarrow adapted to platelet counts

(70-80% if <70 X 10⁹ /L; 50% if <50 X 10⁹ /L; stop if <30 X 10⁹ /L)

Conclusions

- Hemorrhage is the predominant manifestation of the complex coagulopathy in APL
- Major cause of death before and during induction therapy
- Thrombosis is a probably underestimated lifethreatening manifestation
- The knowledge of prognostic factors and pathogenetic mechanisms is crucial
- Scarce date in the clinical setting of chemo-free regimens

Acknowledgements

All the participating institutions of the PETHEMA, HOVON, GATLA and PALG groups

Miguel Sanz Rebeca Rodríguez-Veiga David Martínez-Cuadrón Blanca Boluda Carlos Pastorini