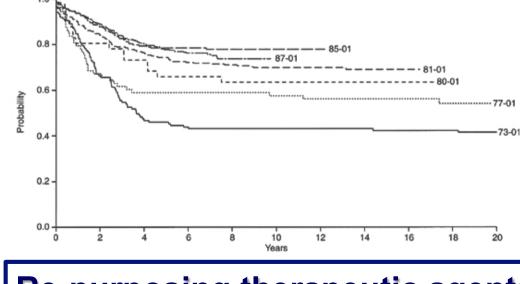

Potential for non-conventional agents in upfront and relapsed APL

APL Rome Sep 2017

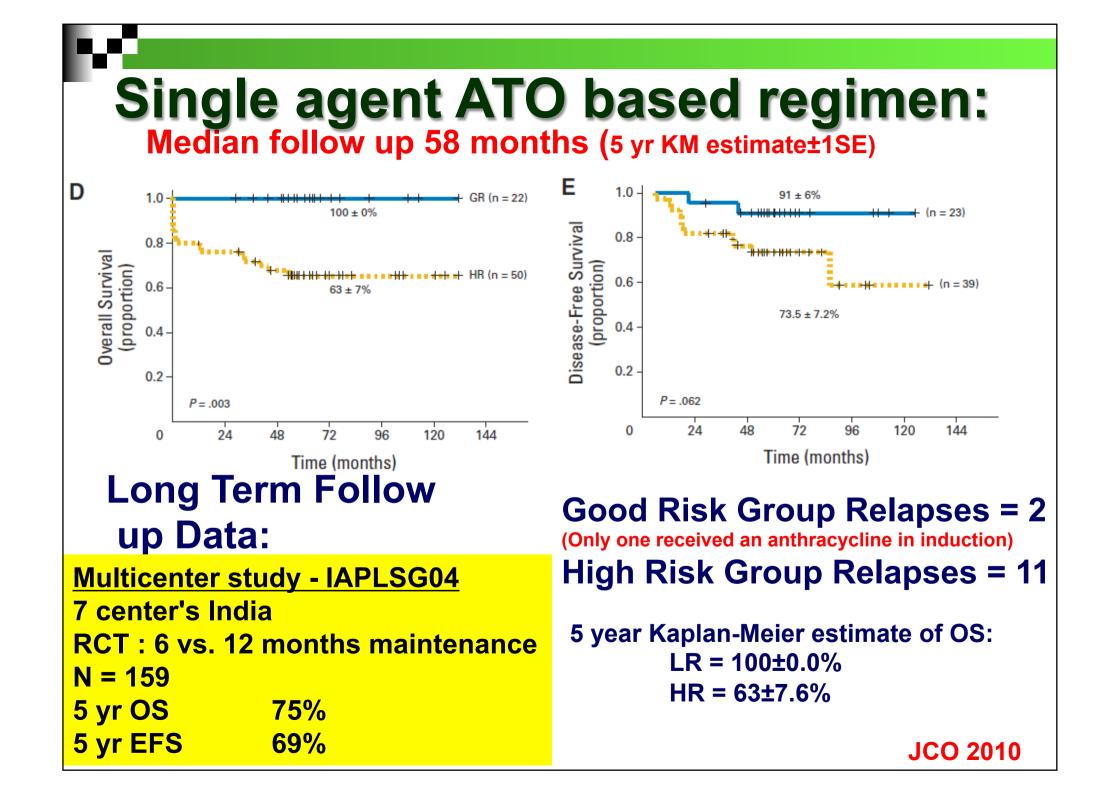

Vikram Mathews Department of Haematology Christian Medical College Vellore. INDIA

Introduction: Pediatric Acute Lymphoblastic

Leukemia

Re-purposing therapeutic agents

 Optimizing combinations Optimizing doses Optimizing schedules Potential to re-purpose existing drugs anti-cancer 					
Adriamycin	1974				
Etoposide	1983				
Thioguanine	1951				
Mercaptopurine	1953				
Methotrexate	1947				
Proph-ic cranial RT	1960				
 Cytosine 	1969				
 Cyclophosphamide 	1959				
Lasparaginase	1978				
Daunorubicin	1979				
Vincristine	1961				
Prednisolone	1950				
Dexamethasone	1957				


- others

Introduction:

- We have already achieved these goals in APL ! – We did > decade ago
- High risk and relapsed subsets
- Reduced morbidity / toxicity subsets
- Decreased requirement of supportive care
- Reduced early deaths non-clinical trial setting
- Reduce cost of treatment / Ease of access
- Gleevec moment!

Single agent ATO based regimen: Figure 1: Regimen of single agent arsenic trioxide.						
Induction till CR 4 w	Consolidation 4 weeks eeks 4 wee	Maintenan 10 days/mo eks 1 2 3 4		ATO till Nov 2003 in-house prepared Nov 2003 onwards INTAS pharmaceuticals Matoda, GU, India		
Table 1. Guidelines for administration of hydroxyurea Anthracycline in INDUCTION MBC count. × 10%/L Adult patients Pediatric patients Only (one or two doses) if:						
5 to 10	500 mg once daily	15 mg/kg once daily		> 50 x 10º/Lt I leucocytosis		
10 to 15	500 mg twice daily	15 mg/kg twice daily	Γαρία	-		
15 to 20	500 mg thrice daily	15 mg/kg thrice daily		> 20 x 10 ⁹ /L week 1		
20 to 50	500 mg 4 times a day	15 mg/kg 4 times a day		> 50 x 10º/L week 2		
More than 50 1.0 g 4 times a day 30 mg/kg 4 times a day Differentiation syndrome not For adult and pediatric patients with a WBC count less than 5 × 10%/L, no responding to therapy with hydroxyurea was administered. steroids						

BLOOD 2006 / JCO 2010

ESTABLISHED IN 1812

JULY 11, 2013

VOL. 369 NO. 2

Retinoic Acid and Arsenic Trioxide for Acute Promyelocytic Leukemia

F. Lo-Coco, G. Avvisati, M. Vignetti, C. Thiede, S.M. Orlando, S. Iacobelli, F. Ferrara, P. Fazi, L. Cicconi, E. Di Bona, G. Specchia, S. Sica, M. Divona, A. Levis, W. Fiedler, E. Cerqui, M. Breccia, G. Fioritoni, H.R. Salih, M. Cazzola, L. Melillo, A.M. Carella, C.H. Brandts, E. Morra, M. von Lilienfeld-Toal, B. Hertenstein, M. Wattad, M. Lübbert, M. Hänel, N. Schmitz, H. Link, M.G. Kropp, A. Rambaldi, G. La Nasa, M. Luppi, F. Ciceri, O. Finizio, A. Venditti, F. Fabbiano, K. Döhner, M. Sauer, A. Ganser, S. Amadori, F. Mandelli, H. Döhner, G. Ehninger, R.F. Schlenk, and U. Platzbecker for Gruppo Italiano Malattie Ematologiche dell'Adulto, the German–Austrian Acute Myeloid Leukemia Study Group, and Study Alliance Leukemia

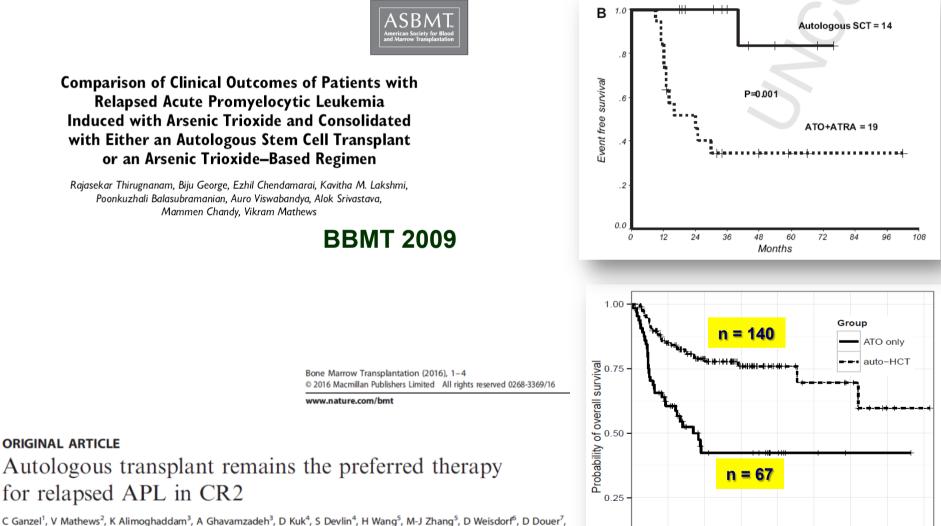
Phase III prospective trial Non-inferiority design Low and Intermediate Risk APL Phase II study: Iland et al. Lancet Hematology 2015
 UK MRC AML17 Phase III RCT. Burnett AK et al. Lancet Oncology 2015

Introduction:

- Significant advances have been made in the management of acute promyelocytic leukemia (APL)
- Steady transition over the years to a nonmyelotoxic therapy¹
- Facilitated by increased understanding of the molecular mechanisms of disease and resistance

Challenges remain in the real world^{2,3,4}, in patients with high risk disease at presentation and in those who relapse

- 1. Mathews V. Lancet Hematology 2015
- 2. Lehmann et al. Leukemia 2011
- 3. Park JH et al. Blood 2011
- 4. Jean-Baptiste Micol et al. ASH Abstract 2010

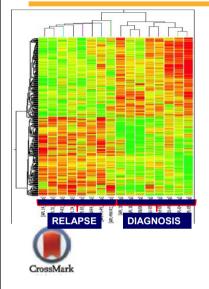

Management of Relapsed APL

 Available data - mostly in the context of relapse following conventional ATRA + chemotherapy regimens

Limited data on management of relapse when ATO has been used upfront

 Available data would suggest that intensification with an autologous SCT is required post relapse

Management of Relapsed APL


0.00

Time (months)

JM Rowe^{1,8}, E Polge^{9,10}, J Esteve¹¹, A Nagler^{10,12}, M Mohty^{9,10} and MS Tallman⁷

RELAPSED PATIENTS ARE DIFFERENT

PLOS ONE

RESEARCH ARTICLE

Comparison of Newly Diagnosed and Relapsed Patients with Acute Promyelocytic Leukemia Treated with Arsenic Trioxide: Insight into Mechanisms of Resistance

Ezhilarasi Chendamarai¹, Saravanan Ganesan¹, Ansu Abu Alex¹, Vandana Kamath², Sukesh C. Nair², Arun Jose Nellickal³, Nancy Beryl Janet¹, Vivi Srivastava⁴, Kavitha M. Lakshmi¹, Auro Viswabandya¹, Aby Abraham¹, Mohammed Aiyaz⁵, Nandita Mullapudi⁵, Raja Mugasimangalam⁵, Rose Ann Padua⁶, Christine Chomienne⁶, Mammen Chandy¹, Alok Srivastava¹, Biju George¹, Poonkuzhali Balasubramanian¹, Vikram Mathews¹*

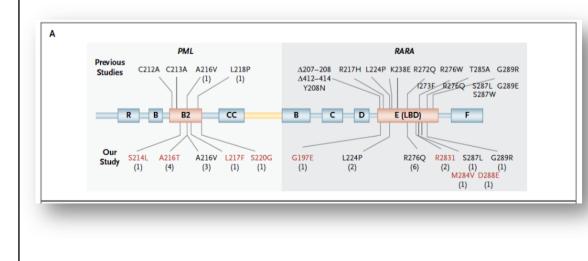
Leukemia (2016) **30**, 1672–1681 © 2016 Macmillan Publishers Limited All rights reserved 0887-6924/16

www.nature.com/leu

ORIGINAL ARTICLE

Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia

V Madan¹, P Shyamsunder^{1,23}, L Han^{1,2,23}, A Mayakonda^{1,23}, Y Nagata³, J Sundaresan¹, D Kanojia¹, K Yoshida³, S Ganesan⁴, N Hattori¹, N Fulton⁵, K-T Tan¹, T Alpermann⁶, M-C Kuo⁷, S Rostami⁸, J Matthews⁹, M Sanada³, L-Z Liu¹, Y Shiraishi¹⁰, S Miyano¹⁰, E Chendamarai⁴, H-A Hou¹¹, G Malnassy⁵, T Ma¹², M Garg¹, L-W Ding¹, Q-Y Sun¹, W Chien¹, T Ikezoe¹³, M Lill¹⁴, A Biondi¹⁵, RA Larson¹⁶, BL Powell¹⁷, M Lübbert¹², WJ Chng^{1,2,18}, H-F Tien¹¹, M Heuser¹⁹, A Ganser¹⁹, M Koren-Michowitz^{20,21}, SM Kornblau⁹, HM Kantarjian⁹, D Nowak²², W-K Hofmann²², H Yang¹, W Stock⁵, A Ghavamzadeh⁸, K Alimoghaddam⁸, T Haferlach⁶, S Ogawa³, L-Y Shih⁷, V Mathews^{4,24} and HP Koeffler^{1,14,18,24}



Ezhilarasi

OPEN

Comparison of newly diagnosed and relapsed patients with APL

- PML mutations in 16% at relapse²
- Neither mutations or a potential LSC could explain relapses in our patients
- Evidence of micro-environment mediated drug resistance (EM-DR) to ATO¹

N = 35 25% PML mutations <30% survival in those with mutations

- 1. Chendamarai et al. Plos One 2015
- 2. Madan V et al. Leukemia 2015
- 3. Huang et al. NEJM 2014

EM-DR in acute promyelocytic leukemia Protective effect seen in non-contact dependent system (Transwell) HS-5 co-culture ICATO levels between NB4 and NB4 in co-culture remained the same 120-Protective effect is not seen on NB4 cells when co-cultured with 80. > HUVEC Viability(%) > COS-7 **PBMNCs** MS-5 NB4 MS-5+ NB4 40 $\dot{\vdash}$ MSC - + ATO Conc. (uM) ** - P=0.005. ***-P=0.001

Stromal cells provide survival advantage to malignant promyelocytes (NB4) against arsenic trioxide.

Rationale for combining ATO with proteasome inhibitors

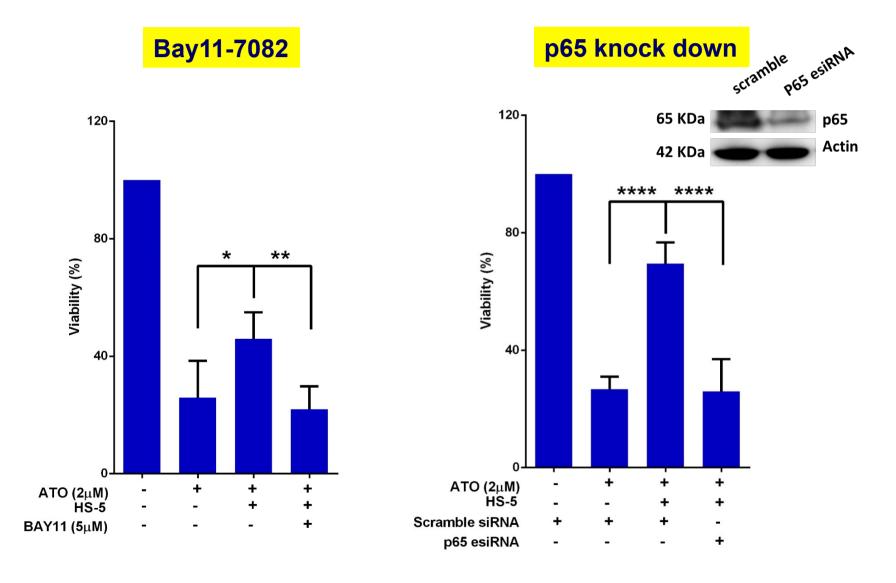
Leukemia (2016), 1–10

www.nature.com/leu

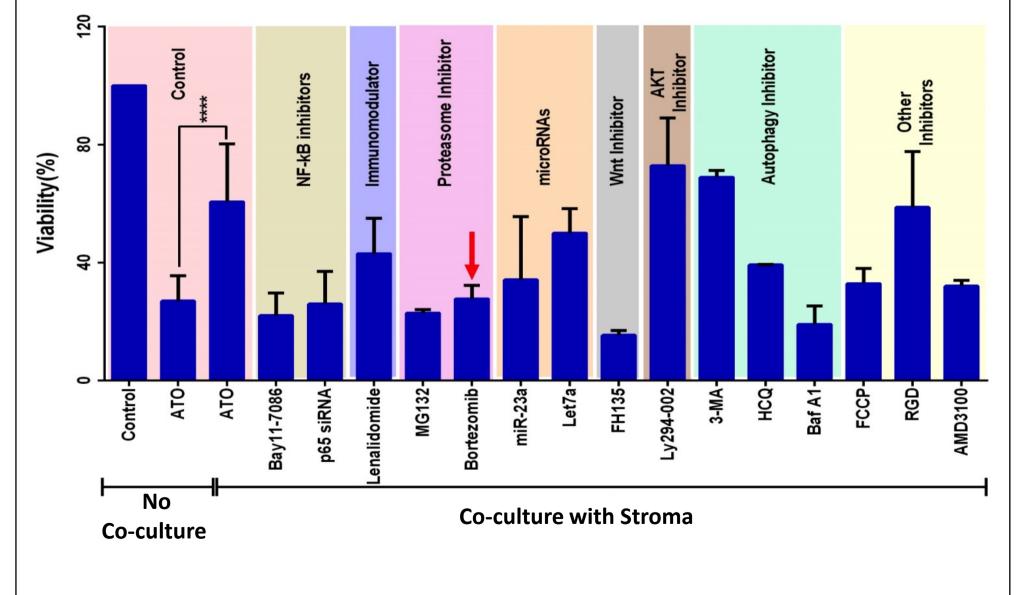
Saravanan

ORIGINAL ARTICLE

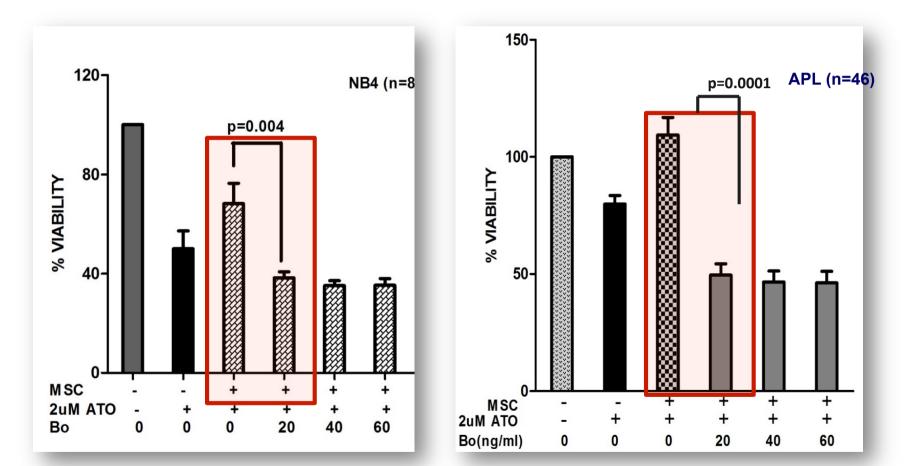
Rationale and efficacy of proteasome inhibitor combined with arsenic trioxide in the treatment of acute promyelocytic leukemia


S Ganesan¹, AA Alex¹, E Chendamarai¹, N Balasundaram¹, HK Palani¹, S David¹, U Kulkarni¹, M Aiyaz², R Mugasimangalam², A Korula¹, A Abraham¹, A Srivastava¹, RA Padua^{3,4}, C Chomienne^{3,4}, B George¹, P Balasubramanian¹ and V Mathews¹

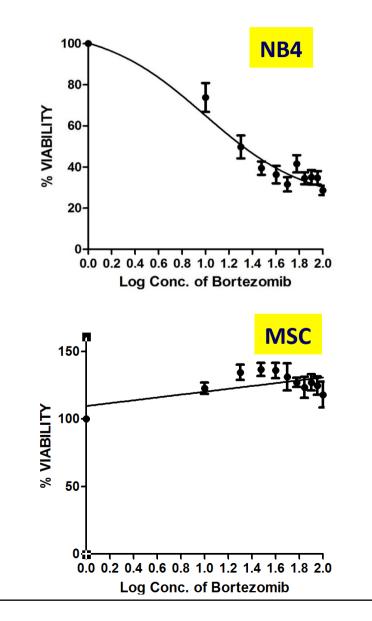
Prominent upregulation of the NF-Kβ pathway and genes¹


- Similar upregulation in relapsed patients even without stromal co-culture
- Direct or indirect inhibition of this pathway could overcome EM-DR
- Proteasome inhibitors combined with ATO

1. Jacamo et al. Blood 2014


Inhibiting NF- κB pathway by chemical inhibitor or knockdown of p65 overcomes EM-DR to ATO

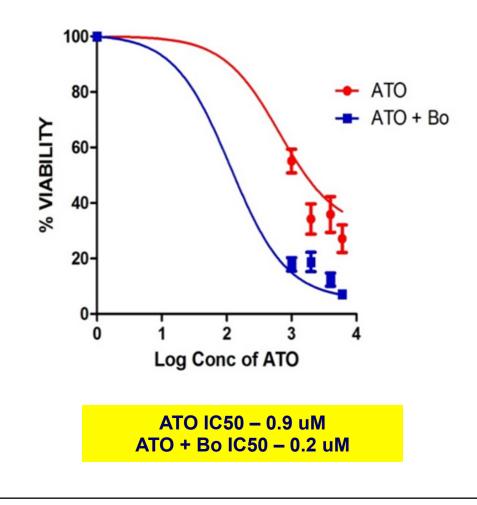
Screening of Inhibitors


Bortezomib (proteasome inhibitor) overcomes EM-DR to ATO

Bortezomib at pharmacologically relevant concentrations, restores the sensitivity of malignant promyelocytes to arsenic trioxide

Ganesan S et al. Leukemia 2016

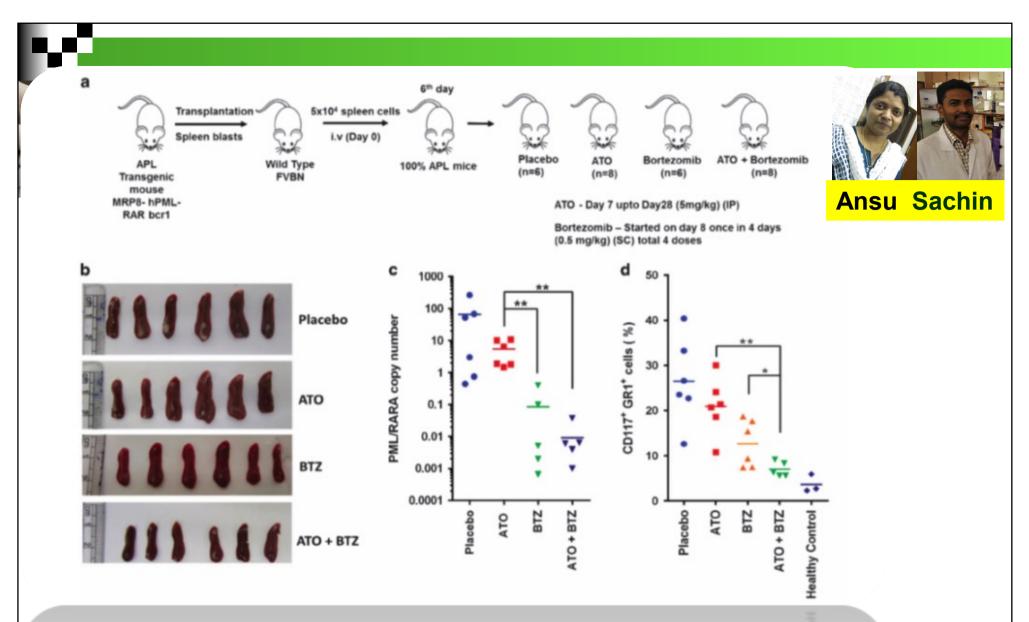
Bortezomib has direct cytotoxicity on promyelocytic leukemia cells


S.No	Cell line	IC50 (ng/ml)
1	NB4	5.5
2	NB4 EV-AsR1(A216V)	6.6
6	HS-5	NA
8	MNC	NA
10	MSC (Primary)	NA

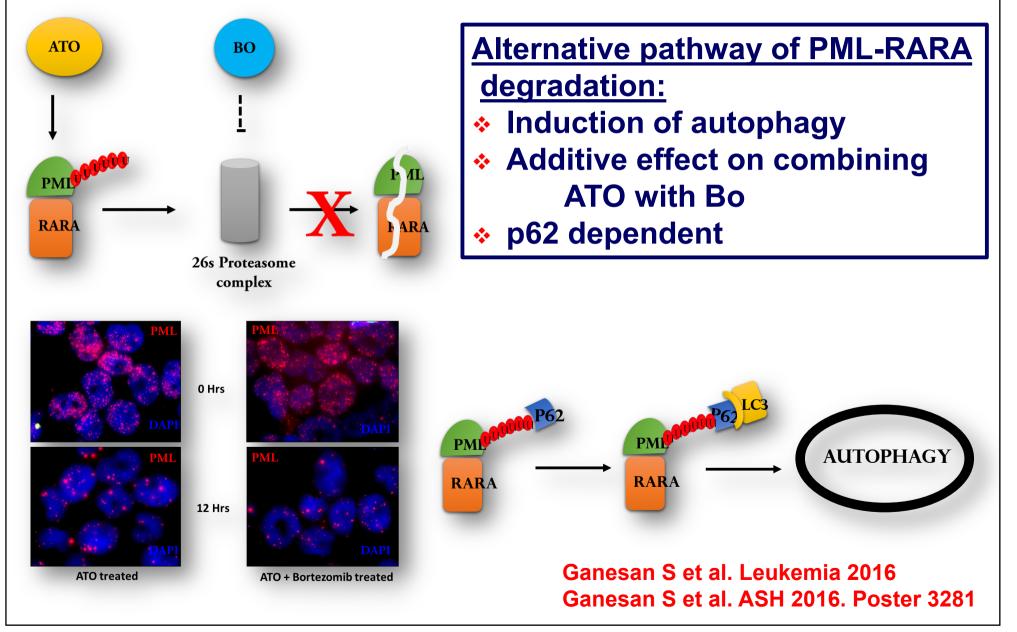
NA- Not applicable since bortezomib did not kill these cells at the concentrations used in the experiments.

- 1. Ganesan S et al. Leukemia 2016
- 2. Canestraro M et al. Cancer Genet Cytogenet 2010
- 3. Takenokuchi M et al. Anticancer Res 2015

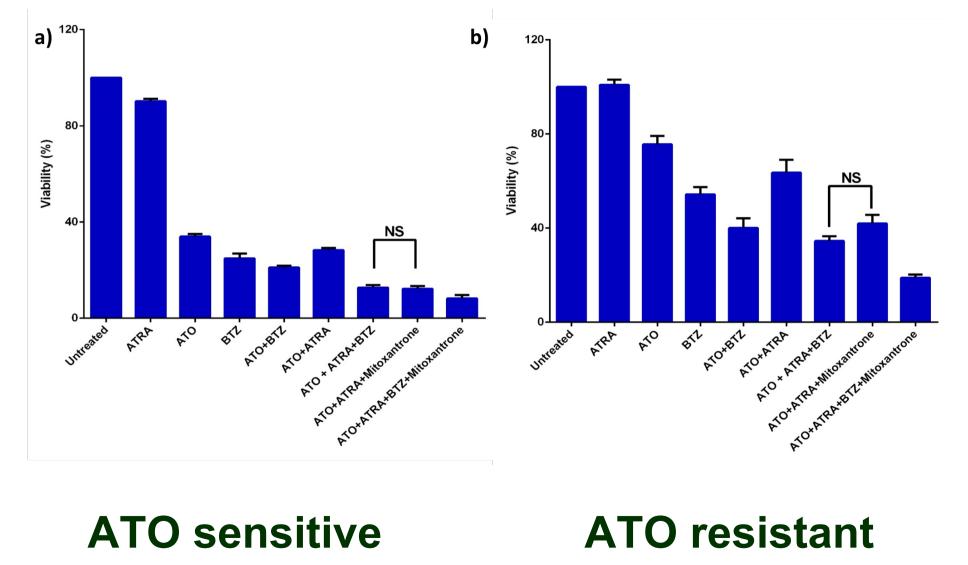
Arsenic trioxide and bortezomib are synergistic to each other


Combination index : 0.7 (Calcusyn software)

Mechanism of synergy:


- UPR pathway
- Increase ROS and decreased MMP
- Activation of caspases

Ganesan S et al. Leukemia 2016



Mouse APL blasts - a kind gift from Dr. Christine Chomienne Inserm UMR-S1131. Hôpital Saint-Louis With the permission from Dr. Scott Kogan, Dr.Michael Bishop (University of California–San Francisco)

Fate of PML-RARA with this combination?

Combination with ATRA and Mitoxantrone

Ganesan S et al. Leukemia 2016

Preliminary clinical experience

Case	Age	Sex	Relapse number	Duration of last CR (months)	Prior autologous SCT	Post remission SCT	Duration of current CR (months)
RS	25	Μ	2	19	Yes	No	61
BJ	31	Μ	1	15	Νο	Yes (auto)	60
ТК	35	Μ	2	24	Yes	Yes (MUD)	60
SS	34	F	3	19	Νο	Νο	5
AA	29	F	1	12	Νο	Νο	42

IRB approved: IRB Min 8225, 27th Feb, 2013

Study is registered in the public domain -Clinical Trials.gov: NCT01950611

Proteasome inhibition in acute promyeloytic leukemia (PIAPL)

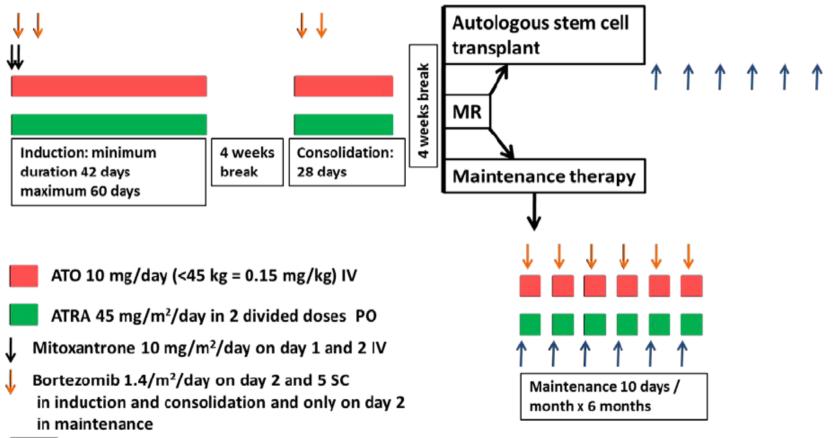
Open-labeled, single arm, single center Phase II Study

Inclusion criteria:

- Diagnosis of relapsed PML-RARα positive APL confirmed by RT-PCR.
- Patient or guardian willing to give informed consent / assent. Must not have a psychiatric disorder(s) that would interfere with consent, study participation, or follow-up.
- Patients may have received hydroxyurea, 48 hours or less of ATRA, and 1 dose of an anthracycline and still be eligible for participation in this study.
- No age limit for entry into study.
- ♦ ECOG PS ≤ 2

Exclusion criteria:

- Intracranial bleed at diagnosis
- History of or active IHD/MI or CCF
- ♦ Acute hepatitis (Bilirubin ≥ 5mg% or liver enzymes ≥ 4 times above laboratory normal value)
- ♦ Acute renal failure or serum creatinine ≥ 2 mg%
- Pregnancy or lactation.
- Patients with proven intolerance to the study drugs


M

Phase II Clinical Trial

- Single centre study
- Target of 30 patients over three years
- Primary objective to study the safety of the combination of ATO with bortezomib
- Secondary objective was to evaluate molecular response rates, relapse rates, event free and overall survival
- Comparison with historical control with interim analysis at 2 years post first patient recruitment
- Stop study rules based on Grade III/IV nonhaematological toxicity were specified

Phase II Clinical Trial: schedule

Summary of phase II study protocol

MR Molecular remission

Intrathecal Methotrexate 12.5 mg / month. 6 doses in maintenance or post autologous SCT No prophylaxis for DS Approach to CNS disease Generic bortezomib

- Between Sep 2013 June 2016
- n = 18 enrolled (all received ATO upfront)
- ✤ Median age 24 years (range: 9 53)
- Males 9 (50%)
- Median time from diagnosis to first relapse was 21 months (range:8 – 128)
- All patients had medullary disease with evidence of hematological relapse at enrollment. 6 (33%) had additional CNS involvement
- The median WBC and platelet count at diagnosis was 2.9 (0.5-100.3) and 112 (15-192)x10⁹/Lt

Phase II Clinical Trial: Remission Induction

- ♦ Median time to CHR 45 days (42 63)
- 4 17 (94%) were RT-PCR negative post induction
- All patients achieved molecular remission
- None of the patients had any major bleeding or thrombotic events during induction
- One patient had a differentiation syndrome
- Median duration of admission for induction therapy was 22 days (range: 0 – 38)

Phase II Clinical Trial: Toxicity profile

- Grade IV neurotoxicity as peripheral neuropathy was seen in one patient. Discontinued Bo after 3 maintenance cycles
- ♦ Rest ≤ Grade II. Transient, did not require dose interruption
 - Headache 8
 - Peripheral neuropathy 2
 - Hepatotoxicity 3
 - diarrhea, mild rash, redness of eyes, oral ulcers, vertigo (1 each)

Post induction no further in-patient admissions

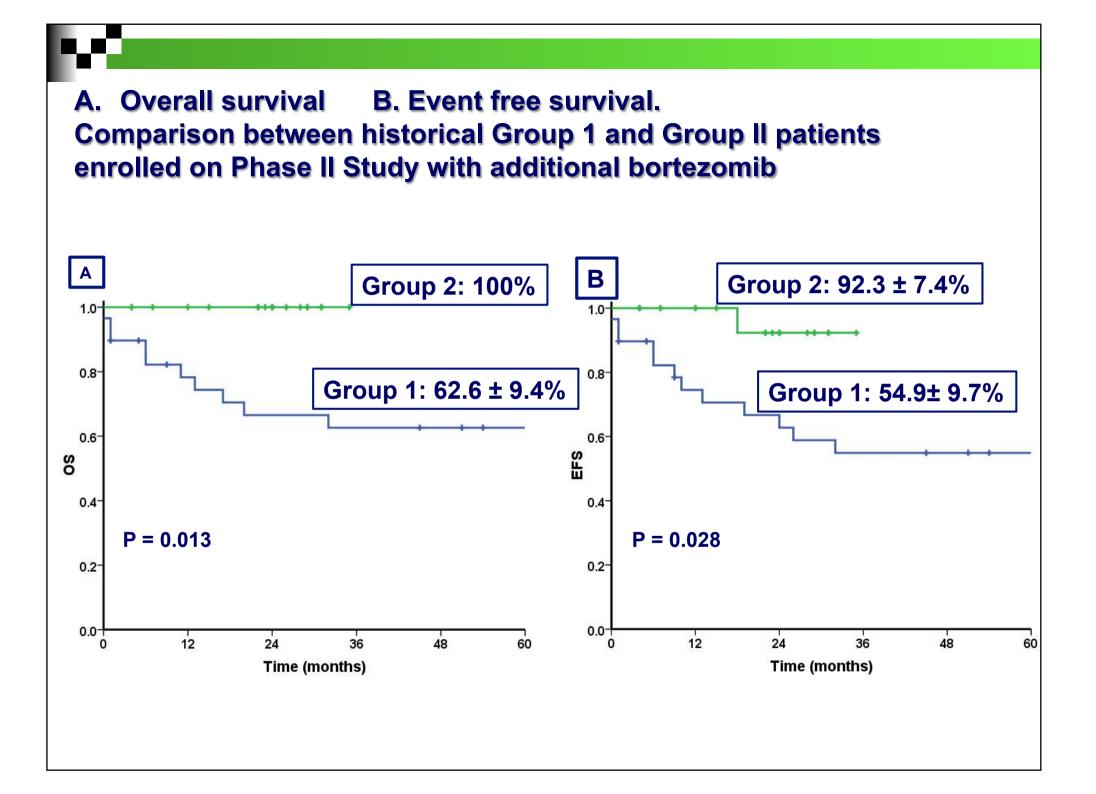
Post consolidation therapy and achieving molecular remission

- 8 (44.4%) autologous SCT
- 11 (60.6%) maintenance therapy
- All patients have completed intended therapy.
- Actuarial median follow up 24 months (range: 10 – 35)
- One patient who opted for maintenance therapy relapsed 6 months after completing treatment

Historical control n = 29: Group 1 20 (69%) received an autologous SCT

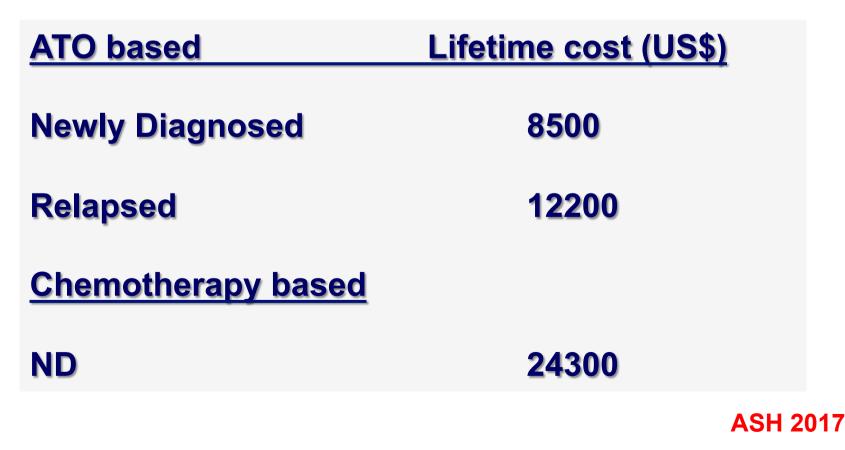
Comparison with historical control

Variables	Group 1 (n = 29) Median (range)	Group 2 (n=18) Median (range)	p- value
FFP	4 (0-32)	0 (0-44)	0.045
Сгуо	5.5 (0-42)	0 (0-35)	0.429
Platelet 11 (0-41)		10 (0-64)	0.538
PC	1.5(0-8)	1 (0-5)	0.710


	Historical controls	Phase II study
Median follow up	51 months	24 months
Relapses	8 (27.6%)	1 (5.6%)

М

Impact on coagulopathy:


- Reduction in coagulopathy
- Reduction in consumption of blood bank products.
- Early data suggests reduction in TF, Annexin II, and reduction in Etosis (provisional)

 Potential to reduce incidence of differentiation syndrome (hypothesis)

Resource Utilization Using MicroCosting Method and Cost Effectiveness Analysis of Treatment of Acute Promyelocytic Leukemia with Generic ArsenicTrioxide

Aniket Bankar, MD¹, Uday Prakash Kulkarni, MD, DM¹, Anup Joseph Devasia, MD, DM¹, Nisham PN, MD, DM¹, Anu Korula, MD, DM¹, Aby Abraham, MD, DM¹, Alok Srivastava, MD¹, Sezlian S², Visali Jeyaseelan, PhD³, Jasmine Prasad, MD⁴, Biju George, MD, DM¹ and Vikram Mathews, MD, DM¹

Conclusion:

- Combination of ATO and bortezomib is well tolerated. Optimal dose and schedule remain to be defined
- Larger study and longer follow up required
- More potent PI are available ? Greater efficacy in combination

 If data holds out in non-autologous stem cell arm, one could consider omitting this procedure in relapsed APL.

Acknowledgements

Dept of Haematology

Dr. Poonkuzhali Balasubramanian Dr. Biju George Dr. Uday Kulkarni

APL group:

Ezhilarasi Chendamarai Saravanan Ganesan Ansu Abu Alex Nithya Balasundaram Hamenth Kumar Palani Sachin David

Biostatistician:

Kavitha M Lakshmi

CSCR Vellore

Core facility

Funding:

Senior Fellowship from The Wellcome Trust/DBT India Alliance

Saravanan Ganesan - supported by a Senior Research fellowship from Council for Scientific and Industrial Research (CSIR)

Indo-French Funding

Dr. Raja Mugasilingam, Genotypic Technology Ltd., Bengaluru.

Collaborators:

Dr. Christine Chomienne and Dr. Rose-Ann Padua Inserm UMR-S1131 Institut Univérsitaire d'Hématologie

Hôpital Saint-Louis

ASSISTANCE PUBLIQUE HÔPITAUX DE PARIS

Prof. Hong-Hu Zhu Peking University, Beijing

Thank you for your attention

