Classical Ph-1neg myeloproliferative neoplasms: Ruxolitinib in myelofibrosis

Francesco Passamonti Università degli Studi dell'Insubria, Varese

Diagnose MF and genotype JAK2, CALR, MPL

Med OS 14.2 y

Med OS 11.2 y Med OS 7.9 y Med OS 4 y Med OS 2.2 y

LR over time: Int-1 R over time:

Test additional mutations (ASXL1 first) and assess karyotype to identify patients at higher risk, if younger and fit for stem cell transplant

Proceed with treatment strategy

Observation

85% alive at 20 y

- Ruxolitinib
- Clinical trials
- Stem cell transplant

Proceed with treatment strategy

- Stem cell transplant
- Ruxolitinib
- Clinical trials

Test additional mutations (ASXL1 first) and assess karyotype only for post transplant monitoring

LR Int-1 R

Med OS 11.2 y Med OS 7.9 y

LR over time: 85% alive at 20 y

Int-1 R over time:

Med OS 14.2 y

Test additional mutations (ASXL1 first) and assess karyotype to identify patients at higher risk, if younger and fit for stem cell transplant

Proceed with treatment strategy

- Observation
- Ruxolitinib
- Clinical trials
- Stem cell transplant

Int-2 R HR

Med OS **2.2** y

Proceed with treatment strategy

- Stem cell transplant
- Ruxolitinib

Med OS 4 y

Clinical trials

Test additional mutations (ASXL1 first) and assess karyotype only for post transplant monitoring

Ruxolitinib reduces splenomegaly

COMFORT-I (update at 3 yrs)

Patients with MF (N = 309)

Ruxolitinib 15 -20 mg BID (n=155)

Placebo (n=151)

Primary Endpoint

Number of subjects achieving
 ≥35% reduction in spleen volume
from baseline to week 24

Secondary Endpoint

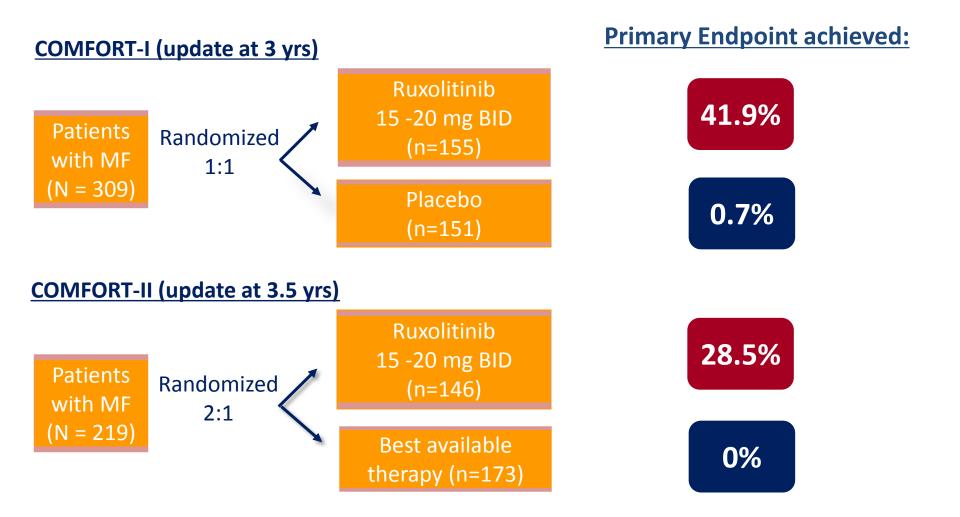
 Proportion of patients with ≥50% reduction in Total Symptom Score (mod. MFSAF v2.0)

COMFORT-II (update at 3.5 yrs)

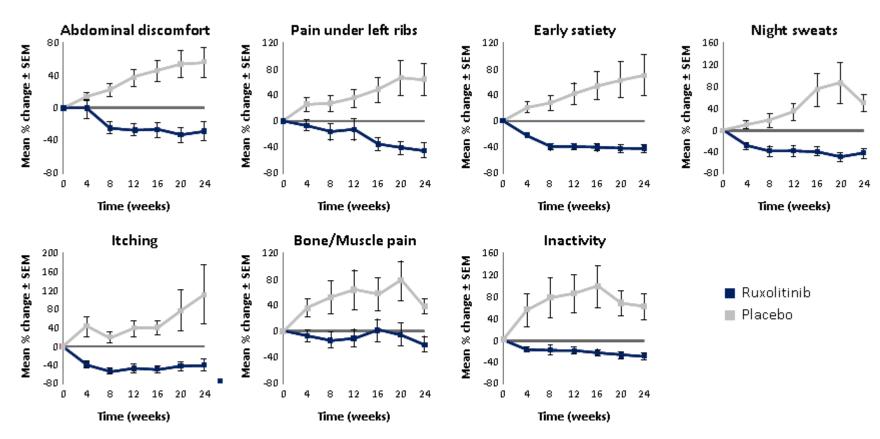
Patients with MF (N = 219)

Ruxolitinib 15 -20 mg BID (n=146)

Best available therapy (n=173)


Primary Endpoint

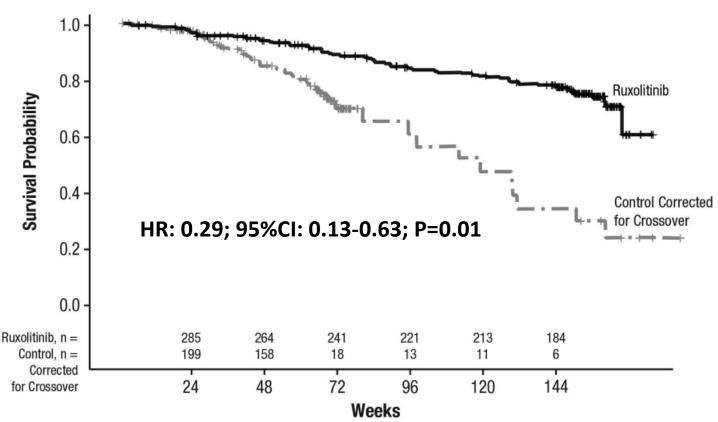
Number of subjects achieving ≥35% reduction in spleen volume from baseline to week 48


Secondar/Exploratory endpoints

Changes in functioning and symptoms

Ruxolitinib reduces splenomegaly

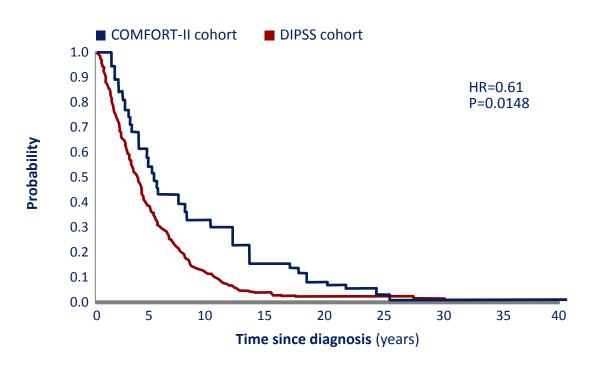
Ruxolitinib controls symptomatology impacting on quality of life



TSS: Total Symptoms Score; PGIC: Patient Global Impression of Change.

^{*} As assessed by the Modified MFSAF v2.0

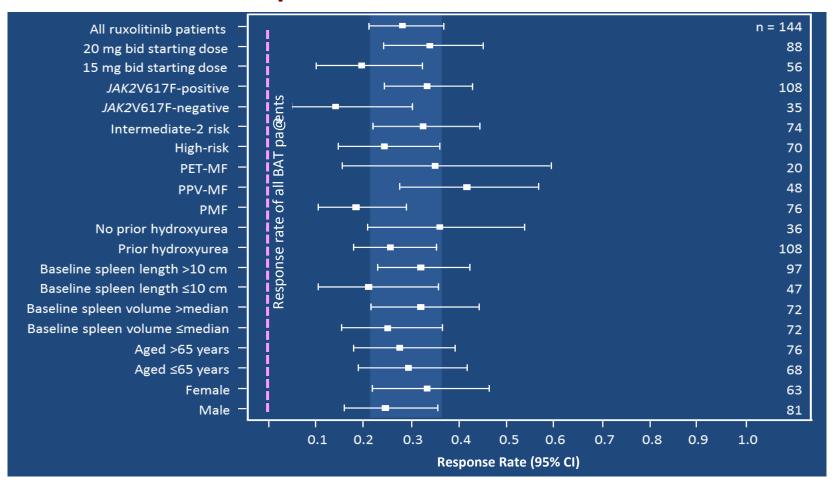
Ruxolitinib improves survival


(results from the pooled analysis with 301 RUX-treated and 227 PBO/BAT-treated)

Curves were obtained after correcting for crossover from the control arms (rank-preserving structural failure time analysis)

Ruxolitinib modifies the natural history of MF

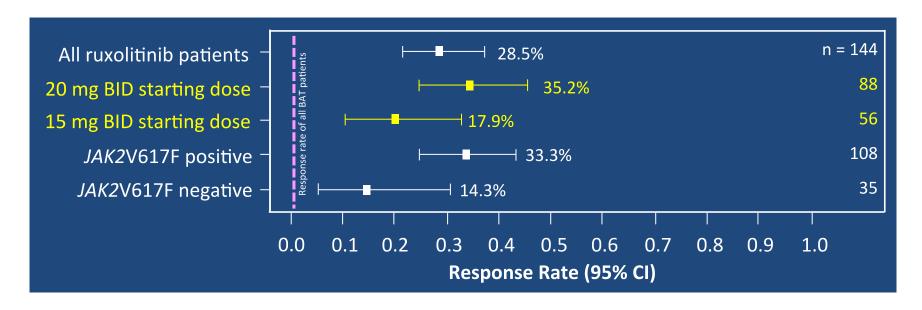
Survival estimate from diagnosis of PMF patients treated with ruxolitinib or BAT


The risk of death might be reduced by ~40% by introducing ruxolitinib in the treatment of PMF patients

Survival estimate from diagnosis of PMF patients who become intermediate-2 and high-risk IPSS with a blast cell count below 10% at any time of their follow-up according to the COMFORT-II (n=100) and DIPSS (N=350) cohorts.

> The 8-year survival probability from initial diagnosis was 32.2% for COMFORT-II and 15.9% for DIPSS

Predictors of response:


COMFORT-II: proportion of Patients in Each Subgroup With ≥ 35% Reduction in Spleen Volume From Baseline at Week 48

Response rates were observed for ruxolitinib-treated patients in all subgroups and were higher than patients receiving BAT

Predictors of response:

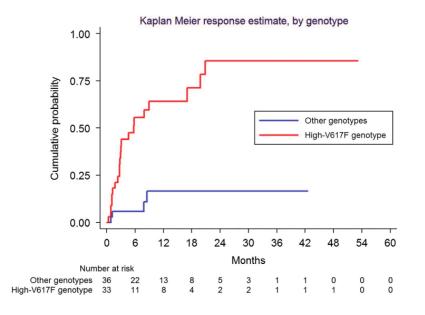
COMFORT-II: proportion of Patients in Each Subgroup With ≥ 35% Reduction in Spleen Volume From Baseline at Week 48

Positive trend (not stat. significant) in favor of :

- 20 mg BID vs. 15 mg BID,
- JAK2mut vs JAK2WT

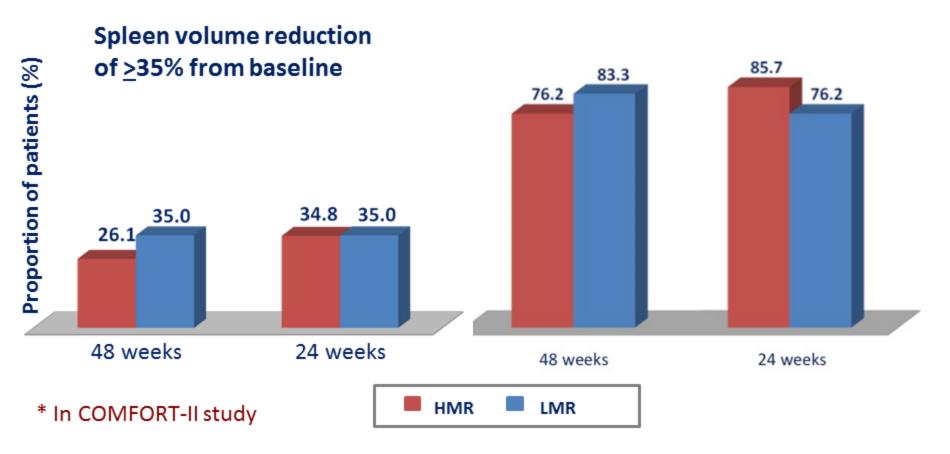
Predictors of response:

Multivariable analysis of the COMFORT-II: proportion of Patients in Each Subgroup With ≥ 35% Reduction in Spleen Volume From Baseline at Week 48

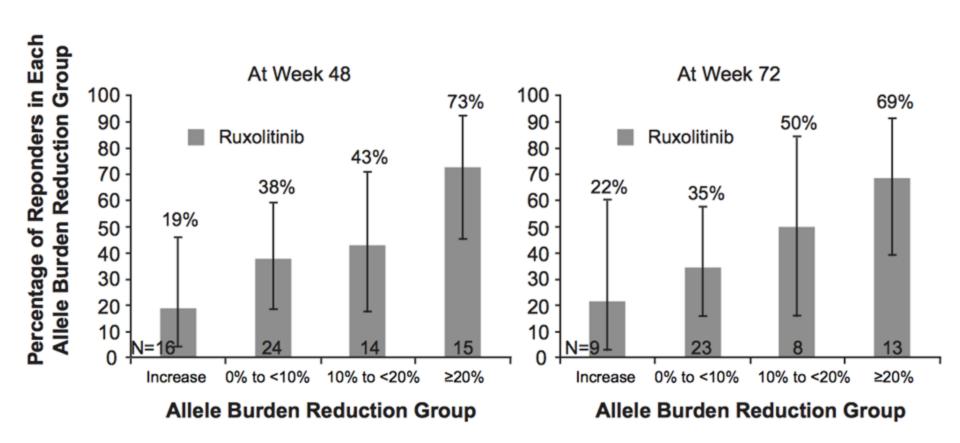

	Odds Ra' o ^a	95% CI
Star@ng dose (15 vs 20 mg BID)	0.441	(0.184; 1.055)
Gender (female vs male)	1.646	(0.726; 3.732)
Age (≤ 65 vs > 65 years)	0.911	(0.389; 2.135)
Baseline MF type		
PMF vs PET-MF	0.237	(0.063; 0.891)
Previous hydroxyurea use (no vs yes)	2.521	(0.964; 6.595)
Baseline palpable spleen length (≤ 10 vs > 10 cm)	0.419	(0.166; 1.058)
JAK2V617F muta@on (nega@ve vs posi@ve)	0.383	(0.112; 1.310)
IWG risk category (high vs intermediate-2 risk)	0.640	(0.268; 1.531)

Multivariate analysis suggests:

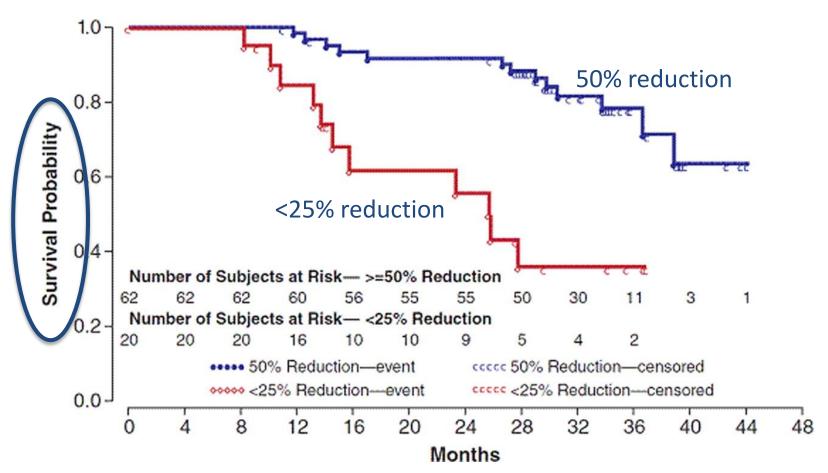
 a higher response rate among patients with PET-MF compared with PMF


Predictors of response: potential role of *JAK2* allele burden

- 69 MF treated for progressive splenomegaly
- 83% with PMF
- 70% with >50% mutant alleles
- 71% were low-Int-1 MF by DIPSS prognostic score

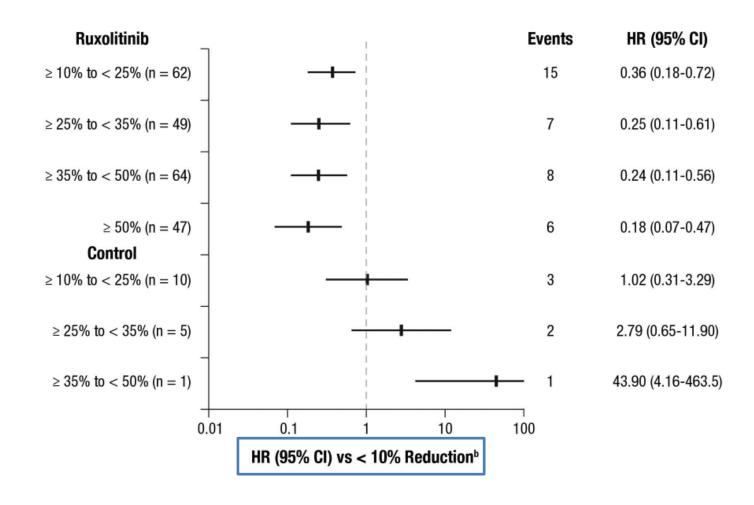

The probability of spleen response in patients with a JAK2V617F allele burden ≥ 50% was 5.5-fold higher than subjects with JAK2V617F allele burden <50% or any other mutation

Additional mutation-based risk does not predict response on spleen and symptoms



HMR status did not increase the risk of developing anemia or thrombocytopenia under ruxolitinib treatment

The more the reduction of JAK2 allele burden, the more the reduction of the splenomegaly



Spleen Reduction by Palpation on Ruxolitinib Implies Survival Advantage

Patients with a reduction >50% of spleen size had better survival than those with <25%

Spleen volume reductions at week 24 impact on overall survival (pooled analysis)

Anemia and thyrombocytopenia on ruxolitinib

Incidence of New Onset Grade 3 or 4 Anemia and Thrombocytopenia Over Time

All patients receiving placebo at the primary analysis crossed over or discontinued within 3 months of the primary analysis; therefore, data for patients receiving placebo is shown for 0–<6 months only.

The incidence of new-onset Grade 3 or 4 anemia and thrombocytopenia decreased over time to levels observed with placebo treatment (prior to crossover)

Infections on ruxolitinib therapy

Ruxolitinib randomized 1 extension, %	Week							
	0-24 (n=146)	24-48 (n=134)	48-72 (n=116)	72-96 (n=101)	96-120 (n=93)	120-144 (n=81)	144-168 (n=72)	
Infections	50.0	35.1	37.9	25.7	43.0	33.3	25.0	
Bronchitis	3.4	6.7	8.6	3.0	10.8	4.9	4.2	
Gastroenteritis	5.5	3.0	0.9	1.0	2.2	1.2	0	
Nasopharyngitis	13.7	5.2	7.8	4.0	10.8	3.7	4.2	
Urinary tract infection	4.8	2.2	5.2	4.0	5.4	3.7	2.8	

Ruxolitinib at 5 years follow-up (COMFORT-2): efficacy

- 53% of RUX achieved a ≥ 35% reduction in spleen volume from baseline at any time with a median duration of response of 3.2 years.
- One-third of evaluable JAK2 V617Fpositive pts had a >20% reduction in allele burden at 3.2 years.
- 16% improved fibrosis; 32% had stable fibrosis, 18% had a worsening at their last assessment.

Ruxolitinib at 5 years follow-up (COMFORT-2): safety

- AEs: thrombocytopenia (52%), anemia (49%), diarrhea (35%), and peripheral edema (33%);
- AEs grade 3-4: anemia (22%), thrombocytopenia (15%), pneumonia (6%), general physical health deterioration (4%), and dyspnea (4%).
- 8 pts (5.5%) and 5 pts (6.8%) developed leukemia in the RUX and BAT arms, respectively.

Ruxolitinib at 5 years follow-up (COMFORT-2): survival

- Overall, 59 (40.4%) and 35 (47.9%)
 deaths were reported in the RUX and
 BAT arms, respectively.
- Median OS was not reached in the RUX arm and was 4.1 years in the BAT arm.
- There was a 33% reduction in risk of death with RUX compared with BAT (HR, 0.67; 95% CI, 0.44-1.02; P = .06).

Diagnose MF and genotype JAK2, CALR, MPL

LR Int-1 R

Med OS 11.2 y Med OS 7.9 y

LR over time: Int-1 R over time:

85% alive at 20 y Med OS 14.2 y

Test additional mutations (ASXL1 first) and assess karyotype to identify patients at higher risk, if younger and fit for stem cell transplant

Proceed with treatment strategy

- Observation
- Ruxolitinib
- Clinical trials
- Stem cell transplant

Proceed with treatment strategy

- Stem cell transplant
- Ruxolitinib
- Clinical trials

Int-2 R

Med OS 4 y

Test additional mutations (ASXL1 first) and assess karyotype only for post transplant monitoring

HR

Med OS **2.2** y

Diagnose MF and genotype JAK2, CALR, MPL

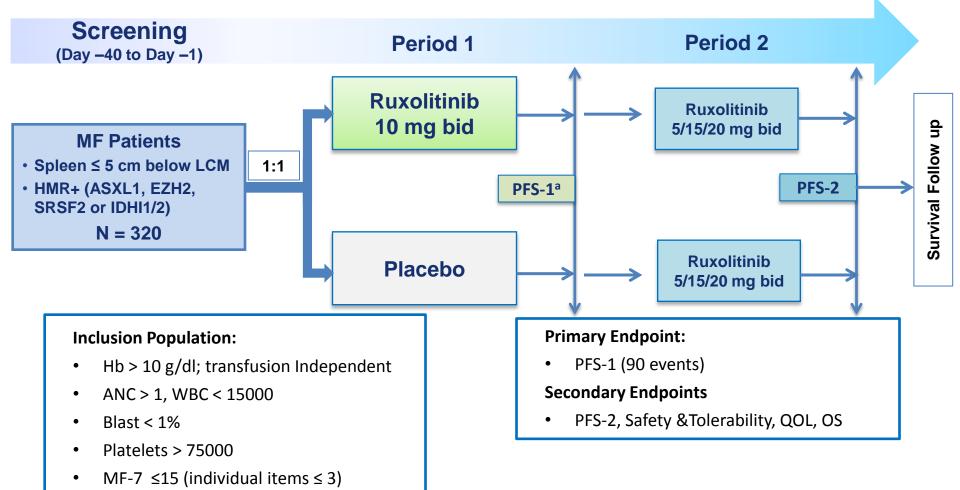
Int-1 R Int-2 R HR Med OS **11.2** y Med OS **7.9** y Med OS 4 y Med OS **2.2** y

Proceed with treatment strategy

- Stem cell transplant
- Ruxolitinib
- Clinical trials

Test additional mutations (ASXL1 first) and assess karyotype only for post transplant monitoring

LR over time: 85% alive at 20 y Int-1 R over time: Med OS 14.2 y


Test additional mutations (ASXL1 first) and assess karyotype to identify patients at higher risk, if younger and fit for stem cell transplant

Proceed with treatment strategy

- Observation
- Clinical trials
- Stem cell transplant (few selected)

Re-THINK: Trial Design

ReTHINK is a randomized, double-blind, placebo-controlled, multi-center, phase 3 study of the
efficacy and safety of ruxolitinib in patients with early MF and HMR mutations

Conclusions

- Ruxolitinib is the treatment of choice in patients with PMF/SMF at intermediate-2 and high risk (IPSS/DIPSS) with spleen and symptoms
- Patients who obtain a significant spleen reduction improve survival
- For patients with low-risk disease but carrying a HMR profile, there is a new possibility of treatment: The RE-Think trial