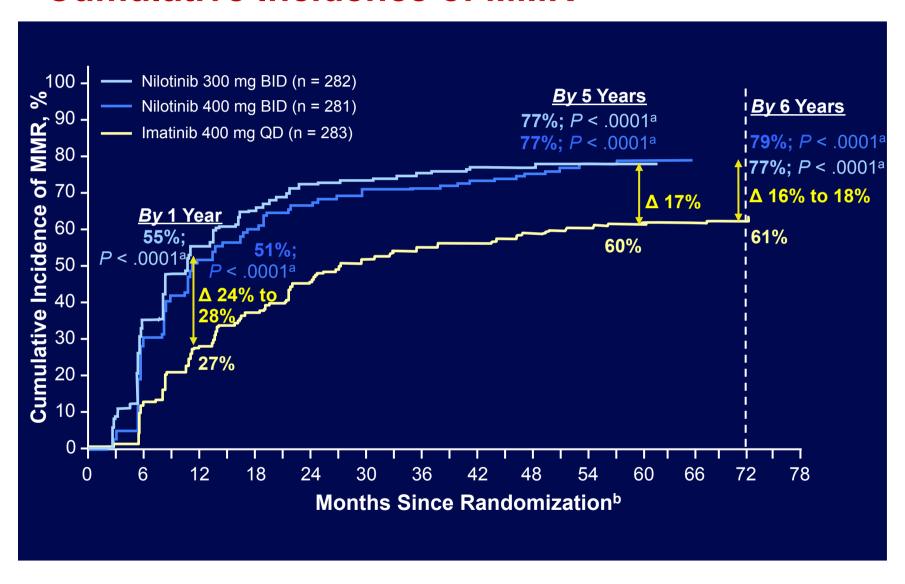


Bologna 09th - 10th May 2016

Nilotinib-based treatments and ABL001

Fausto Castagnetti University of Bologna



Disclosures of Fausto Castagnetti

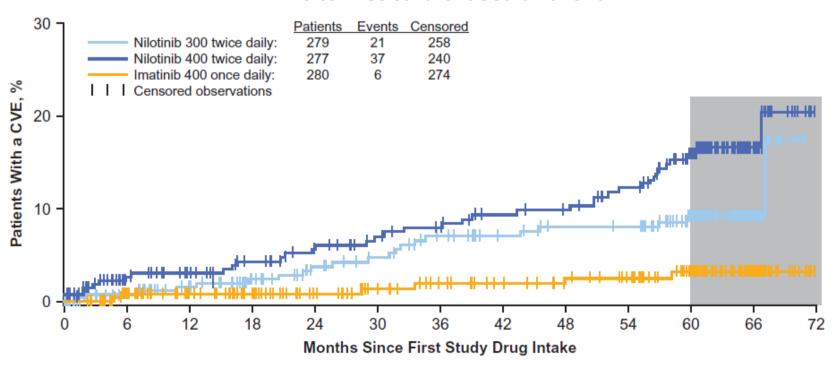
Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	
Novartis	No	No	Yes	No	Yes	Yes	
BMS	No	No	Yes	No	Yes	Yes	
ARIAD	No	No	Yes	No	Yes	Yes	
Pfizer	No	No	Yes	No	Yes	Yes	

Cumulative Incidence of MMR

Deaths Due to CML and Overall Survival

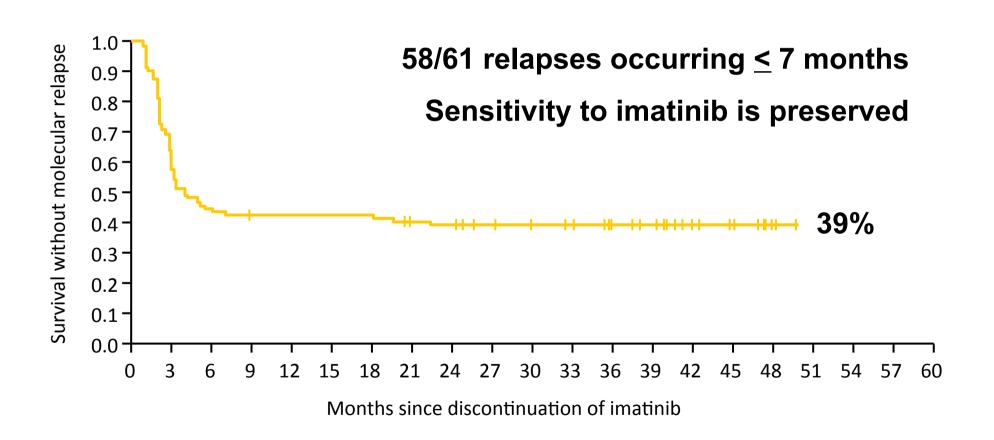
	Nilotinib 300 mg BID (n = 282)	Nilotinib 400 mg BID (n = 281)	Imatinib 400 mg QD (n = 283)	
Progression on study, n	11	6	21	
Deaths due to advanced CML, n	6	4	16	
KM-estimated 6-year freedom from death due to advanced CML (95% CI), %	97.7 (96.0-99.5)	98.5 (97.1-100)	93.9 (91.0-96.8)	
Nominal P value vs imatinib	.0302	.0061	_	
Total deaths on study, n ^a	21	11	23	
KM-estimated 6-year OS on study (95% CI), %	91.6 (88.0-95.1)	95.8 (93.4-98.2)	91.4 (88.0-94.7)	
Nominal P value vs imatinib	.7085	.0314	_	

^a Death from any cause at any time (during study treatment or during post-treatment follow-up).


NILOTINIB Metabolic effects and cardiovascular events

Hyperglycemia

Hypercholesterolemia (both LDL and HDL fractions)


Higher incidence of CV AEs (arterial thrombosis)

Time to first cardiovascular event

GIMEMA 0811 study - Castagnetti F et al. EHA 2015 ENESTnd study - Hochhaus A et al. Leukemia. 2016; 30:1044-54

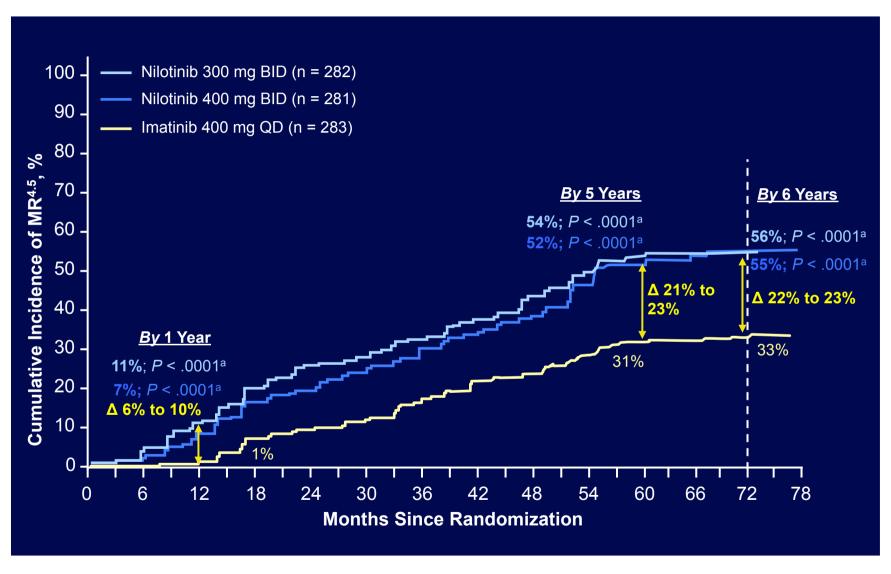
Emerging treatment goal: Treatment-free remission

Deep Molecular Response is the first step to attempting Treatment Discontinuation

no		Chudu	Median Time Off	N	Patients Relapsing, % ^a			
atio		Study	Treatment, mo	N	Q	50	100	
inu	CCyR or	Korea study ¹	7	11			100	
cont	MCyR	Hammersmith ²	9	4			100	
t discontinuation	≥MMR	STOP study ³	4-9	12			83	
e at		EURO-SKI4	6	200		39		
response		KID study⁵	3	28		32		
od		STOP 2G-TKI ⁶	4	52		46		
res	≥ MR4	A-STIM ⁷	4	80		36		
of		KEIO STIM ⁸	12	40		45		
		STIM2 ⁹	12	124		39		
Depth		STIM1 ¹⁰	24	69		61		
۵	7	CML8 ¹¹	33	40		55		
		TWISTER ¹²	42	40		55		

Studies requiring MR4/MR4.5 prior to stopping treatment have demonstrated improved sustained disease remission following treatment discontinuation¹⁻¹²

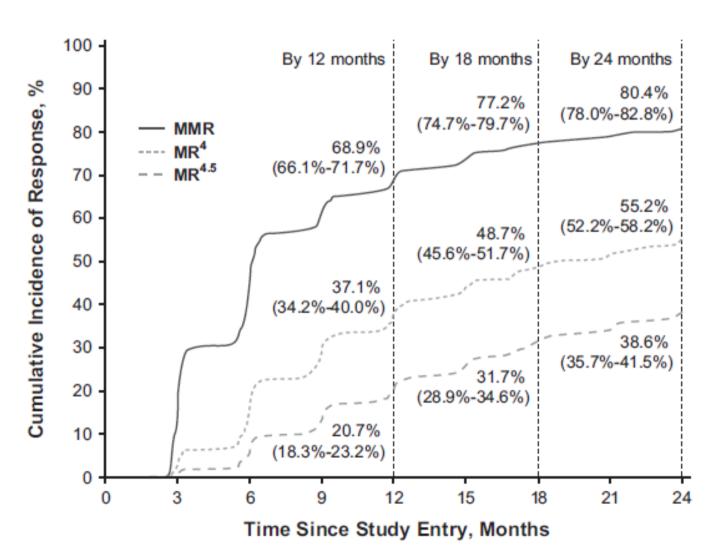
^{1.} Goh H-G, et al. *Leuk Lymphoma*. 2009;50(6):944-951; 2. Kuwabara A, et al. *Blood*. 2010;116(6):1014-1016; 3. Koskenvesa P, et al. *Eur J Haematol*. 2014;92(5):413-420; 4. Mahon FX, et al. *Blood*. 2014;124(21) [abstract 151]; 5. Lee SE, et al. *Am J Hematol*. 2013;88(6):449-454; 6. Rea D, et al. *Blood*. 2014;124(21) [abstract 811]; 7. Rousselot P, et al. *J Clin Oncol*. 2014;32:424-430; 8. Matsuki E, et al *Blood*. 2012;120(21) [abstract 2788]; 9. Mahon FX, et al. *Blood*. 2013;122(21) [abstract 654]; 10. Mahon FX, et al. *Lancet Oncol*. 2010;11(11):1029-1035; 11. Ross M, et al. *Haematologica*. 2012;97(s1):74 [abstract 0189]; 12. Ross DM, et al. *Blood*. 2013;122(4):515-522.


Is Nilotinib able to improve the rate of stable deep molecular response?

We don't know yet

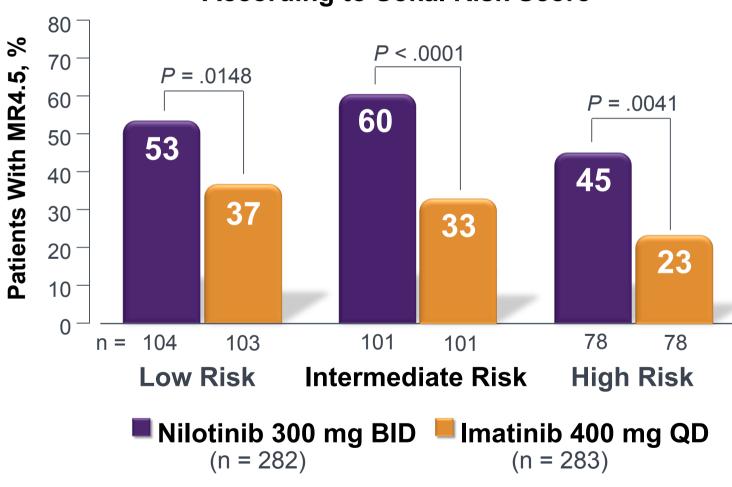
Is Nilotinib able to improve the rate of stable deep molecular response?

- Frontline Nilotinib


Cumulative Incidence of MR^{4.5}

ORIGINAL ARTICLE

Frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the European ENEST1st study

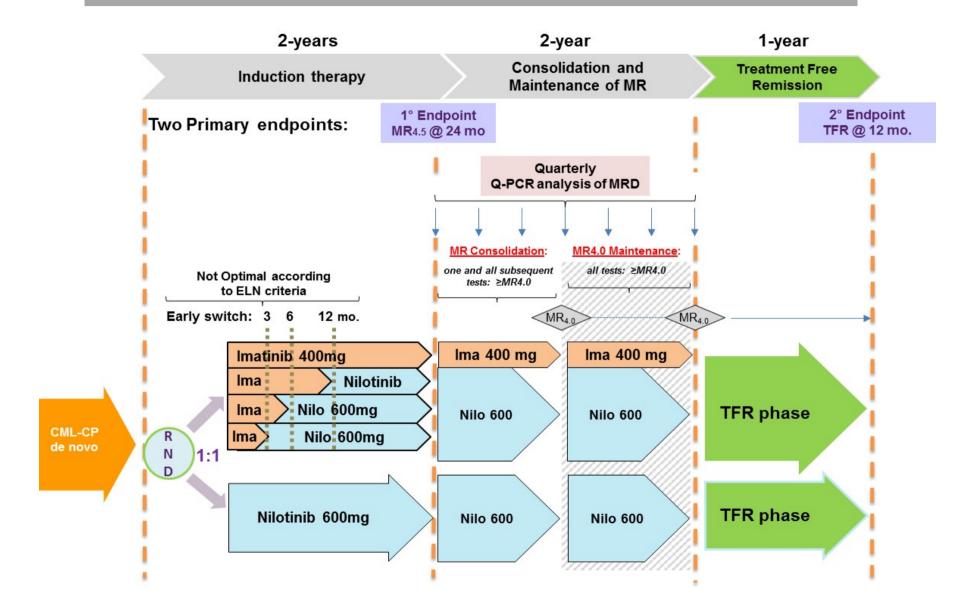

N = 1089

ENEST1st: 2-year results

Hochhaus A et al. Leukemia. 2016; 30:57-64

Rates of MR4.5 by 5 Years Were Higher With Nilotinib vs Imatinib Regardless of Sokal Risk Score

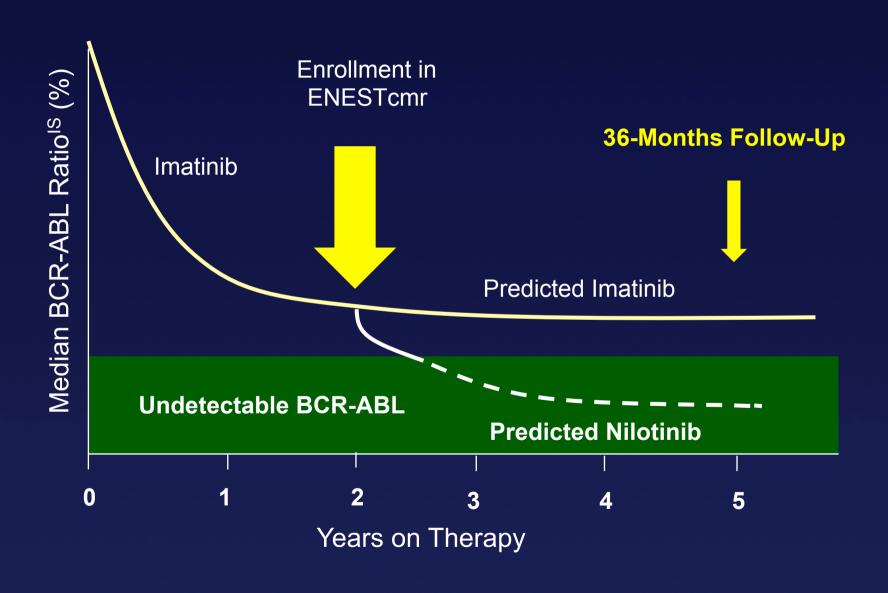
MR4.5 by 5 Years
According to Sokal Risk Score


ENESTnd: 5-year update

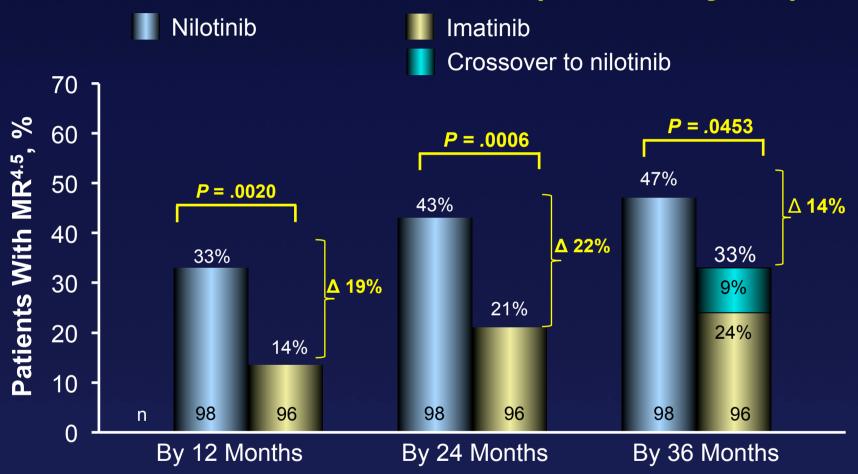
Hochhaus A et al. Leukemia. 2016; 30:1044-54

Durability of deep molecular responses: ENESTnd

	Nilotinib 300mg BID N=282	Nilotinib 400mg BID N=281	Imatinib 400mg QD N=283	
Patients with MR4.5 at anytime, n(%)	56.4%	56.2%	33.9%	
Estimated durability of responses,%				
MR4.5 sustained for ≥ 1 year	81.5%	84.3%	84.4%	
MR4.5 sustained for ≥ 2 years	73.1%	77.8%	76.9%	
MR4.5 sustained for ≥ 3 years	66.3%	76.7%	70.6%	
Hypothesis: TKI cessation Attempt if ≥ 2 years of MR4.5	4 1%	↓ 43.7%	% 26%	
Hypothesis: ~ 50% TFR success rate (loss of MMR as relapse definition) →	20.5%	21.6%	6 13%	



Is Nilotinib able to improve the rate of stable deep molecular response?


Frontline Nilotinib

Switch to Nilotinib in absence of deep molecular response

ENESTcmr Hypothesis

Cumulative Incidence of MR^{4.5} in Patients Without MR^{4.5} at Baseline (ITT analysis)

In a subgroup analysis when only responses up to crossover were counted, 47% versus 24% of patients in the nilotinib and imatinib arms, respectively, achieved MR^{4.5} (P = .0003)

Review Article

European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013

Michele Baccarani, Michael W. Deininger, Gianantonio Rosti, Andreas Hochhaus, Simona Soverini, Jane F. Apperley, Francisco Cervantes, Richard E. Clark, Jorge E. Cortes, François Guilhot, Henrik Hjorth-Hansen, Michael M. Kantarjian, Dong-Wook Kim, Richard A. Larson, Jeffrey H. Lipton, François-Xavier Mahon, Simona Giovanni Martinelli, Jiri Mayer, Martin C. Müller, Dietger Niederwieser, Fabrizio Pane, Herald P. Radich, Philippe Rousselot, Giuseppe Saglio, Susanne Saußele, Charles Schiffer, Richard Silver, Henry Bengt Simonsson, Juan-Luis Steegmann, And M. Goldman, And Rüdiger Hehlmann

outside of clinical trials. Treatment discontinuation may be considered in individual patients, also outside studies, if proper, high-quality, and certified monitoring can be ensured at monthly intervals. This is particularly relevant to fertile women who may have achieved an optimal response, because conception and pregnancy are contraindicated during TKI treatment. In these patients, when the optimal response is stable for at least 2 years, TKI discontinuation with or without the use of rIFN α , can be considered, after informed consent and with very frequent molecular monitoring.

Is Nilotinib able to improve the rate of stable deep molecular response?

Frontline Nilotinib

Switch to Nilotinib in absence of deep molecular response

Nilotinib plus alpha-interferon

IFN-α Immune System Activities

Innate Immunity

NK cell

- **↑**-proliferation
- ♠-cytolytic activity
- →-secretion of IFN-γ
- **▲**-trafficking
- **▲**LAK activity
- ♦ Priming activity for IL-2, IFN-γ

Adaptive Immunity

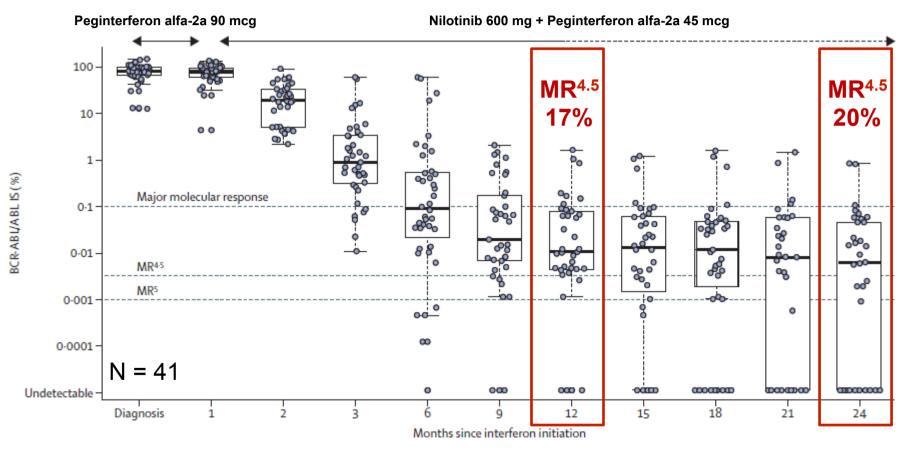
CD4+ T-cell

- ♣ -Dendritic cell secretion of IFN-γ
- ▲-balance of Th1 vs Th2
- **↑**-trafficking

CD8+ T-cell

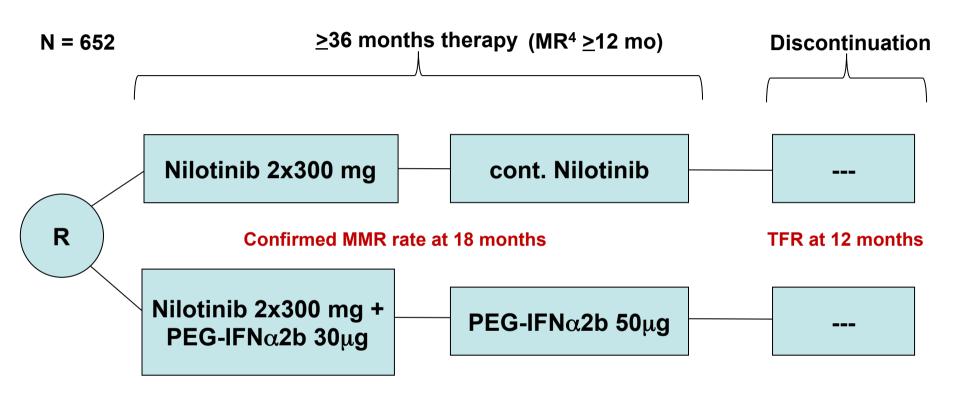
- ♠ -CTL activity
- → -bystander stimulation of memory
- ↑-response to MHC Class I presentation
- **↑**-trafficking

B-cell


- → -IgG secretion
- → -trafficking

Macrophage

- ♠ -Ag-dependent cytotoxicity
- → -differentiation
- -secretion of IFN-γ
- ♣ -NO activity
- ▲ MHC Class I Expression
- **↑** MHC Class II Expression
- **♦** Antigen-Stimulated Hypersensitivity
- **♦** Neutrophil activation

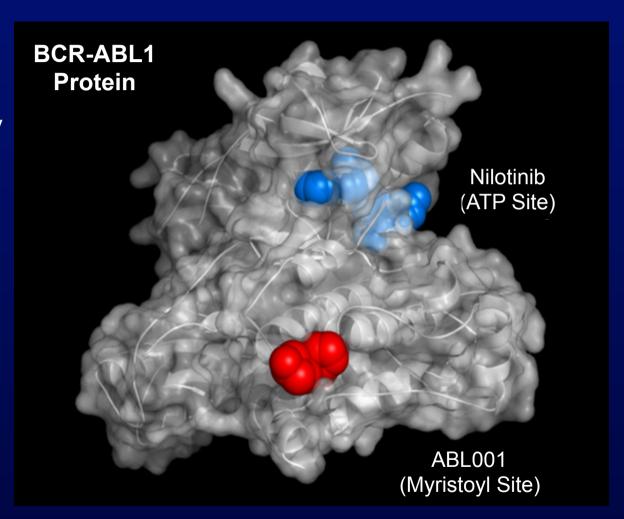

[↑] Up-regulated
→ Down-regulated

Nilotinib and peginterferon alfa-2a for newly diagnosed chronic-phase chronic myeloid leukaemia (NiloPeg): a multicentre, non-randomised, open-label phase 2 study

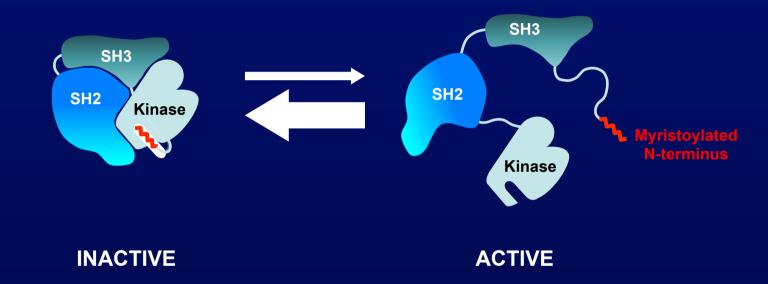
Patients on IFN: 74% at 12 months; 29% at 24 months Grade 3-4 Hematologic or Non Hematolgic AEs: 68% by 24 months

CML study V – TIGER study TKIs + IFN in GERmany (NCT01657604)

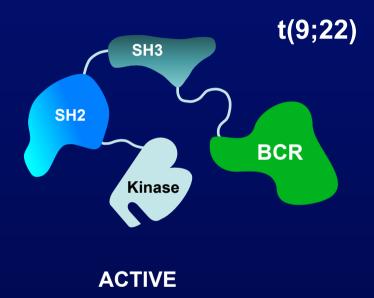
Nilo intolerance -> Imatinib Nilo resistance -> Transplantation/Dasatinib recommended Suboptimal response: -> Nilotinib 400 mg BID

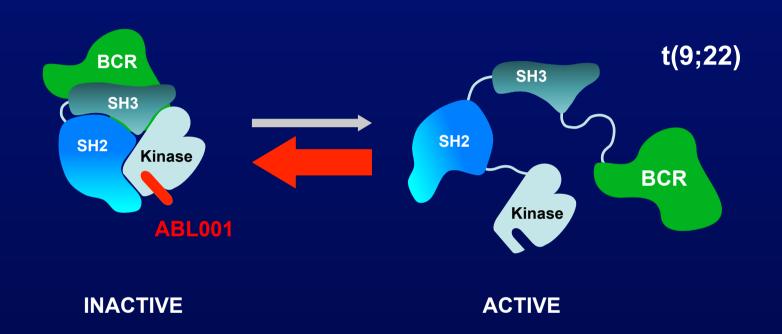

Induction therapy Maintenance therapy Cure?

Nilotinib – Take home messages

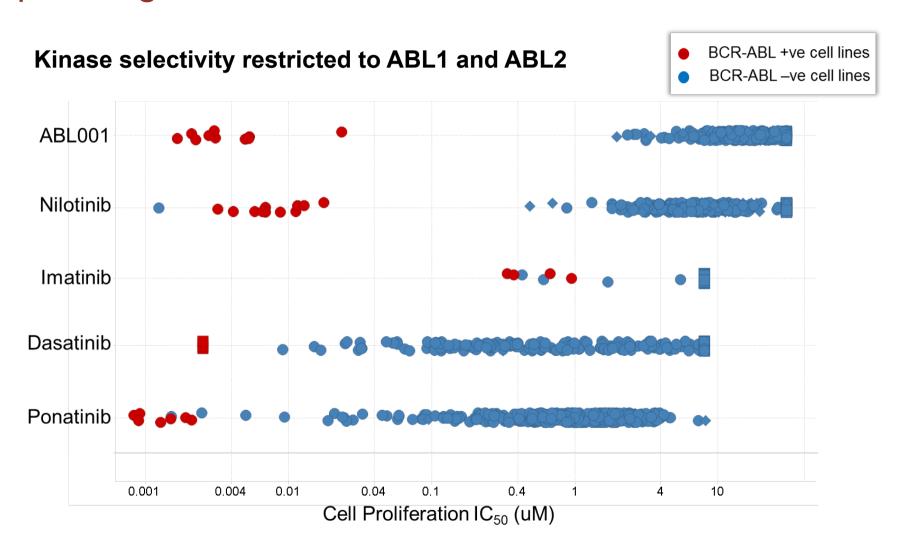

- Higher MMR rates, if compared with imatinib
- Lower number of leukemia-related deaths but no significant survival differences
- CV risk assessment to minimize the incidence and the consequences adverse events
- Higher deep molecular response (DMR) rates in all risk categories
- The benefit of nilotinib over imatinib in terms of stable deep MR and TFR has not been determined yet
- Should any other treatment be added to TKIs to increase the probability of TFR?

ABL001 Is a Potent, Specific Inhibitor of BCR-ABL1 With a Distinct Allosteric Mechanism of Action

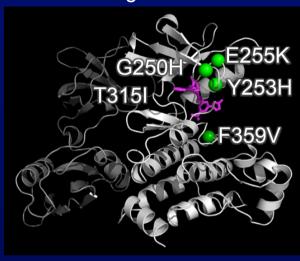

- Developed to gain greater BCR-ABL1 inhibition, with activity against BCR-ABL1 mutations conferring resistance to TKIs
- Potential to combine with TKIs for greater pharmacological control of BCR-ABL1


Autoinhibition of ABL1 by engagement of Myristoyl Binding Site (normal)

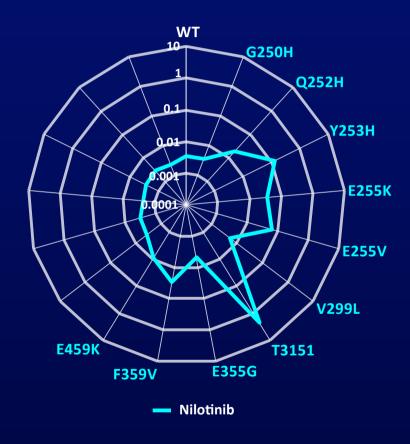
When fused with BCR, this regulatory element is lost (loss of ABL1 Autoinhibition)



ABL001 functionally mimics myristoylated peptide by occupying its vacant binding site and restoring negative regulation

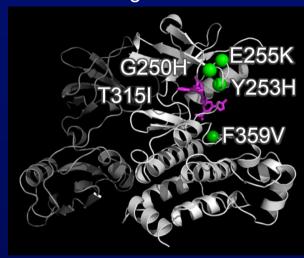


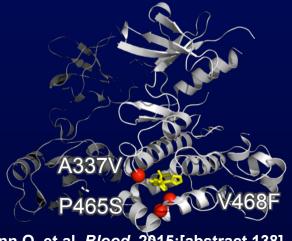
ABL001 selectively inhibits proliferation of cell lines expressing BCR-ABL


ABL001 and Classical TKIs Exhibit Complementary Mutation Profiles

ATP Binding Site Mutations

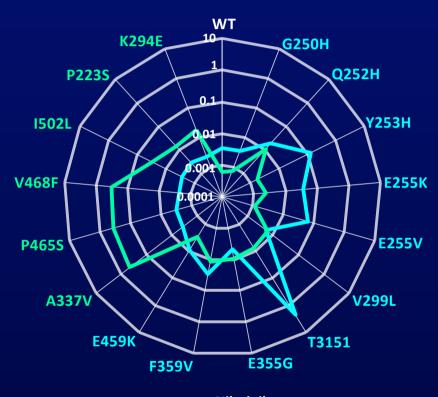
Proliferation IC₅₀ Profiles in Ba/F3


BCR-ABL1-Mutant Lines


ATP binding site mutations

ABL001 and Classical TKIs Exhibit Complementary Mutation Profiles

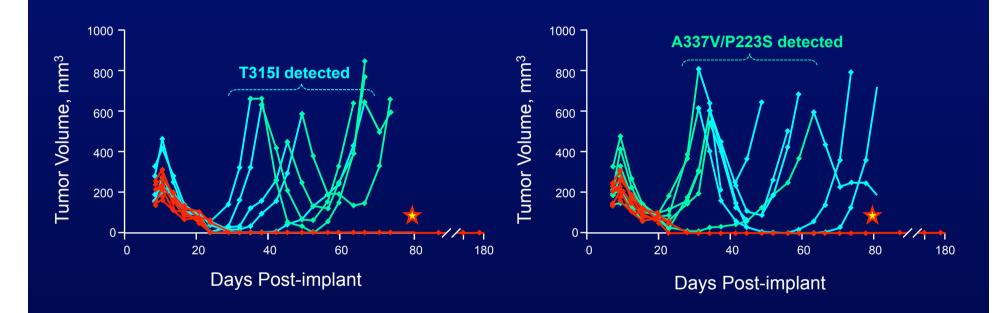
ATP Binding Site Mutations



Myristoyl Binding Site Mutations

Proliferation IC₅₀ Profiles in Ba/F3

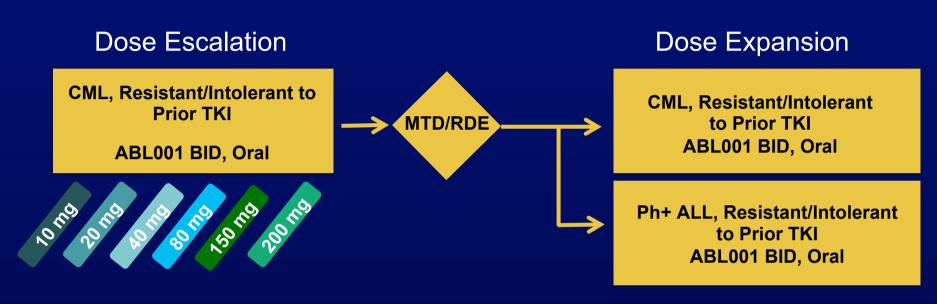
BCR-ABL1-Mutant Lines


Nilotinib

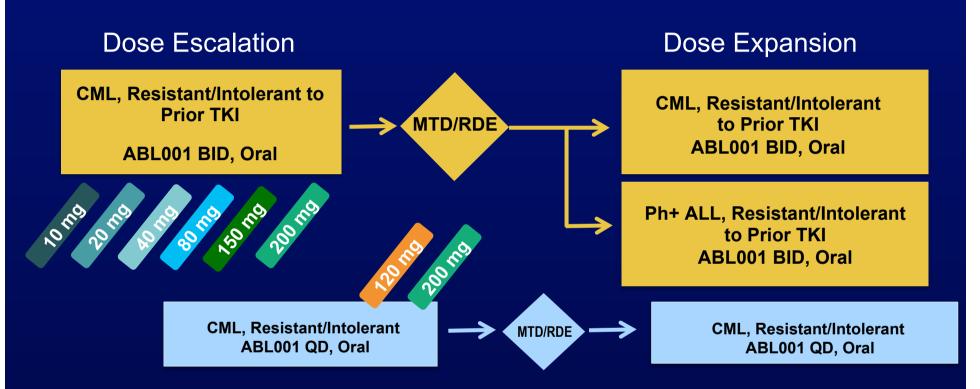
— ABL001

ATP binding site mutations

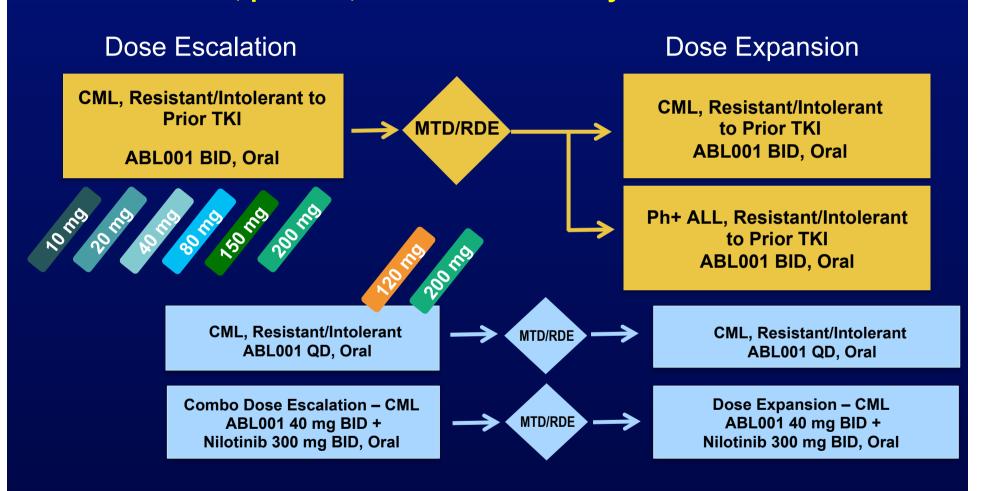
Myristoyl binding site mutations


Combination of ABL001 and Nilotinib Prevents the Emergence of Resistance (KCL-22 CML Xenograft)^a

- → Nilotinib (75 mg/kg) BID
- → ABL001 (30 mg/kg) BID
- → Nilotinib (75 mg/kg) BID + ABL001 (30 mg/kg) BID
- ★ Dosing stopped on day 77, all mice remain disease free > 176 days


^a Each line represents individual animals.

ABL001X2101: Study Design (NCT02081378) A multicenter, phase 1, first-in-human study


- Primary outcome: estimation of MTD/RDE
- Secondary outcomes: safety, tolerability, preliminary anti-CML activity, pharmacodynamics, pharmacokinetic profile

ABL001X2101: Study Design A multicenter, phase 1, first-in-human study

- Primary outcome: estimation of MTD/RDE
- Secondary outcomes: safety, tolerability, preliminary anti-CML activity, pharmacodynamics, pharmacokinetic profile

ABL001X2101: Study Design A multicenter, phase 1, first-in-human study

- Primary outcome: estimation of MTD/RDE
- Secondary outcomes: safety, tolerability, preliminary anti-CML activity, pharmacodynamics, pharmacokinetic profile

Demographics and Baseline Characteristics

	N = 59
Median age (range), years	56 (23 - 78)
Male / female, n (%)	36 (61) / 23 (39)
ECOG 0 / 1 or 2, n (%)	58 (98) / 1 (2)
Prior lines of therapy, median (range)	3.5 (2-5)
2 prior TKIs, n (%)	24 (41)
≥ 3 prior TKIs, n (%)	35 (59)
Resistant to prior TKI, n (%)	45 (76)
Intolerant to prior TKI, n (%)	14 (24)
CML-CP / -AP, n (%)	58 (98) / 1 (2)
TKD nonmutated / mutant / not evaluable, n (%)	18 (31) / 14 (24) / 27 (46)

Patient Disposition

	Monotherapy BID						Monotherapy QD		Nilo + ABL BID	Total
mg	10	20	40	80	150	200	120	200	300 + 40	
n	1	5	12	12	8	5	5	6	5	59
Median duration of exposure, weeks	49	67.3	45.4	38.6	28.6	25.1	26	9.8	6.3	26.3
Ongoing, n (%)	0	5 (100)	10 (83)	10 (83)	5 (63)	3 (60)	5 (100)	6 (100)	5 (100)	49 (83)
Discontinued, n (%)	1 (100)	0	2 (17)	2 (17)	3 (38)	2 (40)	0	0	0	10 (17)
Reason for discontinuation, n (%)										
AE	1 (100)	0	1 (8)	2 (17)	2 (25)	1 (20)	0	0	0	7 (12)
Withdrew consent	0	0	0	0	1 (13)	1 (20)	0	0	0	2 (3)

0

1a (2)

0

0

0

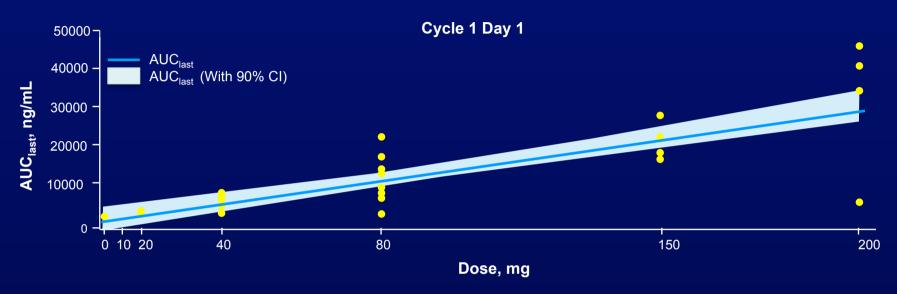
1 (8)

0

0

0

0


Ottmann O, et al. Blood. 2015:[abstract 138].

Disease

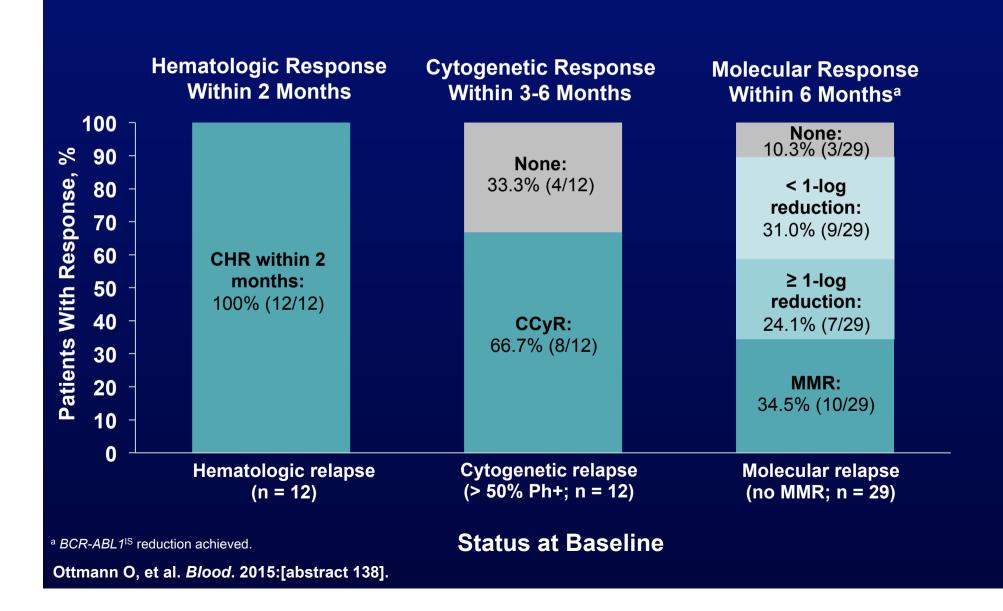
progression

^a Patient had myristoyl binding pocket mutations (V468H, I502L).

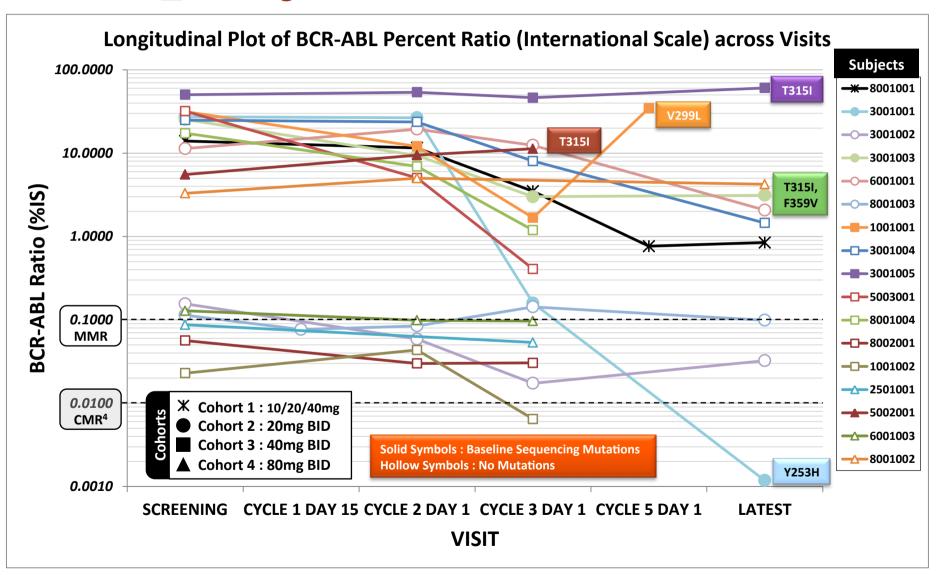
ABL001 Pharmacokinetic Profile Exhibits Dose Proportionality From 10 to 200 mg BID

Dose proportionality using C1D15 (steady state) AUC_{last} from individual patients: 10 to 200 mg BID

- Rapid absorption (median T_{max} ≈ 2 to 3 h)
- Dose-proportional increase in exposure following single and repeated dosing
- Low (< 2-fold) to moderate (≈ 2-fold) accumulation on repeated dosing
- Short apparent elimination half-life (median ≈ 5 to 6 h)


Safety: Adverse Events Suspected of Being Related to Study Drug Occurring in ≥ 5% of Patients (n = 59)

Adverse Event	All Grades, n (%)	Grade 3/4, n (%)
Thrombocytopenia	11 (19)	4 (7)
Neutropenia	9 (15)	4 (7)
Anemia	6 (10)	3 (5)
GI (N/V/D)	17 (29)	0
Arthralgia/myalgia	12 (20)	0
Skin (rash)	10 (17)	0
Fatigue	9 (15)	0
Lipase increase	8 (14)	4 (7)
Headache	8 (14)	0
Pruritus	6 (10)	0
Dry skin	4 (7)	0
Hypophosphatemia	4 (7)	1 (2)
Acute pancreatitis	3 (5)	0


Safety: Dose-Limiting Toxicities

- All patients had > 1 postbaseline safety assessment
- There were 5 dose-limiting toxicities:
 - Grade 3 lipase increase (n = 2, 40mg BID, 200 mg QD)
 - Grade 2 myalgia/arthralgia (80 mg BID)
 - Grade 3 acute coronary event (150 mg BID)
 - Grade 3 bronchospasm (200 mg BID)
- No deaths occurred on study
- Dose escalation is ongoing

Responses in Patients With ≥ 3 Months of Follow-up on Study (n = 29)

ABL001 exhibits single agent activity at doses ≥ 10 mg BID

ABL001 – Take home messages

- ABL001 generally well tolerated in heavily treated CML patients resistant to or intolerant of prior TKIs
- Preliminary pharmacokinetic exposures appear linear in the dose range tested
- Early evidence of single-agent efficacy at ≥ 10 mg BID
 - Clinical activity across TKI-resistant mutations (eg, V299L, F317L, Y253H)
 - Myristoyl binding pocket mutations (V468H, I502L) may lead to clinical resistance
- Allosteric inhibition of BCR-ABL1 is a promising approach
- Enrollment ongoing to determine the recommended dose (safety and tolerability)
- Combination with other TKIs (NIL, IM, DAS)?

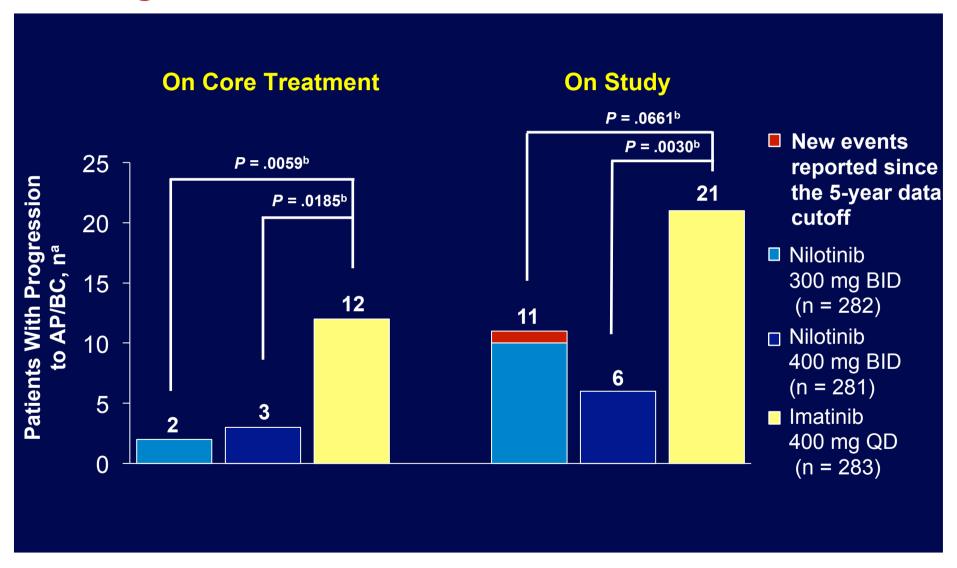
Thank you for attention!

fausto.castagnetti@unibo.it

Evolution of CML treatment

	2006 ¹	2009 ²	2013 ³
1st LINE	Imatinib 400	Imatinib 400	Nilotinib Dasatinib Imatinib 400-600-800
2nd LINE	Imatinib 600-800 Allo-SCT	Nilotinib Dasatinib Allo-SCT	Nilotinib Dasatinib Bosutinib Ponatinib Allo-SCT
3rd LINE	Palliation	Palliation	Anyone of remaining TKIs Allo-SCT

¹⁾ Baccarani M et al, Blood, 2006


²⁾ Baccarani M et al, J Clin Oncol, 2009

³⁾ Baccarani M et al, Blood, 2013

Unanswered clinical questions

- What is the optimum level of MRD and what is the minimum duration of TKI treatment and deep MR before attempting TFR?
- Which patients are the best candidates for a treatment discontinuation?
- Is there a difference in the rate of stable deep MR and TFR after imatinib, nilotinib or dasatinb treatment?
- Any other treatment should be added to TKIs to increase the probability of TFR?

Progression to AP/BC

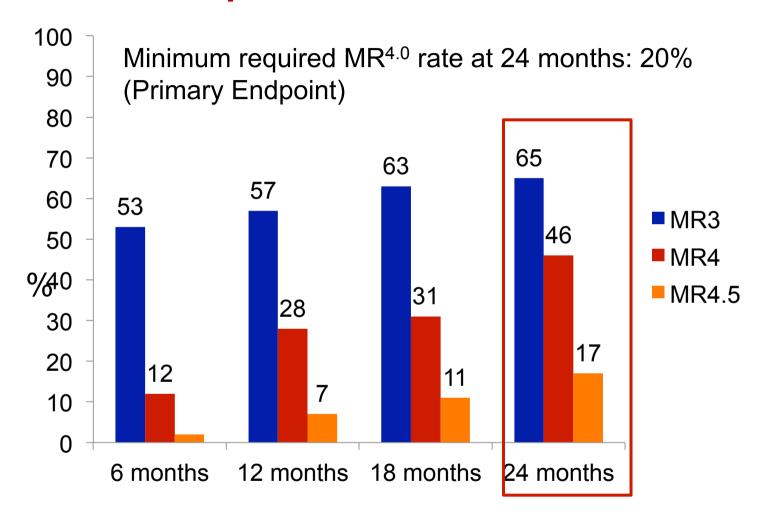
2nd Generation TKIs in Early CP Outcome and Responses By 5 Years

	ENESTr	nd ¹		Dasision ²
Treatment	Nilotinib	Imatinib	Imatinib	Dasatinib
Patient N.	282	283	260	259
5-year PFS ^{&}	92.0%	91.1%	85.5%	85.4%
5-year OS^	93.6%	91.6%	89.6%	90.9%
MMR	77%	60%	64%	76%
MR ^{4.5}	54%	31%	33%	42%

Note: Data from different studies, please interpret with care.

ENESTnd: death from any cause or progression to AP/BC.
DASISION: WBC doubling, loss of CHR, increase in Ph+ metaphases to >35%, transformation, or death from any cause

[^] ENESTnd Including events occurring on core or extension treatment or during f/u after treatment discontinuation; DASISION Total n. of deaths on-study treatment and in follow-up after discontinuation of randomized treatment.

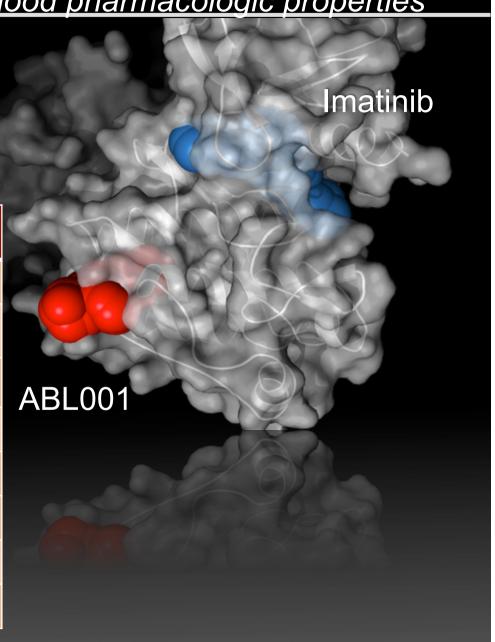

Interferon + Imatinib combination studies

	FRENCH SPIRIT ¹	NORDIC ²	Ger-CML Study IV ³	MDAnderson ⁴
IFN type	PEG	PEG	No PEG	PEG + G-CSF (IMA 800)
MMR	Yes	Yes	No	No
CCyR	No	No	No	No
Survival	No	NA	No	No
Toxicity	Yes	Yes	No	Yes

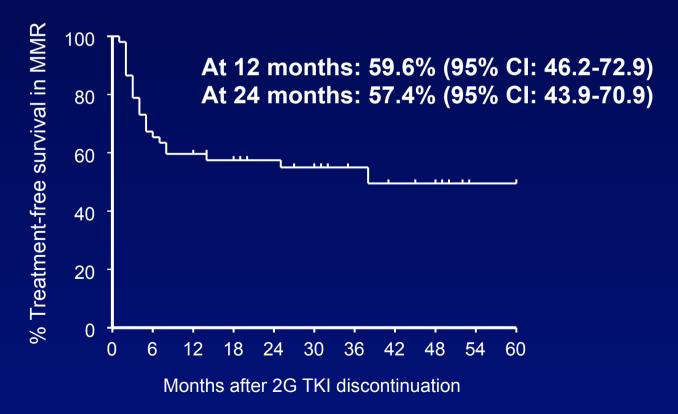
- 1. Preudhomme C et al., N Engl J Med. 2010;363(26):2511-21
- 2. Simonsson B, et al. Blood 2011;118(12):3228-3235
- 3. Hehlmann R et al., JCO 2011;29:1634-1642
- 4. Cortes J et al. Cancer. 2011;117(3):572-80

Molecular response at milestones

N = 130


Intention-to-treat-analysis

ABL001


Potent allosteric inhibitor with good pharmacologic properties

Assay	ABL001
Biochemical IC ₅₀ , ABL ^{WT}	1.2 nM
Cellular IC ₅₀ BCR-ABL ^{WT}	1 nM
Cellular IC ₅₀ BCR-ABL ^{T315l}	25 nM
Cellular IC ₅₀ WT BaF/3	>10 µM
hERG	>30 µM
Qpatch Clamp	26 µM
PAMPA class, F %	36
CYP3A4,2D6,2C9	>20 µM

Dasatinib or nilotinib discontinuation in CP-CML patients with durably undetectable transcripts: interim analysis of the STOP 2G-TKI study (follow-up \geq 12 months)

- 2G-TKI frontline or after intolerance/resistance to imatinib
- TKI therapy for at least 3 years
- Undetectable BCR-ABL* (CMR4.5) for at least 2 years

NILOTINIB 800 MG FRONTLINE Stable Deep Molecular Response

METHODS

- -Stable MR^4 : ≥ 5 evaluations during the preceding 2 years of treatment
- Minimum follow-up: 60 months

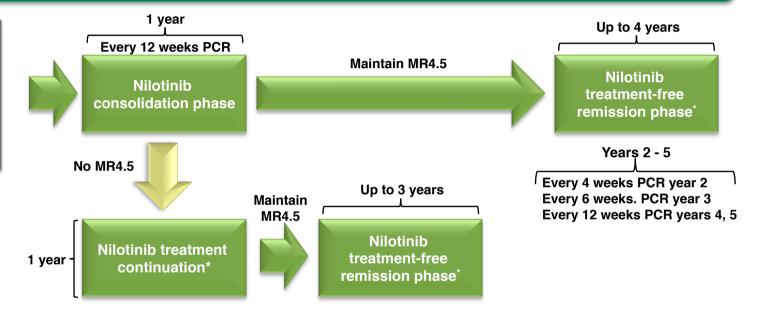
56/73 (76%) patients had a MR⁴ at least once

Of the 55 patients still on nilotinib at last contact:

- \rightarrow 18 (33%) were in stable MR⁴
- →24 (44%) fluctuated between 0.1 and <0.01%

42/73 (58%) patients eligible for TFR studies

More patients eligible for TFR studies with 2nd generation TKIs

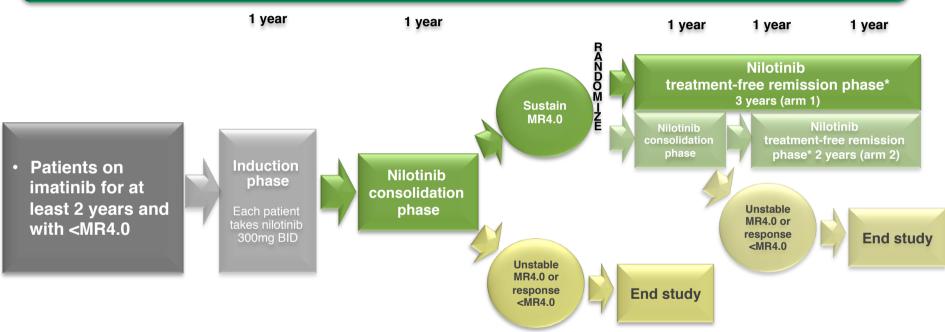

ENESTfreedom

Global

evaluates stopping nilotinib treatment in adults with Ph+ CML-CP after achieving and maintaining MR4.5 with nilotinib as first-line treatment

 Patients on nilotinib for at least 2 years and with MR4.5

- Primary objective: Rate of TFR (no loss of MMR and no reinitiation of nilotinib treatment) at 48 weeks from start of the TFR phase
- Study status
 - Fully accrued (N= 217)
 - Primary Endpoint Analysis ASCO, EHA 2016



ENESTpath

Europe

evaluates treatment-free remission rate in patients with Ph+ CML-CP after two different durations of consolidation treatment with nilotinib 300mg BID

- Primary endpoint: The number of patients who remain in treatment-free remission (≥MR4.0), without molecular relapse, at the end of 12 months in the TFR phase of the study, in the nilotinib 12 months consolidation treatment arm versus the nilotinib 24 months consolidation treatment arm
- Study status
 - Fully accrued (N=602 + 76 still on screening)
 - First Interim Analysis: ASH 2015
 - Primary Endpoint Analysis ASCO, EHA 2020

^{*}If patient does not maintain MR4.0, treatment with nilotinib 300mg BID will be restarted.