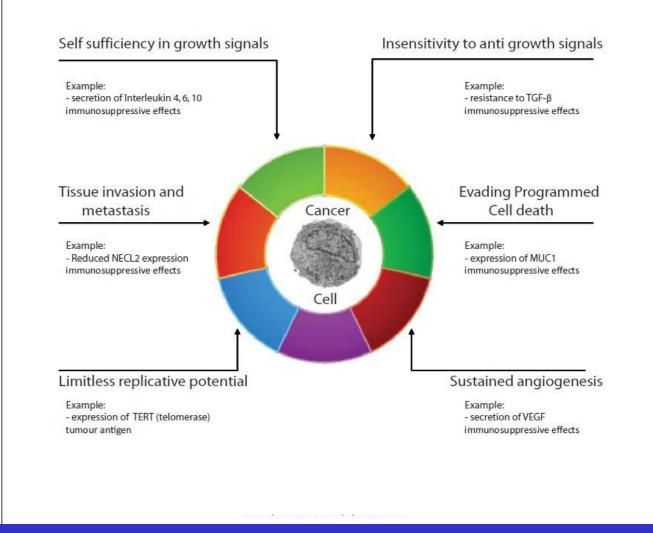


LOGIA

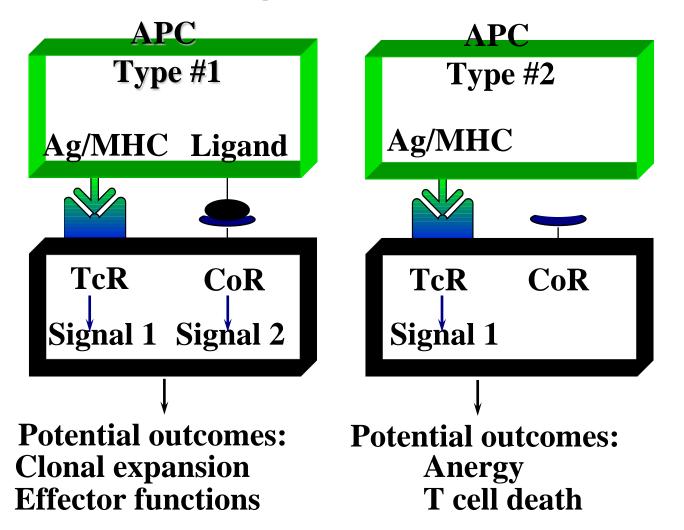
President: Pier Luigi Zinzani Co-President: Michele Cavo Honorary President: Sante Tura Bologna, Royal Hotel Carlton May 9-11, 2016

CAR T cells

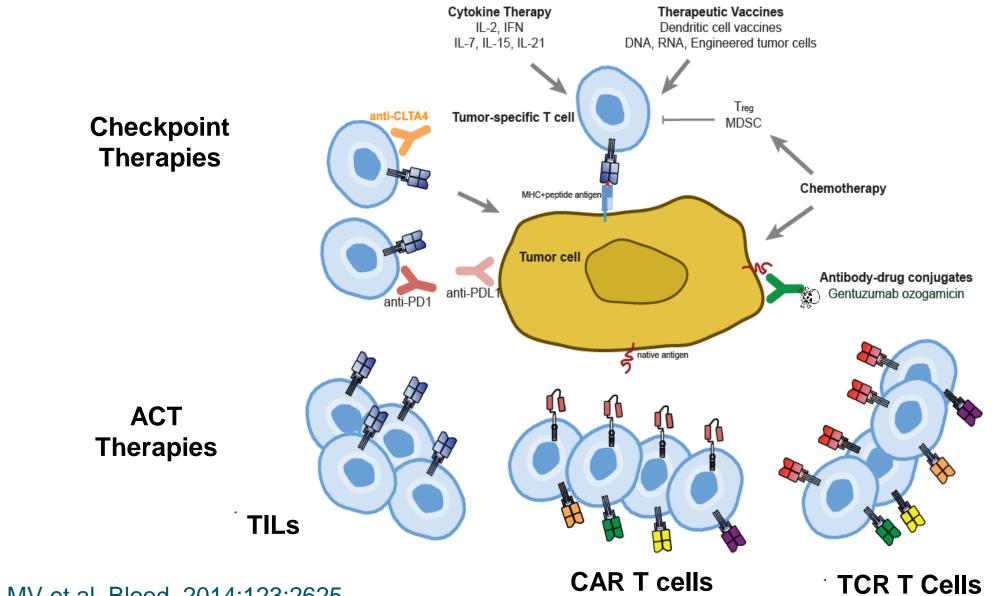
Carl June May 9, 2016


Disclosures of: *Carl June*

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Novartis	xx						IP licensure / Royalty
Tmunity				xx			

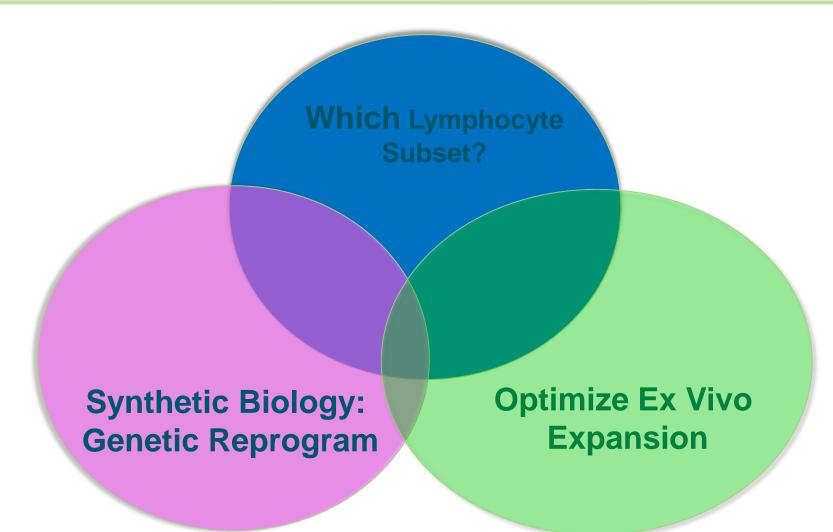

- New CAR designs
- CD19 CARs for lymphoma
- BCMA CARs for myeloma
- Combination immunotherapy:
 - => CARs meet checkpoints

Hallmarks of Cancer: Immune Escape and Tolerance

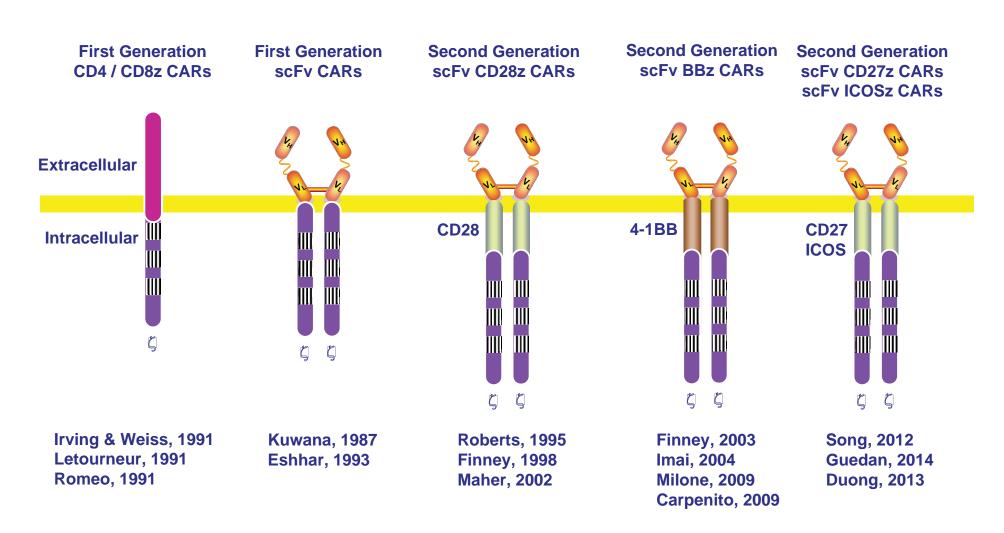


Tesniere, et al. *Discovery Med* (2009) Hannahan and Weinberg. *Cell* (2000)

Lafferty and Cunningham Model of Immunologic Tolerance: 1975



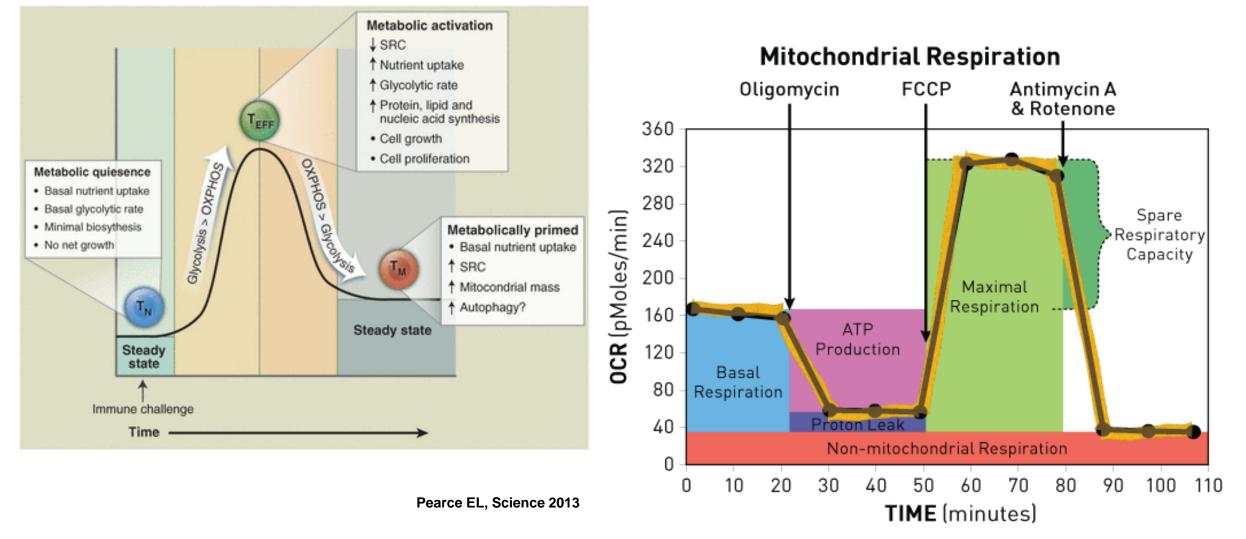
Approaches to Overcome Self Tolerance: ACT and Checkpoint Therapies



Maus MV et al. Blood. 2014;123:2625.

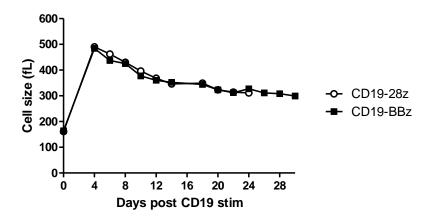
Essential factors for augmenting adoptive immunotherapy

Using Synthetic Biology to Overcome Tolerance Creation of Bi-specific CAR T cells

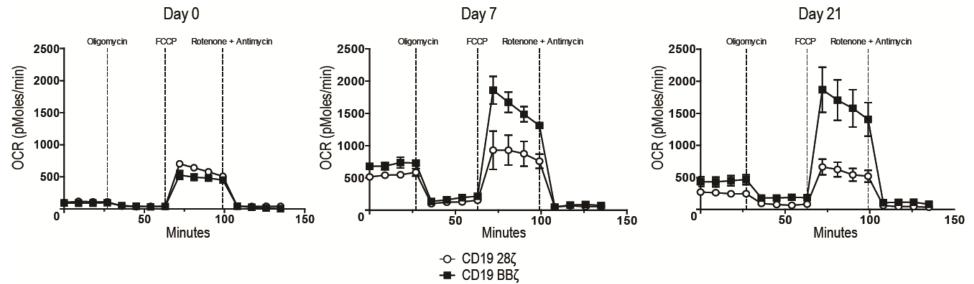


Design of CAR T Cells

Metabolic Features of Natural T cells


Higher Spare Respiratory Capacity memory T cells

Seahorse assay


Oxygen consumption profiles of CAR T cells

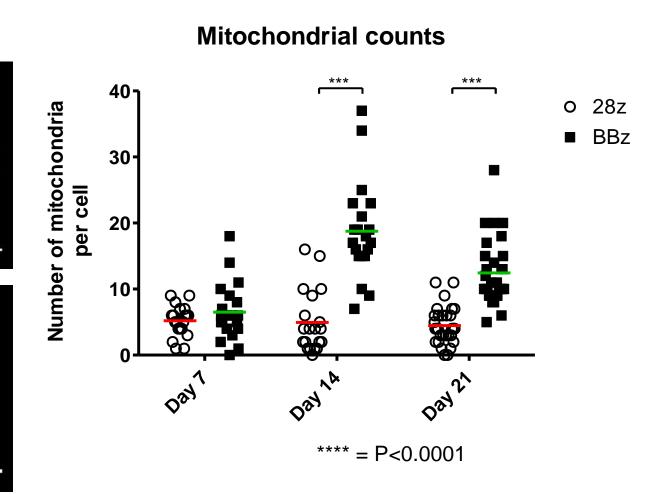
Cytosolic signaling domain has differential effects on cell volume and oxygen consumption

Kawalekar et al, Immunity 44: 380, 2016

Day 21

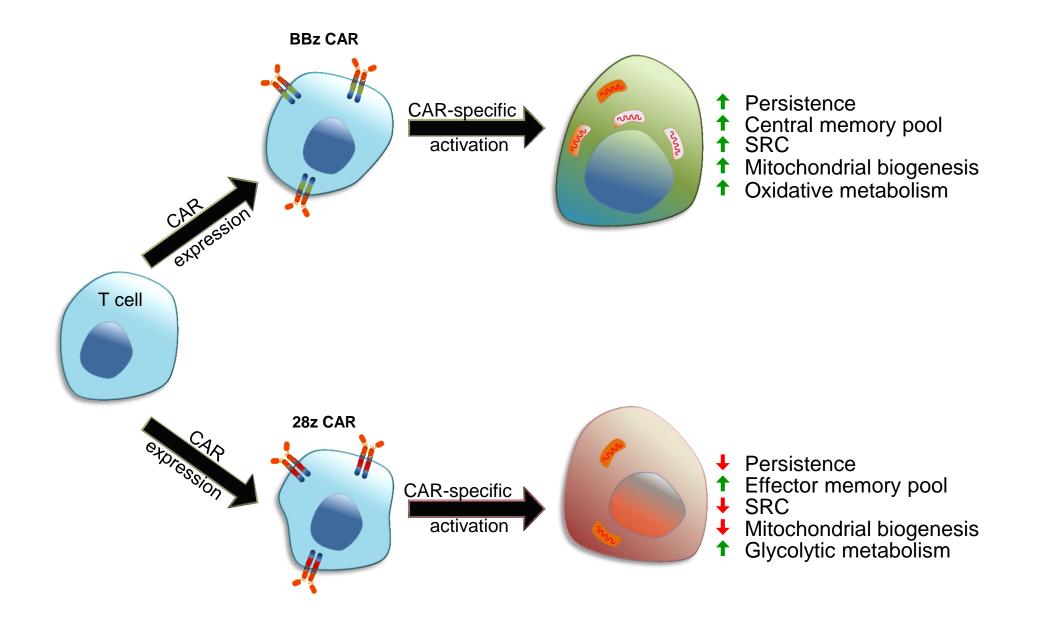
2µm

CD8+ T cells: confocal microscopy


Day 14

28ζ

ΒΒζ


Mitotracker

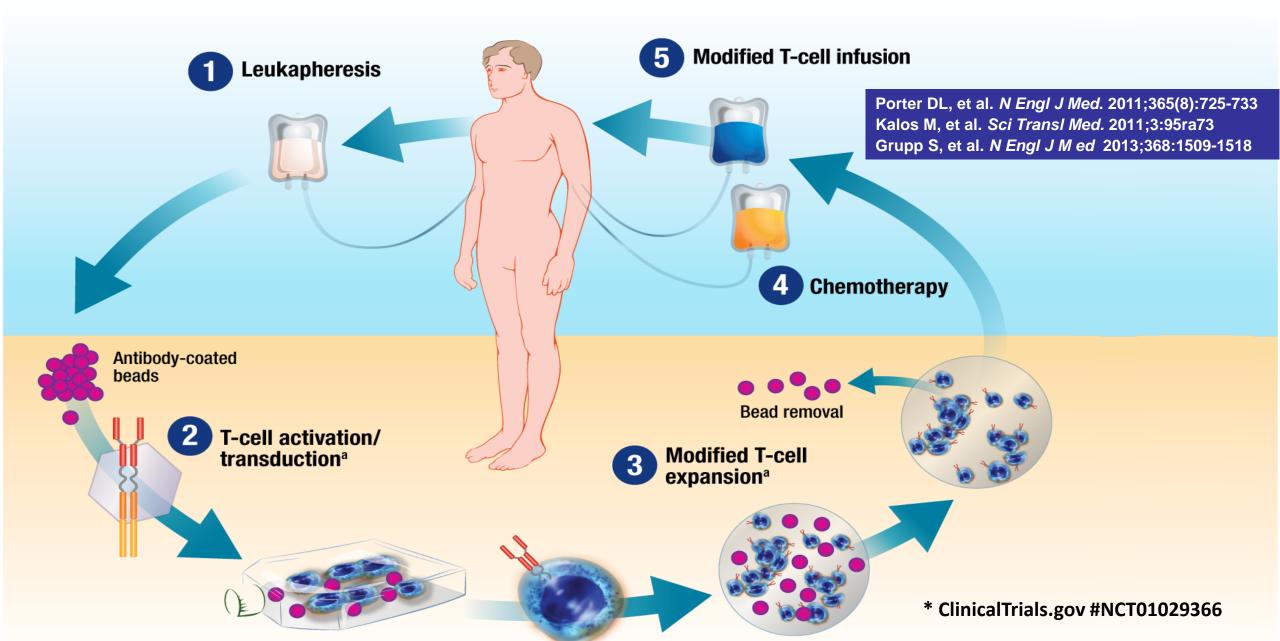
Dil – cell membrane stain DAPI

Kawalekar et al, Immunity 44: 380, 2016

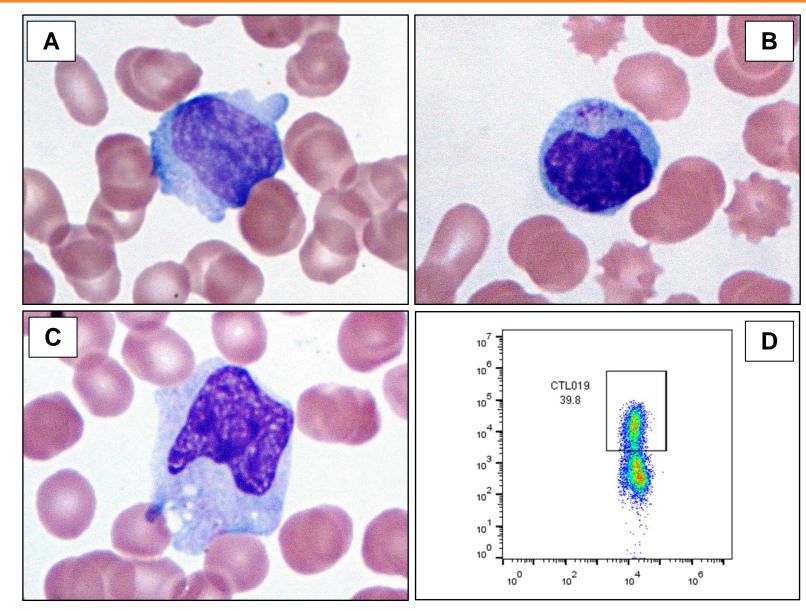
CAR Signaling Domains Program Cells for Metabolic Fitness

CAR T Cells: they are bionic!

- CAR scFv or TCR can reprogram specificity of T cells for tumor target. Specificity is important to avoid toxicity
- CAR signaling domains can reprogram T cell metabolism. This can enhance survival in tumor microenvironment and effector function:
 - CD28 domains: enhance glycolysis via "Warburg" effect. This leads to enhanced effector function and decreased persistence
 - 4-1BB domains: enhance mitochondrial biogenesis, and are associated with enhanced persistence
 - ICOS domains: enhanced persistence and cellular respiration in CD4 CAR T cells


CAR T Cell trials: Examples at Penn and Novartis

Institution	CAR	Target Indication
UPENN CHOP	CART19	CLL, ALL, DLBCL, Follicular Lymphoma, Myeloma
UPENN	CART BCMA	Myeloma
UPENN	CART Mesothelin	Pancreatic cancer, ovarian cancer, mesothelioma
UCSF	CART Mesothelin plus CART19	Pancreatic cancer
UPENN	CART cMet	Triple-negative breast cancer
UPENN UCSF	CART EGFRviii	Glioblastoma


University of Pennsylvania (as of Dec 2014)

Trial	Engineered T Cell	# Patients Infused	Safety (Patient-Years)
Sangamo ZFN (HIV)	Ad5/35 zinc finger nuclease	12	49.1
CD4z CAR (HIV)	Retroviral CAR	44	690.6
Takara (HIV)	Retroviral MazF	5	4.4
VirxSys VRX496 (HIV)	Lentiviral antisense HIVenv	20	161.9
Adaptimmune (HIV) Lentiviral gag TCR		2	6.6
Adaptimmune Myeloma and Sarcoma	Lentiviral NY-ESO1 TCR	21	54.3
Novartis CART19/CTL019	Lentiviral 19:BBz CAR	151	246.3
	Total	255	1213

Adult Chronic Leukemia Study Overview*

Circulating CTL019 in CLL: diagnostic challenge!

Recognition of CAR T cells can be a challenge

In CLL: CAR T or Richter's transformation?

Bagg, Wasik et al

CTL019 Phase I Trial for r/r CLL: 5 yr follow up Summary of patient baseline characteristics

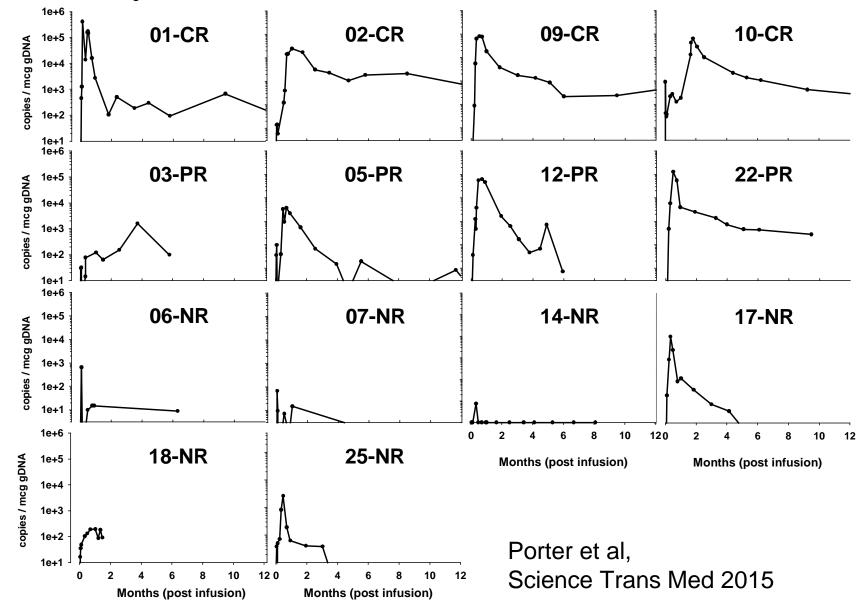
N= 14 patients, protocol 04409 (NCT01029366)

Characteristics	Statistics, N(%)	
Ν	14	Overall
Age at infusion in years		
Mean (SD)	66.9 (8.1)	• CR 4/1
Median (range)	66 (51-78)	
Gender		PR 4/1
Male	12 (85%)	- 1 1 (+/ 1
Female	2 (14%)	• NR 6/1
Number of prior therapies		
Mean (SD)	5.3 (2.8)	
Median (range)	5 (1-11)	
P53 or 17p deletion		
No	8 (57%)	
Yes	6 (43%)	
IGHV mutation		
No	9 (64%)	
Yes	4 (29%)	
Unknown	1 (7%)	Porte

Il response rate: 57%

4 (28%)

4 (28%)


4 (43%)

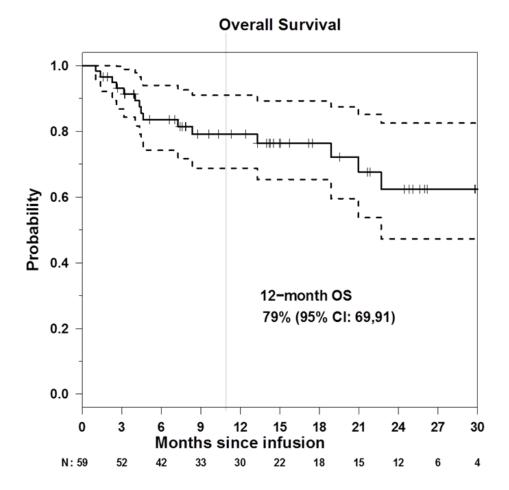
er et al, Science Trans Med 2015

Long term persistence and expression of CTL019 in CLL is associated with durable remission

The second

Persistence for first year after infusion

Key CAR-T Results: Pediatric/Young Adult ALL


	CTL019 (anti-CD19)	JCAR017 (anti-CD19)	JCAR018 (anti-CD22)	KTE-C19 (anti-CD19)
Trial [sponsor]	Phase I/IIa, NCT01626495 / CHP959 [Univ of Pennsylvania]	Phase I/II, NCT02028455 / PLAT-02 [Seattle Children's Hospital]	Phase I, NCT02315612 [National Cancer Institute]	Phase I, NCT01593696 [National Cancer Institute]
Patient population	4-24 yrs*, ≥2 nd r/r ALL (N=59), ≥2 nd relapse or refractory (majority refractory to multiple prior therapies) [*enrolled adults too; efficacy data here is for pediatric cohort only]	1-26 yrs, r/r ALL (N=37, evaluable N=32); majority (>75%) have had 1 or 2 relapses; ~2/3 have had transplant	7-22 yrs, r/r ALL, (N=9, 7 assessed) all had undergone ≥1 prior alloHSCT and had been previously treated with a CAR-T	4-27 yrs, r/r ALL or NHL (N=46 infused ; ALL n=45, DLBCL n=1). Prior transplant history not stated.
Dosing	Varied lymphodepleting chemotherapy regimens used. Target dosing 10⁷-10⁸ cells/kg . Median 4.3x10 ⁶ cells/kg infused	Varied lymphodepleting strategies used 4 dose levels: 5x10 ⁵ -1x10 ⁷ cells/kg; MTD 5x10⁶ cells/kg better risk-benefit profile with much lower 5x10⁵ cells/kg dose	Induction chemotherapy with fludarabine 25 mg/m ² days -4,- 3,-2 and cyclophosphamide 900 mg/m ² on day -2 Lowest dose: 3x10⁵ cells/kg (6 pts treated). Next dose: 1x10⁶ cells/kg (3 pts treated)	Initial 21 pts and all w low burden: low-dose chemo: fludarabine (25 mg/m ² /day days -4 to -2) and cyc (900 mg/m ² day -2) High disease burden: high-dose individualized chemotherapy regimen Dose-finding: 1x10 ⁶ or 3x10 ⁶ cells/kg; MTD was 1x10⁶ /kg
Response rate	CR 93% (55/59) at 1 month, median f/u 12 mo	CR 91% (21/22) as of Sept 2015 data cut-off; CMR 91% (85% MRD-negative)	(Preliminary data) 2/7 pts had MRD-negative CR (1 at each dose), 2 with SD, 3 with PD, 2 pts too early to assess	CR 60%
Response durability	18 pts in remission >1 yr, 13 without further therapy	Longest CR: 7 mos	In the 1 MRD-negative CR pt, sustained at 2 mo (relapsed at 3 mo)	Longest CR 28 mo (in pt with primary refractory ALL) Median LFS 17.7 mo (45.5% probability of LFS at 18 mo), based on 20 pts who achieved MRD-negative CR
Persistence of CAR T cells	Detectable 3 yrs or longer	3 mos	In the 1 MRD-negative CR pt, 19% CAR T cells in bone marrow at 2 mo	68 days
Safety	sCRS in 27% (8/30) among early (N=30) cohort/ CRS (all grades) 88% of larger pediatrics cohort (N=59). Severe AEs: 43% (13/30) neurotoxicity; self-limiting. 3 CRS-related deaths among adult pts (none among pediatric pts)	CRS 27% (n=22) 18% (n=22) neurotoxicity. No deaths reported	Max CRS was gr 2; no dose- limiting CRS. At lowest CAR-T dose, 1 pt had gr 3 diarrhea. No deaths reported	sCRS 7/46 (15%); grade 3/4 neurotox 3/46 (7%); no permanent neurocognitive decline No deaths reported.

2

93% CR rate for r/r ALL after CTL019

>200 patients with CLL, ALL, NHL, MM have gotten CTL019

- 59 r/r pediatric ALL pts:
 55 in CR at 1 mo (93%) median f/u 12 mo
- 6 went to subsequent transplant, 1 to DLI
- 6 mo RFS: 76% (95%ci 65-89%)
 12 mo RFS: 55% (95%ci 42-73%)
- No relapses past 1 year
- 18 patients in remission beyond 1 year

Some of Dr Grupp's Pediatric Leukemia Patients

White House Visit to UPENN Vice President Biden: Moonshot Discussions, Feb 2016

Vatican Conference, April 2016 Convegno internazionale promosso dal pontificio consiglio della cultura

CELLULAR Horizons

How Science, Technology, Information and Communication Will Impact Society VATICAN CITY APRIL 28-30, 2016

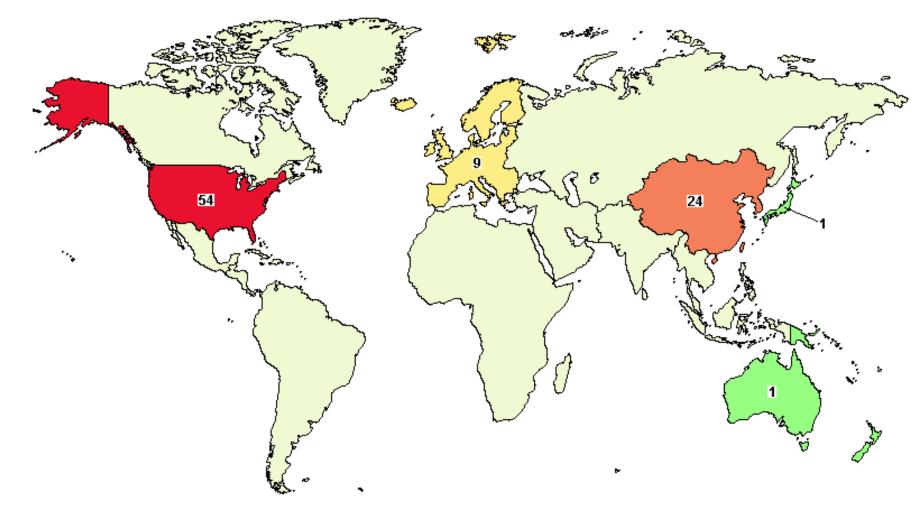
Vatican Conference, April 2016 Convegno internazionale promosso dal pontificio consiglio della cultura

Pope Francis and Nick Wilkins, ALL pt# 15

Determine Efficacy and Safety of CTL019 in Pediatric Patients with Relapsed and Refractory B-cell ALL (ELIANA)

US sites

- Children's Hospital of Philadelphia
- Cincinnati Children's Hospital
- University of Wisconsin
- Children's Medical Center of Dallas/UTSW
- Children's Mercy Kansas University
- Oregon Heath & Science University
- Stanford University
- University of Minnesota
- Children's Hospital Los Angeles
- University of Michigan
- Duke University

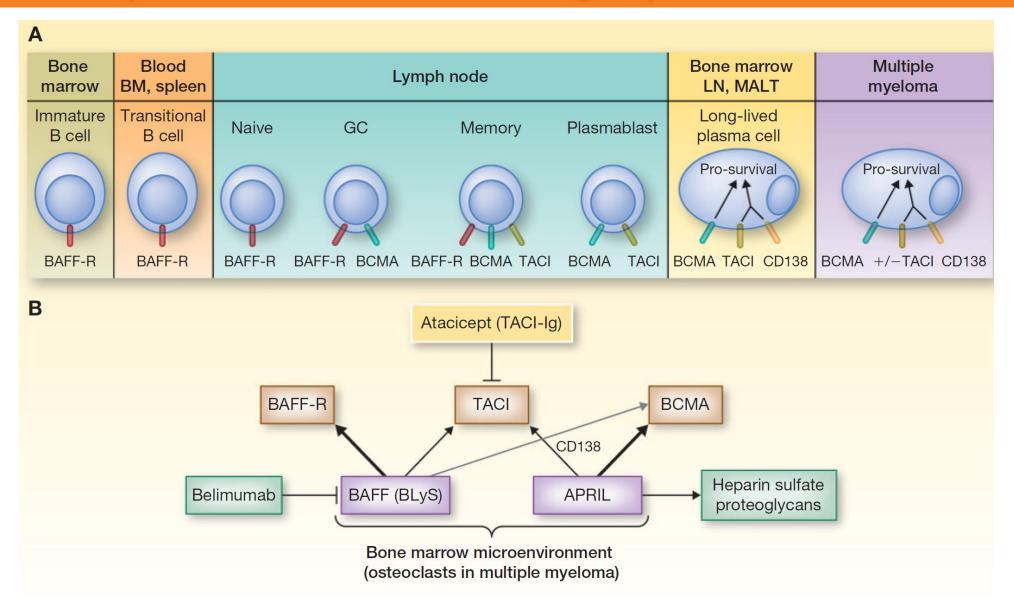

Ex- US

(Canada, Australia, EU, Japan)

- Royal Children's Hospital (Australia)
- Hospital St. Justine (Canada)
- Ghent University (Belgium)
- Oslo Univ. Hospital (Norway)
- Kyoto (Japan)

Clinicaltrials.gov NCT02435849 Protocol closed to enrollment

CAR T Cell Trials Are Now Global


Clinical trials.gov search term "chimeric antigen receptor" 88 trials ongoing as of December 10, 2015

Moving beyond leukemia: CAR T for myeloma*

Institution	CAR	Protocol Title
NCT02135406 UPENN	CART19	Pilot Study of Redirected Autologous T Cells Engineered To Contain Anti- CD19 Attached To TCRζ And 4-1BB Signaling Domains Coupled With Salvage Autologous Stem-Cell Transplantation (ASCT) In Multiple Myeloma Patients With Early Relapse/Progression After Initial ASCT
NCT02215967 NCI	CART BCMA	A Phase I Clinical Trial of T-Cells Targeting B-Cell Maturation Antigen for Previously Treated Multiple Myeloma
NCT02546167 UPENN	CART BCMA	Pilot Study of Redirected Autologous T Cells Engineered To Contain an Anti-BCMA scFv Coupled To TCRζ And 4-1BB Signaling Domains in Patients With Relapsed and/or Refractory Multiple Myeloma
NCT02658929 NCI / Bluebird Bio	CART BCMA	A Phase 1 Study of bb2121 in BCMA-Expressing Multiple Myeloma
NCT01886976 Chinese PLA General Hospital	CART 138	Clinical Study of Chimeric CD138 Antigen Receptor-modified T Cells in Relapsed and/or Chemotherapy Refractory Multiple Myelomas

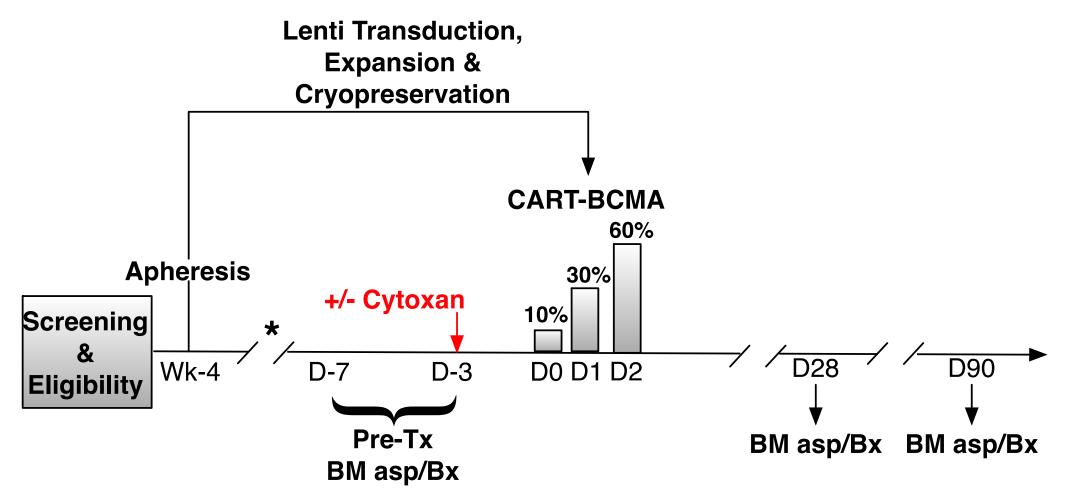
* clinicaltrials.gov

BCMA (B-cell maturation antigen)

Maus and June, Clin Cancer Res 2013

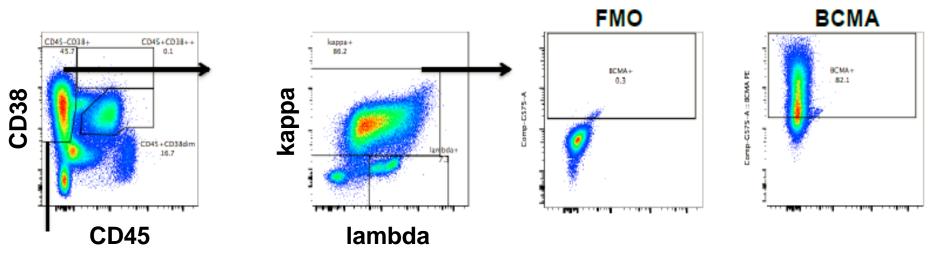
clinicaltrials.gov NCT02546167

;	Signal seq.	VH	Linker	VL	$CD8\alpha$ Hinge and TM	4-1BB	CD3ζ
---	----------------	----	--------	----	-----------------------------	-------	------


- Pilot, first-in-human, 3+3 dose-escalation study
- n=12-18 rel/ref MM patients (≥ 3 priors)
- Primary obj: Safety

Adam Cohen Michael Milone

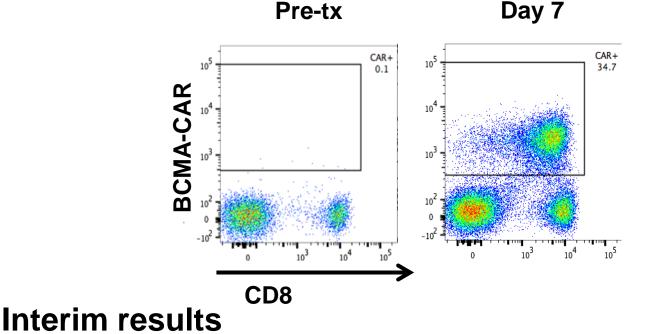
Cohort	Lymphodepleting chemo	CART-BCMA cell dose
-1	-	1 to 5 x 10 ⁷
1 (n=3-6)	-	1 to 5 x 10 ⁸
2 (n=3-6)	Cytoxan 1.5 g/m ²	1 to 5 x 10 ⁷
3 (n=3-6)	Cytoxan 1.5 g/m ²	1 to 5 x 10 ⁸

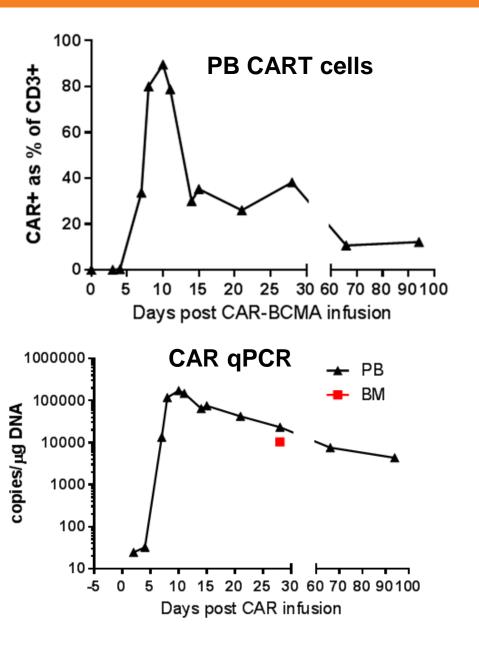

Overall Study Design

* Patients may receive therapy during manufacturing to maintain disease control

Subject #1

- 66M, IgG kappa MM dx'd April 2006
 - 11 prior lines, progressing on last therapy
 - Pre-treatment bone marrow bx: 70% MM cells
 - FISH: gain CCND1, del17p, loss of MAF (16q)
 - NGS: mutations in NRAS, TP53, TP53

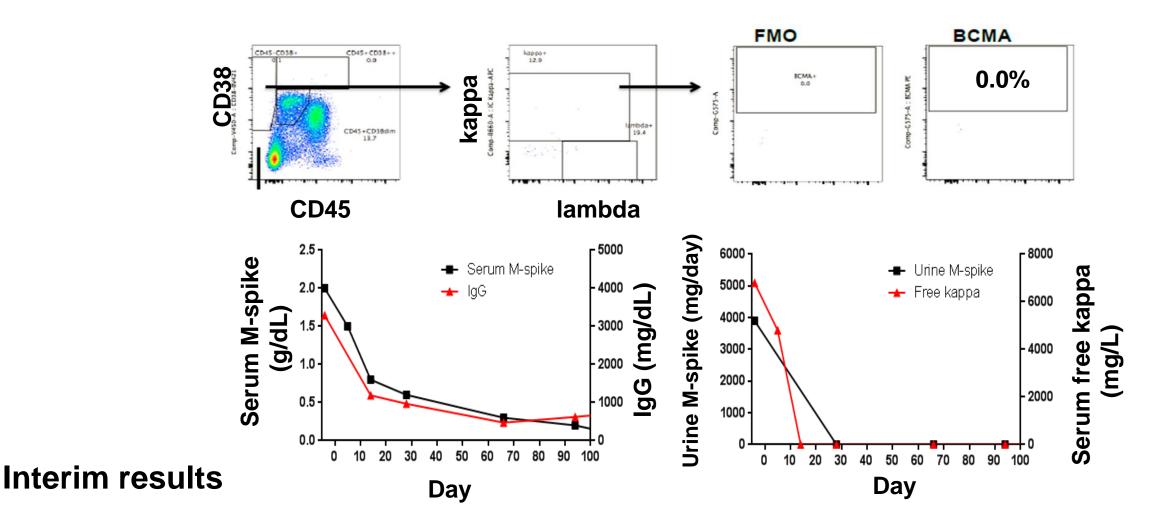


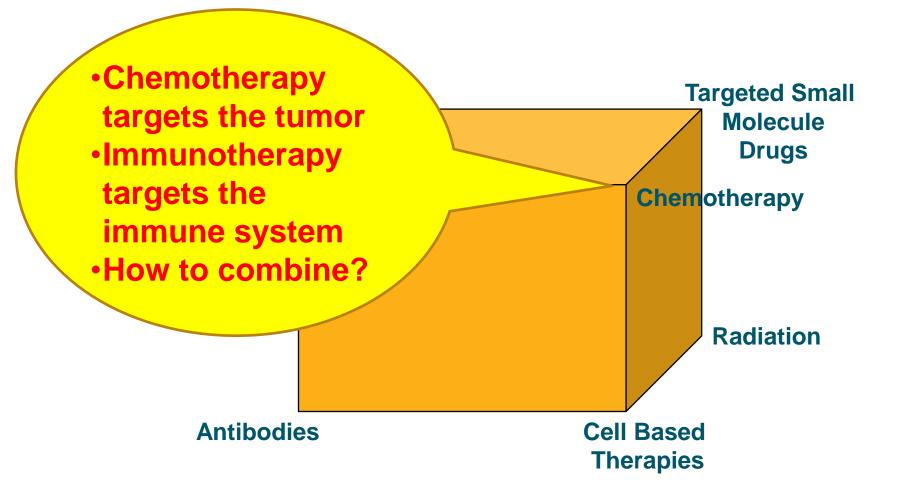

Pre-treatment marrow

Interim results

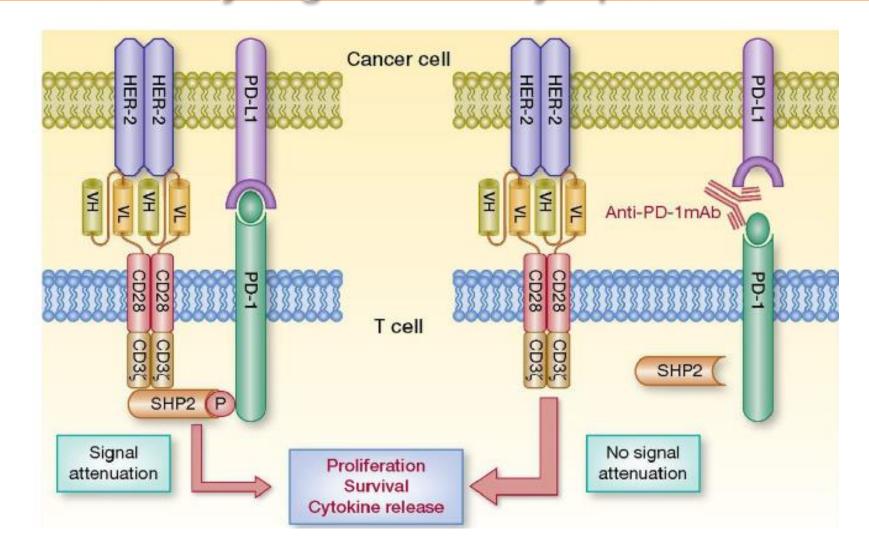
Subject #1

- 2 x 10⁸ CART-BCMA cells => no lymphodepletion
- Grade 3 CRS→ responded to tocilizumab
- Robust CART-BCMA expansion and persistence: similar to CART19

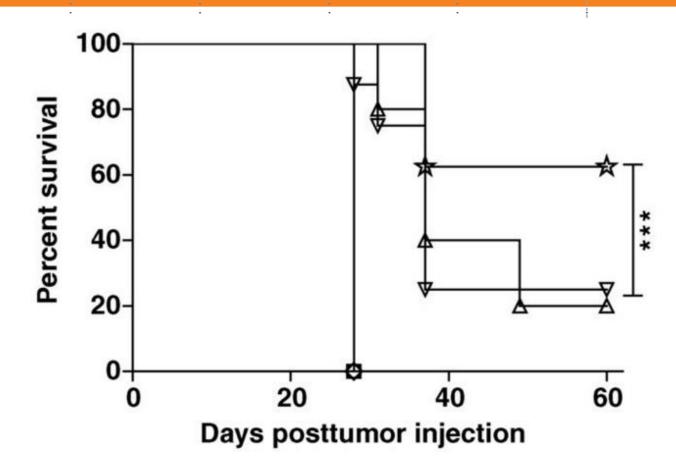



CART-BCMA Cells for Multiple Myeloma: Response

Subject #1


- Day 28 marrow: negative for myeloma by IHC and flow
- Ongoing response (5+ months)

Combinatorial Cancer Immunotherapies: Many possibilities



CAR T Cells and Checkpoint Antibody Therapies Have Potential Synergism at the Synapse

Morales-Kastresana A. Better Performance of CARs Deprived of the PD-1 Brake. Clin Cancer Res. 2013;19(20):5546-8

CAR T Cells and Checkpoint Antibody Therapies: Potential Synergism

- Nontreated
- ---- LXSN T cells + anti-PD-1
- ↔ Anti-PD-1
- Anti-Her-2 T cells
- Anti-Her-2 T cells + isotype
 - ☆ Anti-Her-2 T cells + anti-PD-1

John LB. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res. 2013;19(20):5636-46.

Summary and Conclusions

- Signaling domains in CAR T cells can influence persistence and metabolism
- Chimeric antigen receptor modified T cells directed against CD19 (CTL019) can achieve durable responses in patients with relapsed or refractory CD19+ follicular lymphomas.

- All patients who achieved CR remain in CR.

- Single arm, open-label, multi-center, phase II study of efficacy and safety of CTL019 in relapsed or refractory follicular lymphoma is planned for 2016.
- Sequential administration of checkpoint antagonists and CAR T cells is feasible, and preliminary data suggests that this combination has activity
- CD19 and BCMA directed CAR T cells have promise for refractory myeloma

Colleagues and Patients: Thank you!

Center for Cellular Immunotherapies

Anne Chew Regina Young Dana Hammill Katie Marcucci Omkar Kawalekar Avery Posey John Scholler Shannon McGettighan Biliang Hu Anthony Lin Mauro Castellarin Gabriela Plesa

<u>T Cell Engineering</u> Yangbing Zhao Jiangtao Ren Chongyun Fang Xiaojun Liu Shuguang Jiang <u>CVPF</u> Bruce Levine Don Siegel Suzette Arostegui Theresa Colligon Clare Taylor Anne Lamontagne Alex Malykhin Matt O'Rourke

PDCS Jos Melenhorst Simon Lacey Joseph Fraietta Johnson Lab Laura Johnson Alex Cogdill Alina Boesteanu PENN Medicine David Porter Noelle Frey Lynn Schuchter

<u>Gill Lab</u> Saar Gill Marco Ruella Olga Shestova

Lymphoma Team Elise Chong Sunita Nasta Jakub Svoboda Mariusz Wasik Dan Landsburg Anthony Mato Stephen Schuster <u>Milone Lab</u> Michael Milone Roddy O'Connor Saba Ghassemi Selene Nunez-Cruz

Myeloma Team Adam Cohen Al Garfall Michael Milone Ed Stadtmauer

The Children's Hospital of Philadelphia®

<u>CHOP</u> Stephan Grupp David Barrett Shannon Maude David Teachey

b NOVARTIS Novartis Usman Azam Celeste Richardson Jens Hasskarl Reshma Singh Keith Mansfield Jennifer Brogdon Glenn Dranoff

Parker Institute for Cancer Immunotherapy

UNIVERSITY of PENNSYLVANIA