Is personalized therapy ready for primetime ?

Shaji Kumar, M.D. Professor of Medicine Mayo Clinic

Scottsdale, Arizona

Rochester, Minnesota

Jacksonville, Florida

Mayo Clinic College of Medicine Mayo Clinic Comprehensive Cancer Center

Press 1 if you have back pain with your myeloma

Press 2 if you are anemic with your myeloma

Press 3 if you cannot sleep because of dexamethasone

Press 4 if your fingers and toes are numb

Personalized medicine

- As physicians, we always adapt the therapy to the patient, taking into account a multitude of factors
 - Disease characteristics
 - Patient wishes
 - Logistics etc....
- Customizing therapy to individual patient, based on specific characteristics, leading to the optimal outcome

Personalized Medicine OR Precision Medicine?

Personalized medicine:

Patient is the focus and you tailor your treatment based on a variety of patient related and disease related factors Precision medicine: Focus is on the disease, using molecular approaches to subclassify disease based on a characteristic that can be directly addressed

What do we need for personalized therapy?

Myeloma is not one disease

Kumar SK, et al. Leukemia. 2014;28:1122-1128.

What makes them different?

• Tumor clone:

- Genetic abnormalities
- Proliferation, circulating cells etc.
- Host:
 - Age, performance status
- Host and tumor:
 - International staging system (ISS)
 - Immune parameters
- Variety of other "prognostic factors" have been described

Genetic abnormalities in myeloma

FISH abnormality	Frequency (%)
Trisomy(ies) without IgH abnormality	201 (42%)
IgH abnormality without trisomy(ies)	146 (30%)
IgH abnormality with trisomy(ies)	74 (15%)
Monosomy 14 in absence of IgH translocations or trisomy(ies)	22 (4.5%)
Other cytogenetic abnormalities	26 (5.5%)
Normal	15 (3%)

Kumar S, et al. Blood. 2012;119:2100-2105.

Impact of FISH high risk abnormalities

Kumar et al, unpublished

Mutations and outcomes

Walker et al, JCO August 17, 2015

Increasing number of tools

The old

And the new....

- Alkylators
- Anthracyclines
- Corticosteroids

- Proteasome inhibitors
- IMiDs
- HDAC inhibitors
- Monoclonal antibodies

Tailoring the intervention

- Use of a specific *drug* or drug class
- Use of multidrug *combinations*
 - E.g., PI + IMiD
- Varying the *duration* of therapy
 - Continuous vs. fixed
- Targeting a particular level of *response*
 - E.g. CR or MRD negativity

What does not help high risk

Avet-Loiseau et al, ASH 2015

Bortezomib and t(4;14): OS Analysis

Avet-Loiseau H, et al. J Clin Oncol. 2010;28:4630-4634. Pineda-Roman, et al. Br J Haematol. 2008;140:625-634.

Outcomes by cytogenetic risk group

	ORR, %		≥VGPR, %		≥CR, %		Median PFS, months		
	IRd	Placebo- Rd	IRd	Placebo- Rd	IRd	Placebo- Rd	IRd	Placebo- Rd	HR
All patients	78.3*	71.5	48.1*	39	11.7*	6.6	20.6	14.7	0.742*
Standard-risk patients	80	73	51	44	12	7	20.6	15.6	0.640*
All high-risk patients	79*	60	45*	21	12*	2	21.4	9.7	0.543
Patients with del(17p) [†]	72	48	39	15	11*	0	21.4	9.7	0.596
Patients with t(4;14) alone	89	76	53	28	14	4	18.5	12.0	0.645

*p<0.05 for comparison between regimens. [†]Alone or in combination with t(4;14 or t(14;16). Data not included on patients with t(14:16) alone due to small numbers (n=7).

In the IRd arm, median PFS in high-risk patients was similar to that in the overall patient population and in patients with standard-risk cytogenetics

Moreau et al. ASH 2015

Bortezomib and del(17p)

HOVON-65/GMMG-HD4: VAD induction, tandem SCT, and thalidomide maintenance vs PAD induction, tandem SCT, and bortezomib maintenance

Neben K, et al. Blood. 2012;119:940-948.

Sequential vs. alternating VMP/ Rd

Mateos MV et al. ASH 2015

Tandem ASCT : del(17p) ± t(4;14)

Cavo M, et al. ASH 2013. Abstract 767.

Effect of treatment duration

C		HR	95% CI	Interaction <i>P</i>
Overall	_	0.69	0.54 to 0.88	116
Trial GIMEMA-MM-03-05 RV-MM-PI-209 (Mel200x2) – RV-MM-PI-209 (MPR) CC-5013-MM-015		0.63 0.55 0.66 0.87	0.44 to 0.90 0.22 to 1.40 0.34 to 1.29 0.54 to 1.39	.703
Age, years ≤ 65 66–75 > 75		0.62 0.73 — 0.68	0.38 to 1.03 0.52 to 1.02 0.38 to 1.20	.871
Sex Female Male			0.63 to 1.37 0.40 to 0.78	.054
Karnofsky PS, % 60–70 80 90–100		0.49 0.58 —— 0.96	0.31 to 0.76 0.34 to 0.99 0.66 to 1.39	.059
ISS stage I II		0.75	0.33 to 1.69 0.43 to 1.19	.992
Missing aata		0.69	0.45 to 1.06	
cytogenetic abnormalities Del17, or t(4;14) or t(14;16) No Del17, or t(4;14) or t(14;16)/missing		0.73 0.54	0.55 to 0.96 0.30 to 0.97	.358
0.1	1.0)	-	
	Favors CT	Favors FDT		

Antonio Palumbo et al. JCO doi:10.1200/JCO.2014.60.2466

VRD consolidation and maintenance

Nooka et al., Leukemia (2014) 28, 690–693

CR is particularly important for HR MM

Leukemia (2011) 25, 1195–1197

Venetoclax and t(11;14

n (%)ª	Evaluable patients with t(11;14) (n=17)	Evaluable patients without t(11;14) ^s (n=26)	All evaluable patients (n=43)
Objective response rate (CR+ VGPR + PR)	4 (24)	1 (4)	5 (12)
Complete response (CR)	2 (12)	0	2 (5)
Very good PR (VGPR)	2 (12)	1 (4)°	3 (7)
Partial response (PR)	0	0	0
Minimal response	1 (6)	0	1 (2)
Stable disease (SD)	5 (29)	12 (46)	17 (40)

Evolving genome of MM

Digging deeper....targeting therapy

Andrulis et al, Cancer Discovery August 2013 3; 862

Age and Performance Status

Ludwig H, et al. Blood. 2008;111:4039-4047. Kumar et al, unpublished data.

	Risk factors				
	 Age over 75 years Mild, moderate or severe frailty patients needing help for ho Comorbidities: cardiac dysfunction pulmonary dysfunction hepatic dysfunction renal dysfunction 	/: usehold tasks and personal care*			
	GO-GO	MODERATE-GO	SLOW-GO		
	No risk factors DOSE LEVEL 0	At least one risk factor	At least one risk factor plus occurrence of grade 3-4 non- hematologic AE		
			DOSE LEVEL –2		
Agent	DOSE LEVEL 0	DOSE LEVEL -1	DOSE LEVEL -2		
Dexamethasone	40 mg/d d 1,8,15,22 / 4 wks	20 mg/d d 1,8,15,22 / 4 wks	10 mg/d d 1,8,15,22 / 4 wks		
Melphalan	0.25 mg/kg or 9 mg/m ² d 1-4 / 4-6 wks	0.18 mg/kg or 7.5 mg/m ² d 1-4 / 4-6 wks	0.13 mg/kg or 5 mg/m ² d 1-4 / 4-6 wks		
Thalidomide	100 mg/d	50 mg/d	50 mg qod		
Lenalidomide	25 mg/d d 1-21 / 4 wks	15 mg/d d 1-21 / 4 wks	10 mg/d d 1-21 / 4 wks		
Bortezomib	1.3 mg/m ² twice weekly d 1,4,8,11 / 3 wks	1.3 mg/m ² once weekly d 1,8,15,22 / 5 wks	1.0 mg/m ² once weekly d 1,8,15,22 / 5 wks		
Prednisone	60 mg/m ² d 1-4 or 50 mg qod	30 mg/m ² d 1-4 or 25 mg qod	15 mg/m ² d 1-4 or 12.5 mg qod		
Cyclophosphamide	100 mg/d d1-21/ 4 wks or 300 mg/m ² /d d 1,8,15 / 4 wks	50 mg/d d 1-21 / 4 wks or 150 mg/m ² /d D 1,8,15 / 4 wks	50 mg qod d 1-21 / 4 wks or 75 mg/m ² /d d 1,8,15 / 4 wks		

Palumbo A, et al. Blood. 2011;118:4519-4529.

Renal Failure and Bortezomib

Normal renal function: p-creatinine < 130 µmol/L Moderate renal function: p-creatinine 130 -200 µmol/L Severe renal function: p-creatinine > 200 µmol/L

Any renal response (CR-MR); n = 58; median 2.2 mo
 CR/ renal; n = 58; median NA

Knudsen LM, et al. Eur J Haematol. 2000:65:175-181. Ludwig, et al. J Clin Oncol. 2010;28:4635-4641.

Just give the most intense Rx to all....

Barlogie B, et al. Blood. 2014;124:3043-3051.

Exceptional response

- Patients receiving Rd as initial therapy and TTP>72m
- Identified 33 exceptional responders; 25 primary Rd, 8 Rd induction followed by autologous transplantation.
- Fifteen (45%) had known clonal plasma cell disorder prior to the diagnosis of MM.
- Trisomies were present in 19 (79%), none had high risk cytogenetic features at baseline.
- 25 patients (76%) had a CR, while 8 (24%) achieved the exceptional response state without ever achieving a CR.

Toxicity

Cost

"Surely, you must have some way to pay for your prescription, Mr. Fromberg!"

So, we have the tools.....

- We know myeloma is a heterogeneous disease
- We can predict the disease behavior, i.e., risk
- We know that specific approaches can modify the risk, at least for some
- Then,.....

Why not?

The future is here!