ACP-196 (Acalabrutinib)

in MCL

Prof. Le Gouill Steven

CHU de Nantes, France

Bologna, 2016

1. Liu et al, Nat Immunol 2011; 12: 416-425. 2. Treon et al, NEJM 2012; 367: 826-33. 3. Shinners et al, J Immunol 2007; 179: 3872-80.

4. Murphy et al, Janeway's Immuno Biol 7th Ed 2008; 240. 5. Buggy and Elias, Int Rev Immunol 2012; 31: 119-132. 6. Wiestner, Blood; 120: 4686-4691.

7. de Gorter et al, Immunity 2007; 26: 93-104. 8. Pan et al, ChemMedChem. 2007;2:58-61. 9. Maas et al, Dev Immunol. 2001;8:171-181.

Ibrutinib: first in class but not alone in the class

BTK	Pharma	disease	Clinical
IBRUTINIB	Parmacyclics/Janssen- Cilag	CLL and MCL	approved for clinical used
ONO-4059	ONO Pharmaceutical/ Gilead	NHLs, CLL	Phase I
CC-292 (AVL 292)	Celgene	B-cell malignancies	Phase I
HM 71224	Hanmi	rheumatoid arthritis	FIH, healthy volonteers
ACP-196	Acerta	B-cell malignancies	FIH, phase I
BGB-3111	Beigene	B-cell malignancies	Phase I
CNX-774	Avila Therapeutics	Ś	preclinical
RN 486	F. Hoffmann-La Roche	autoimmune diseases	preclinical
GDC-0834	Genentech/Gilead	rheumatoid arthritis	preclinical
CGI 1746	CGI Pharmaceuticals	rheumatoid arthritis	preclinical
CGI 560	CGI Pharmaceuticals	rheumatoid arthritis	preclinical
LFM-A13	Ś	Ş	Ś

- Pharma Dislosures: member of Acerta Pharma advisory board
- Following slides provided by Acerta Pharma

BTK Mechanism of Action

Acalabrutinib: A highly selective, potent Bruton Tyrosine Kinase (BTK) inhibitor

- Acalabrutinib was developed to increase the degree of BTK inhibition
 - Very low binding to interleukin-2 inducible T-cell kinase (ITK), TEC protein tyrosine kinase (TEC), and epidermal growth factor receptor (EGFR)
- Acalabrutinib selectively binds with a short half-life allowing twice-daily dosing and near total BTK inhibition
 - Potentially reducing drug resistance
- Acalabrutinib appears to improve substantially on the specificity of first generation BTK inhibitors

Byrd JC, Harrington B, O'Brien S, et al. *N Engl J Med* 2016;374:323-32. Supplement. DOI: 10.1056/NEJMoa1509981. Wilson, WH. *N Engl J Med* 2016; 374:386-388.

Acalabrutinib: A highly selective, potent BTK inhibitor

Kinase Inhibition IC₅₀ (nM)

Kinase	acalabrutinib	ibrutinib
Btk	5.1	1.5
Тес	93	7.0
BMX	46	0.8
Txk	368	2.0
ERBB2	~1000	6.4
EGFR	>1000	5.3
ltk	>1000	4.9
Jak3	>1000	32
Blk	>1000	0.1

KinomeScan Competitive Binding Assay (DiscoverX) 456 human kinase panel tested at 1uM drug.

Covey, et al. *Cancer Res.* 2015; 2596. Byrd JC, Harrington B, O'Brien S, et al. *N Engl J Med* 2016;374:323-32. Supplement. DOI: 10.1056/NEJMoa1509981.

Selectivity Profile (Preclinical)

ibrutinib (500nM each), then washed before being assayed.

Byrd JC, Harrington B, O'Brien S, et al. N Engl J Med 2016;374:323-32.

Lannutti, et al. Cancer Res, 2015; 408.

Supplement. DOI: 10.1056/NEJMoa1509981

Non ADCC-mediated NK cell lysis; CD8⁺ T cell IFNγ production

‡Cells were preincubated with ACP-196 and ibrutinib (500nM each), then washed before being assayed. CD8⁺ T cells were stimulated with anti-TCR Ab to produce IFNγ.

Acalabrutinib: Potency in Mouse Splenocyte Model

Covey, et al. *Cancer Res.* 2015; 2596.

Byrd JC, Harrington B, O'Brien S, et al. N Engl J Med 2016;374:323-32.

Supplement. DOI: 10.1056/NEJMoa1509981.

Acalabrutinib: Highly selective with no EGF Receptor Phosphorylation *in Vitro*

The ability of acalabrutinib or ibrutinib to inhibit the phosphorylation of EGFR was measured: acalabrutinib does not inhibit EGFR phosphorylation

Platelet Aggregation (R/R Patients with CLL)

ACP-196 does not inhibit platelet mediated thrombosis

Covey, et al. Cancer Res. 2015; 2596.

Byrd JC, Harrington B, O'Brien S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. *N Engl J Med* 2016;374:323-32. Supplement. DOI: 10.1056/NEJMoa1509981.

11

Acalabrutinib in MCL

ACE-LY-004

Acalabrutinib in Subjects with Relapsed/Refractory MCL

Open label, phase 2 study of acalabrutinib in subjects with MCL NCT02213926 (*Fully enrolled*)

R/R MCL -----

acalabrutinib 100 mg BID PO Treat to disease progression or unacceptable toxicity

Key inclusion criteria:

Pathologically confirmed MCL with monoclonal B cells that have translocation t(11;14) (q13;q32) and/or overexpression of cyclin D1 Have relapsed after ≥ 1 (but not > 5) prior treatment regimens ECOG PS ≤ 2

Primary endpoint: ORR*

Acalabrutinib in MCL

Phase 1b open-label study of acalabrutinib in combination with bendamustine and rituximab (BR) in subjects with MCL NCT02717624 (*Enrolling*)

Key eligiblity criteria

- Pathologically confirmed MCL with monoclonal B cells that have translocation t(11;14)(q13;q32) and/or overexpression of cyclin D1 MCL requiring treatment Radiographically measurable LAD or extranodal lymphoid malignancy ECOG PS ≤ 2 Prior exposure to a BCR inhibitor or
- **Primary endpoint:** To characterize the safety profile of acalabrutinib in combination with BR in subjects with newly diagnosed and relapsed/refractory MCL

§ acalabrutinib given until disease progression or unacceptable toxicity

- [±] bendamustine, rituximab given for a maximum of 6 cycles
- *rituximab maintenance in newly diagnosed MCL cohort

BCL-2 inhibitor are excluded

• From clinical.gouv

An Open-label, Phase 2 Study of ACP 196 in Subjects With Mantle Cell Lymphoma

This study is ongoing, but not recruiting participants. Sponsor: Acerta Pharma BV ClinicalTrials.gov Identifier: NCT02213926 First received: August 5, 2014Last updated: February 5, 2016Last verified: February 2016

A Study of ACP-196 in Combination With Bendamustine and Rituximab in Subjects With Mantle Cell Lymphoma

This study is currently recruiting participants. <u>Sponsor:Acerta Pharma</u> <u>ClinicalTrials.gov Identifier:NCT02717624</u> <u>First received: February 24, 2016Last updated: March 23, 2016</u>

A Study of Acalabrutinib in Combination With Rituximab Versus Ibrutinib Versus Acalabrutinib in Subjects With Relapsed or Refractory Mantle Cell Lymphoma

This study is not yet open for participant recruitment. <u>Sponsor: Acerta Pharma</u> <u>ClinicalTrials.gov Identifier:NCT02735876</u> <u>First received: April 8, 2016Last updated: April 12, 2016Last verified: April 2016</u>

CONCLUSION

- No published clinical results regarding ACP-196 in MCL
- Trials in MCL are ongoing: result expected 2016 ?
- No clinical data regarding ACP-196 vs Ibrutinib in MLC
- ACP-196 were designed to be highly selective for BTK inhibition: better or not ?
- Side effects in MCL ?