New Horizons on bone targeted therapies

Daniele Santini CBM University

SSITA CAMPUS BIO

RO

INTERNATIONAL CONFERENCE TRANSLATIONAL RESEARCH IN ONCOLOGY

November 8 2016 IRST IRCCS - Meldola

stitute encologico remagne

November 9-10-11|2016 HOTEL GLOBUS CITY - Forn

ESO Recommended Event

...we have specific *in vitro models* of bone cells

IN VITRO MODELS OF BONE CELLS

PRIMARY HUMAN OSTEOCLASTS

male healthy donors

DIFFERENTIATION (TRAP ASSAY)

ACTIVITY (OSTEOASSAY)

UNDIFFERENTIATED

DIFFERENTIATED

Cultured for 12 days with M-CSF and RANKL

UNDIFFERENTIATED

DIFFERENTIATED

IN VITRO MODELS OF BONE CELLS

PRIMARY HUMAN OSTEOBLASTS

From human mesenchymal stem cells (hMSCs) obtained from bone fragments of non-oncological orthopaedic surgery patients

DIFFERENTIATION (ALP ASSAY)

ACTIVITY (ALIZARIN RED ASSAY)

UNDIFFERENTIATED

DIFFERENTIATED

UNDIFFERENTIATED

DIFFERENTIATED

OBL differentiation was monitored by alkaline phosphatase (ALP) staining, and bone matrix deposition as a marker of OBL activity by Alizarin Red staining

Abiraterone and bone microenvironment

Starting from preclinical and clinical evidence we designed an *in vitro*/translational study in order to investigate a potential direct effect of Abiraterone in our models of primary human OCLs/OBLs

Abiraterone Inhibits Androgen Biosynthesis Through CYP17

" New therapeutic targets in the bone microenvironment for treatment of bone metastasis"

•Androgens produced at 3 critical sites:

- Testes
- Adrenal gland
- Prostate tumor cells

•Abiraterone inhibits biosynthesis of androgens that stimulate tumor cell growth

1. Attard G et al. J Clin Oncol. 2008;26:4563-4571; 2. Attard G et al. J Clin Oncol. 2009;27:3742-3748; 3. Reid AH et al. J Clin Oncol. 2010;28:1489-1495; 4. Ryan CJ et al. J Clin Oncol. 2010;28:1481-1488; 5. Danila DC et al. J Clin Oncol. 2010;28:1496-1501; 6. de Bono JS et al. Ann Oncol. 2010;21(suppl 8): Abstract LBA5. www.impactjournals.com/oncotarget/

Oncotarget, Advance Publications 2015

Biological and clinical effects of abiraterone on anti-resorptive and anabolic activity in bone microenvironment

Michele Iuliani^{1,*}, Francesco Pantano^{1,*}, Consuelo Buttigliero², Marco Fioramonti¹, Valentina Bertaglia², Bruno Vincenzi¹, Alice Zoccoli¹, Giulia Ribelli¹, Marcello Tucci², Francesca Vignani², Alfredo Berruti³, Giorgio Vittorio Scagliotti², Giuseppe Tonini¹ and Daniele Santini¹

Molecular characterization of abiraterone targets in human primary osteoclast/osteoblast

REAL TIME PCR

CYP17A1 is expressed in primary human osteoclast/osteoblast

Abiraterone treatment inhibits osteoclast differentiation and activity both in presence and absence of steroids

Abiraterone treatment increases osteoblast differentiation and activity both in presence and absence of steroids

Abiraterone down-modulates osteoclasts marker genes (at gene and protein level)

Abiraterone up-regulates osteoblasts marker genes (at gene and protein level)

A significant decrease of CTX values and an increase of ALP was found in serum of 49 mCRPC patients treated with Abiraterone post-docetaxel

СТХ	Baseline ng/mL	Three months ng/mL	Six months ng/mL	Nine months ng/mL
Median, 95% IC	0.86, (0.84-1.25)	0.78, (0.67-1.01)	0.61, (0.73-1.19)	0.66, (0.38-0.71)
p (compare to baseline)		p=0.077	p=0.027	p=0.006
ALP	Baseline U/L	Three months U/L	Six months U/L	Nine months U/L
Median, 95% IC	123, (126-261)	143, (255-382)	126, (200-327)	190, (172-344)
p (compare to baseline)		p=0.01	p=0.62	p=0.28

Table 2: Difference in median level of bone resorption and formation markers

Abiraterone: TUMOR TARGET AND BONE TARGET THERAPY

(1) Monolagas S et al, Nature Rev Endocrinol 2013 2; (2) Scher HI, et al. N Engl J Med 2012; (3) Fizazi K, et al. Lancet Oncology 2012; (4) Smith DC et al J Clin Oncol 2013; (5) Parker C, et al. N Engl J Med 2013.

Cabozantinib and bone microenvironment

Starting from preclinical and clinical evidence we designed an *in vitro*/translational study in order to investigate a direct effect of CBZ in our models of primary human OCLs/OBLs

Cabozantinib (XL184): Target Profile

" New therapeutic targets in the bone microenvironment for treatment of bone metastasis"

Kinase	IC ₅₀ , nM				
MET	1.8				
VEGFR2	0.035				
RET	5.2				
KIT	4.6				
AXL	7.0				
TIE2	14				
FLT3	14				
S/T Ks (47)	>200				
ATP competitive, reversible					

R	RTK		Cellular IC ₅₀ , nM, Autophosphorylation				
Μ	MET		8				
VEGFR2		4					
		Cabozantinib, mg/kg					
	V	3	10	30 1	.00		
рМЕТ	-		-	-		-	H441
MET	-		-	=	=		tumors*
pVEGFR2						Mouse	
VEGFR2	*No growt	h facto		lation	-		Iung⁺

*No growth factor stimulation. †VEGF-A administered 30 min prior to harvest.

Data courtesy of Ron Weitzman and Dana Aftab.

Molecular characterization of cabozantinib targets in human primary osteoclast/osteoblast

Cabozantinib inhibits osteoclast differentiation and activity

Cabozantinib does not affect osteoblast differentiation and activity

Cabozantinib treatment up-regulates OPG gene/protein sectretion and downmodulates RANKL gene/protein secretion altering RANKL/OPG balance

Cabozantinib pre-treated osteoblasts influence osteoclasts differentiation?

COCOLTURE OSTEOBLAST/OSTEOCLAST "CELL-TO-CELL CONTACT"

Experimental methodology:

- Osteoblasts were differentiated in presence/absence of CABO ZANTINIB
- Osteoclasts were seeded and differentiated directly on osteoblast layer (<u>un/treated with CABO)</u> without exogenous RANKL supplement
- At day 12 the number of cathepsin k positive cells (identified as osteoclasts) was evaluated

Cabozantinib pre-treated osteoblasts reduced osteoclast differentiation compared to untreated osteoblast

Enzalutamide and bone microenvironment

Starting from preclinical and clinical evidence we designed an *in vitro*/translational study in order to investigate a direct effect of ENZA in our models of primary human OCLs/OBLs

Enzalutamide: mechanism of action

" New therapeutic targets in the bone microenvironment for treatment of bone metastasis"

Molecular characterization of enzalutamide targets in human primary osteoclast/osteoblast

REAL TIME PCR

AR is expressed in primary human osteoclast/osteoblast

Enzalutamide does not affect osteoclast differentiation and activity

Enzalutamide does not affect osteoblast differentiation and activity

Enzalutamide treatment up-regulates some osteoblastic marker genes: CXCL12, OSTERIX and RUNX2

mRNA

Enzalutamide treatment up-regulates pro-inflammatory genes IL-6, IL-8, IL-12

Enzalutamide treatment up-regulates RANKL gene expression

Enzalutamide treatment up-regulates RANKL protein secretion

Proteins

Proteins

Future perspectives: Abiraterone and Enzalutamide

To investigate the "indirect" osteoblast-mediated effects of Abiraterone and Enzalutamide on the modulation of main biological parameters such as proliferation, apoptosis and cell cycle of CRPC exposed to pre-treated OBL conditioned media

 To investigate the "indirect" osteoblast-mediated effects of Abiraterone and Enzalutamide on the androgen receptor activation of CRPC exposed to pre-treated OBL conditioned media

Future perspectives: Abiraterone and Enzalutamide

To investigate the "indirect" osteoblast-mediated effects of Abiraterone and Enzalutamide in terms of gene expression modulation of CRPC exposed to pre-treated OBL conditioned media using an high-throughput approach

Trascriptomic and bioinformatic analysis

 To investigate the "indirect" osteoblast-mediated effects of Abiraterone and Enzalutamide on the activation of specific signaling pathways in CRPC exposed to pre-treated OBL conditioned media in order to identify new potential mechanisms of activity and resistance to anti-androgen therapy

Gene expression, protein and phosphoproteomic analysis of specific signalling pathways identified by trascriptomic analysis

Future perspectives: Cabozantinib

✓ To investigate the AXL and c-MET activation status in osteoblasts/osteoclasts previously treated with sunitinib and the following modulation of cells in terms of gene expression and protein analyses after cabozantinib administration.

✓ To investigate a potential "indirect" antitumor effect of cabozantinib mediated by osteoblasts on <u>renal carcinoma</u> (RCC) cells evaluating the modulation of main biological parameters such as proliferation, apoptosis and cell cycle of cancer cells

Thank you very much for the Attention

Paolo Manca Michele Iuliani Francesco Marco Giulia Ribelli Pantano Fioramonti