4th international conference TRANSLATIONAL RESEARCH IN ONCOLOGY Meldola-Forli' 8-11 November 2016

Cell cycle checkpoints (CDK4/6) inhibitors Luca Malorni MD, PhD

"Sandro Pitigliani" Oncology Unit and Translational Research Unit Hospital of Prato, Italy

"Lester and Sue Smith" Breast Center,

Baylor College of Medicine, Houston (TX)

Fondazione Sandro Pitigliani per la lotta contro i tumori - ONLUS

Outline

- CDK 4/6 inhibitors: MoA and pre-clinical data
- Clinical data in ER+/HER2 neg metastatic breast cancer
- Biomarkers

CDK 4/6 as a key regulator of cell cycle

Cell cycle regulation: embryonic development

Adapted from Malumbres M. and Barbacid M. NATURE REVIEWS CANCER VOLUME 9 | MARCH 2009

Cell cycle regulation: embryonic development

Adapted from Malumbres M. and Barbacid M.

NATURE REVIEWS CANCER VOLUME 9 MARCH 2009

Cell cycle regulation: embryonic development

Kinase	Genotype [§]	Phenotype	Refs
Loss-of-function strain	S		
CDK1	Cdk1 ^{mat/mat}	Deficiency in CDK1 results in embryonic lethality in the first cell divisions	19
CDK2	Cdk2≁	Sterility due to defective meiosis; no effect on mitotic cells	17,18
CDK4	Cdk4≁	Diabetes and defective postnatal proliferation of endocrine cells such as pancreatic β -cells or pituitary hormone-producing cells	14,15, 133–136
CDK6	Cdk6 ^	Slight anaemia and defective proliferation of some haematopoietic cells	16
CDK11	Cdk11+	Embryonic lethality in peri-implantation embryos accompanied by mitotic aberrations	109
CDK2; CDK4; CDK6	Cdk2+;Cdk4+;Cdk6+	Deficiency in all these interphase CDKs provokes embryonic lethality by mid-gestation due to haematopoietic defects	19

 However, CDK4 and CDK6 are important for "specialized" cell cycles such as those of hematopoietic and pancreatic beta-cells

Adapted from Malumbres M. and Barbacid M. NATURE REVIEWS CANCER VOLUME 9 | MARCH 2009

Cell cycle regulation: CANCER

NATURE VOL 411 28 JUNE 2001 www.nature.com

Specific protection against breast cancers by cyclin D1 ablation

Qunyan Yu, Yan Geng & Piotr Sicinski

Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA

- Mice models of breast cancer induced by specific oncogenes are prevented by CyclinD1 ablation
- In particular, neu (HER2) and ras induced breast cancer models are completely dependent on CyclinD1

 Although non essential in physiologic conditions, CDK4/6 and CyclinD1 may represent unique targets in cancer.

Deregulation of CDK 4/6 pathway in BC subtypes

Luminal A	Luminal B	HER2 enriched	Basal-like
Cyclin D1 amp (29%)	Cyclin D1 amp (58%)	Cyclin D1 amp (38%)	Cyclin E1 amp (9%)
CDK4 gain (14%)	CDK4 gain (25%)	CDK4 gain (24%)	
11q13.3 amp (24%)	11q13.3 amp (51%)		
			RB1 mut/loss (20%)
Low expression of p18/high expression of RB1	High FOXM1		High expression of p16/ low expression of RB1

Modern CDK 4/6 inhibitors

Drug	Palbociclib (Pfizer) (PD0332991, Ibrance)	Ribociclib (Novartis) (LEE011)	Abemaciclib (Eli Lilly) (LY 2835219)
IC ₅₀ (in vitro kinase assay, recombinant proteins)	CDK4 (D1): 11 nmol/L CDK4 (D3): 9 nmol/L CDK6 (D2): 15 nmol/L CDK1: >10 μmol/L CDK2: >10 μmol/L (66, 67)	CDK4: 10 nmol/L CDK6: 39 nmol/L CDK1: >100 μmol/L CDK2: >50 μmol/L (1, 89)	CDK4 (D1): 0.6-2 nmol/L CDK6 (D1): 2.4-5 nmol/L CDK 9: 57 nmol/L CDK1: >1 μmol/L CDK2: >500 nmol/L (1, 88)
РК	T _{max} 4.2–5.5 hr t _{1/2} 25.9–26.7 hr (69, 70)	T _{max} 4 hr t _⅓ 24–36 hr (90, 91)	T _{max} 4–6 h t _{1/2} 17–38 h (crosses blood:brain barrier; refs. 92, 93)
Dosing	125 mg daily (3 weeks, 1-week drug holiday) or 200 mg daily (2 weeks, 1-week drug holiday; refs. 69, 70)	600 mg daily (3 weeks, 1-week drug holiday; ref. 90)	200 mg twice daily (continuous dosing; ref. 92)
Major dose-limiting toxicities	Neutropenia, thrombocy topenia	Neutropenia, thrombocytopenia	Fatigue
Other reported adverse events	Anemia, nausea, anorexia, fatigue, diarrhea (69, 70)	Mucositis Prolonged EKG QTc interval Elevated creatinine	Diarrhea Neutropenia (92)
		Nausea (90)	Sherr CJ, Cancer Discovery 2016

CDK4/6i are preferentially active in Luminal type BC cell lines

CDK 4-6 inhibitors have shown activity preferentially on ER+, luminal breast cancer cell lines with or without HER2 amplification.

Finn et al, BCR 2011

Cross-talks of the CDK 4/6 and ER pathways

CDK 4/6 inhibitor + Endocrine therapy

► PD-0332991/Tamoxifen combination

CDK4/6i Acts Synergistically with Tamoxifen in ER+ Breast Cancer Cell Lines

Finn et al, BCR 2011

CDK4/6i improves efficacy of Fulvestrant and Letrozole in Luminal BC models

Koehler M. et al, IMPAKT meeting 2014

Outline

- CDK 4/6 inhibitors: MoA and pre-clinical data
- Clinical data in ER+/HER2 neg metastatic breast cancer
- Biomarkers

CDK 4/6 inhibitors in HR+/HER2- mBC

CDK 4/6 inhibitors in the first line MBC setting (ER+/HER2neg)

PFS (Investigators assessed) in PALOMA-2 and MONALEESA-2

Subgroup analyses in PALOMA-2 and MONALEESA-2

ubgroup	n (%)	3 T	Hazard Ratio (95%C
All randomized patients	666 (100)		0.576 (0.463 to 0.718)
Age	. ,		
<65 Years	404 (60.7)		0.567 (0.434 to 0.740)
≥65 Years	262 (39.3)		0.571 (0.386 to 0.843)
Race			
White	516 (77.5)	<u>⊢o</u>	0.576 (0.450 to 0.739)
Asian	95 (14.3)		0.484 (0.269 to 0.871)
Site of metastatic disease	. ,		
Visceral	324 (48.6)	<u>⊢_</u>	0.633 (0.472 to 0.849)
Non-visceral	342 (51.4)	Frank-1	0.502 (0.360 to 0.699)
Prior hormonal therapy	. ,		
Yes	375 (56.3)	<u> ∎</u>	0.528 (0.400 to 0.698)
No	291 (43.7)		0.628 (0.439 to 0.897)
Disease free interval	(,		
De Novo Metastases	248 (37.2)	<u>⊢</u>	0.674 (0.457 to 0.993)
≤12 months	147 (22.1)		0.501 (0.329 to 0.761)
>12 months	271 (40.7)	· ⊢ ⇒ −−−1	0.516 (0.365 to 0.731)
Region			
North America	267 (40.1)	F'∎1	0.605 (0.431 to 0.849)
Europe	307 (46.1)	i i	0.571 (0.410 to 0.796)
Asia/Pacific	92 (13.8)		0.486 (0.270 to 0.872)
ECOG performance status			,
0	359 (53.9)	F	0.646 (0.466 to 0.896)
1/2	307 (46.1)	<u>⊢</u> ∎	0.531 (0.393 to 0.718)
Bone-only disease at baseline	. ,		
Yes	151 (22.7)		0.363 (0.221 to 0.594)
No	515 (77.3)		0.654 (0.512 to 0.837)
Measurable Disease			,
Yes	509 (76.4)	l÷∎1	0.663 (0.517 to 0.849)
No	157 (23.6)		0.350 (0.215 to 0.568)
Prior chemotherapy			
Yes	322 (48.3)		0.533 (0.395 to 0.720)
No	344 (51.7)		0.611 (0.443 to 0.842)
Most recent therapy	,		
Aromatase inhibitor	135 (20.3)		0.549 (0.341 to 0.883)
Anti-estrogen	229 (34.4)		0.558 (0.390 to 0.799)
Number of disease sites			
1	204 (30.6)		0.511 (0.339 to 0.770)
2	169 (25.4)		0.679 (0.421 to 1.096)
≥3	293 (44.0)		0.587 (0.430 to 0.803)
			F
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75			
			A DOD I FT

		Fa	vors Ribociclib + Let	Favors Placebo	+ Let
Subgro	oup	n (%)		Hazard	Ratio (95% CI)
All patients		668 (100)	ю	0.556	(0.429–0.720)
Age	<65 years ≥65 years	373 (56) 295 (44)		0.523 0.608	(0.378–0.723) (0.394–0.937)
Race	Asian Non-Asian	51 (7.6) 568 (85)		0.387 0.607	(0.166–0.906) (0.459–0.804)
ECOG PS	0 1	407 (61) 261 (39)		0.588 0.528	(0.422–0.820) (0.348–0.801)
ER/PgR status	ER+ and PgR+ Other	546 (82) 122 (18)		0.616 0.358	(0.461–0.823) (0.198–0.647)
Liver or lung involvement	No Yes	295 (44) 373 (56)		0.547 0.569	(0.360–0.832) (0.409–0.792)
Bone-only disease	No Yes	521 (78) 147 (22)		0.541 0.690	(0.405–0.723) (0.381–1.249)
<i>De novo</i> disease	No Yes	441 (66) 227 (34)		0.603 0.448	(0.447–0.814) (0.267–0.750)
Prior (neo)adjuvant endocrine therapy	NSAI and others* Tam or Exe None	53 (7.9) 293 (44) 322 (48)		0.448 0.570 0.570	(0.193–1.038) (0.393–0.826) (0.380–0.854)
Prior (neo)adjuvant chemotherapy	No Yes	377 (56) 291 (44)		0.548 0.548	(0.373–0.806) (0.384–0.780)
		0,1	0.556		10

Finn RS, et al. Presented at the ASCO Annual Meeting 2016. Abstract 507.

Hortobagyi GN, et al. NEJM 2016- Presented at 2016 ESMO

Hematological AE in PALOMA-2 and MONALEESA-2

	Palbociclib + Letrozole (N=444)			Placebo + Letrozole (N=222)		
	Any Grade	Grade 3	Grade 4	Any Grade	Grade 3	Grade 4
Any AE, %	99	62	14	95	22	2
Neutropeniaª	80	56	10	6	1	<1
Leukopeniaª	39	24	1	2	0	0
Anemia ^a	24	5	<1	9	2	0
Thrombocytopeniaª	16	1	<1	1	0	0

Finn RS, et al. Presented at the ASCO Annual Meeting 2016. Abstract 507.

Adverse Event	Ribociclib + Letrozole n=334			Placebo + Letrozole n=330		
≥5% in Either Arm, %	All	Grade 3	Grade 4	All	Grade 3	Grade 4
Neutropenia	74	50	9.6	5.2	0.9	0
Leukopenia	33	20	1.2	3.9	0.6	0
Anemia	19	0.9	0.3	4.5	1.2	0
Lymphopenia	11	5.7	1.2	2.1	0.9	0
Thrombocytopenia	9.0	0.6	0	0.6	0	0

- Febrile neutropenia occurred in 5 (1.5%)* patients in the ribociclib arm vs. none in the placebo arm

Hortobagyi GN, et al. NEJM 2016- Presented at 2016 ESMO

Non-hematological AE in PALOMA-2 and MONALEESA-2

	Palbocicli	b + Letrozol	e (n=444)	Placebo	+ Letrozole	(n=222)
	Any Grade	Grade 3	Grade 4	Any Grade	Grade 3	Grade 4
Any adverse event, n (%)	439 (99)	276 (62)	60 (14)	212 (95)	49 (22)	5 (2)
Neutropeniaª	353 (80)	249 (56)	46 (10)	14 (6)	2 (1)	1 (<1)
Leukopeniaª	173 (39)	107 (24)	3 (1)	5 (2)	0	0
Fatigue	166 (37)	8 (2)	0	61 (28)	1 (<1)	0
Nausea	156 (35)	1 (<1)	0	58 (26)	4 (2)	0
Arthralgia	148 (33)	3 (1)	0	75 (34)	0	0
Alopecia	146 (33)	0	0	35 (16)	0	0
Diarrhea	116 (26)	6 (1)	0	43 (19)	3 (1)	0
Cough	111 (25)	0	0	42 (19)	0	0
Anemiaª	107 (24)	23 (5)	1 (<1)	20 (9)	4 (2)	0
Back pain	96 (22)	6 (1)	0	48 (22)	0	0
Headache	95 (21)	1 (<1)	0	58 (26)	4 (2)	0
Hotflush	93 (21)	0	0	68 (31)	0	0
Constipation	86 (19)	2 (<1)	0	34 (15)	1 (<1)	0
Rash ^a	79 (18)	4 (1)	0	26 (12)	1 (<1)	0
Asthenia	75 (17)	10 (2)	0	26 (12)	0	0
Thrombocytopenia ^a	69 (16)	6 (1)	1 (<1)	3 (1)	0	0
Vomiting	69 (16)	2 (<1)	0	37 (17)	3 (1)	0
Pain in extremity	68 (15)	1 (<1)	0	39 (18)	3 (1)	0
Stomatitis	68 (15)	1 (<1)	0	13 (6)	0	0
Decreased appetite	66 (15)	3 (1)	0	20 (9)	0	0
Dyspnea	66 (15)	5 (1)	0	30 (14)	3 (1)	0
Insomnia	66 (15)	0	0	26 (12)	0	0

Finn RS, et al. Presented at the ASCO Annual Meeting 2016. Abstract 507.

Adverse Event	Ribociclib + Letrozole n=334			Placebo + Letrozole n=330		
215% in Eimer Arm, %	All	Grade 3	Grade 4	All	Grade 3	Grade 4
Nausea	52	2.4	0	29	0.6	0
Infections	50	3.6	0.6	42	2.1	0.3
Fatigue	37	2.1	0.3	30	0.9	0
Diarrhea	35	1.2	0	22	0.9	0
Alopecia	33	-	-	16	-	-
Vomiting	29	3.6	0	16	0.9	0
Arthralgia	27	0.6	0.3	29	0.9	0
Constipation	25	1.2	0	19	0	0
Headache	22	0.3	0	19	0.3	0
Hotflush	21	0.3	0	24	0	0
Back pain	20	2.1	0	18	0.3	0
Cough	20	0	-	18	0	-
Decreased appetite	19	1.5	0	15	0.3	0
Rash	17	0.6	0	7.9	0	0
ALTincreased	16	7.5	1.8	3.9	1.2	0
AST increased	15	4.8	0.9	3.6	1.2	0

Hortobagyi GN, et al. NEJM 2016- Presented at 2016 ESMO

In the ribociclib arm 10 (3.0%) patients experienced Grade 2 QTcF (481–500 ms) and 1 (0.3%) patient experienced Grade 3 QTcF (>500 ms); no dose reductions were required

٠

CDK 4/6 inhibitors in endocrine pre-treated MBC (ER+/HER2neg) PALOMA-3

Turner NC, et al. N Engl J Med. 2015;373(3):209–219. Cristofanilli M, et al. Lancet Oncol. 2016;17(4):425–439.

PFS (Investigators assessed) in PALOMA-3

Turner NC, et al. N Engl J Med. 2015;373(3):209-219.

Subgroup analysis in PALOMA-3

Subgroup	n (%)	Hazard Ratio and 95% Cl	P value
All randomized patients (ITT)	521 (100)	⊢ ⊢ ;	
Age <65 Years ≥65 Years	392 (75.2) 129 (24.8)		0.480
Race ^a White Asian Black and other	385 (73.9) 105 (20.2) 29 (5.6)		0.412
Menopausal status Pre/Peri Post	108 (20.7) 413 (79.3)		0.940
Site of metastatic disease Visceral Non visceral	311 (59.7) 210 (40.3)		0.624
Sensitivity to prior HT Yes No	410 (78.7) 111 (21.3)	┝┲═╌┥	0.302
Receptor status ER+/PgR+ ER+/PgR-	349 (67.0) 139 (26.7)	┝╾╋╾┥	0.883
Disease-free interval ≤24 months >24 months	65 (12.5) 281 (53.9)		0.149
Prior chemotherapy (Neo)adjuvant only Metastatic +/- (neo)adjuvant No prior chemotherapy	219 (42.0) 170 (32.6) 132 (25.3)		0.427
Prior lines of therapy in MBC 0 1 2 3+	129 (24.8) 202 (38.8) 133 (25.5) 57 (10.9)		0.684
	0.125	0.25 0.5 1 n favour of PAL+FUL In fa	2 avour of PC

Palbociclib monotherapy in later treatment lines MBC

• Phase II study. Breast cancer cohort comprised patients with histologically confirmed, RB-positive, stage IV, pretreated breast cancer (median nr of prior HT for MBC=2; median nr of prior CT for MBC=3) (<u>NCT01037790</u>)

Group	n	Complete response n (%)	Partial response n (%)	Stable disease <6 mo n (%)	Stable disease ≥6 mo n (%)	Progressive disease n (%)	Clinical benefit* n (%)
HR+	30	0	2 (7)	14 (47)	3 (10)	11 (36)	5 (16)
HR-/HER2-	6	0	0	0	1 (17)	5 (83)	1 (17)
Total	36	0	2 (6)	14 (39)	4 (11)	16 (44)	6 (17)

*Partial response or stable disease ≥6 months

- Modest single-agent activity in this heavily pretreated population
- Well tolerated. Only grade 3/4 toxicity observed was neutropenia and thrombocytopenia, mostly uncomplicated

DeMichele A, et al. ASCO 2013. Abstract 519.

Stratification Factors

- 1. Disease site (visceral vs bone only vs other)
- 2. number or prior lines of endocrine treatment (1 vs. 2)
- 3. duration of prior line of endocrine treatment (>6 vs. \leq 6 months);
- 4. treating center

Abemaciclib in later treatment lines MBC (JPBA)

A Phase 1 Study of a CDK 4 and CDK 6 Dual Inhibitor in Participants With Advanced Cancer

Dose Escalation (3+3) abemaciclib orally Q12H or Q24H Days 1-28 of a 28-day cycle

Cohort A: Advanced cancer Q24H (n=13) Q12H (n=20) Tumor Expansions abemaciclib 150 mg or 200 mg orally Q12H Days 1-28 of a 28-day cycle

Cohort B: Non-small cell lung cancer (N=68)

Cohort C: Glioblastoma multiforme (N=17)

Cohort D: Breast cancer (N=47)

Cohort E: Melanoma (N=26)

Cohort F: Colorectal cancer (N=15)

Cohort G: HR+ Breast cancer (N=19) (Abemaciclib + Fulvestrant)

	Cohort D: Breast Cancer Abemaciclib	Cohort G: HR+ Breast Cancer Abemaciclib + Fulvestrant
	(N=47)	(N=19)
Prior systemic therapies	47 (100%)	19 (100%)
≤3 regimens	11 (23%)	7 (37%)
≥4 regimens	36 (77%)	12 (63%)

Abemaciclib (JPBA) clinical outcome

Breast Cancer Cohort/Single-agent Abemaciclib (N=47)^a

			HR+			
Best Overall Response (%)	All (N=47)	HR- (n=9)	HR+ (n=36)	HER2+ (n=11)	HER2- (n=25)	
Clinical benefit rate (CR + PR + SD ≥24 weeks)	49	11	61	55	64	
	HR+ Bre	ast Cancer				
	Cohort/A	bemaciclib +				
	Fulvestr	ant (N=19)				
Clinical benefit rate (CR + PR + SD ≥24 weeks)		63				

Change in Tumor Size at Best Response in Patients With Breast Cancer Breast Cancer Cohort/Single-agent Abemaciclib

[†]Received concomitant hormonal therapy

1. Patnaik A et al. Cancer Discovery 2016;(Ahead of print)

2. Tolaney SM et al. San Antonio Breast Cancer Symposium 2014. Abstract 763

Adverse events in JPBA (Phase I)

JPBA: Possibly Related TEAEs in >10% of Patients in Tumor-specific Cohorts (B-F)

	Grade 1	Grade 2	Grade 3	Grade 4	All Grades (N=173) ^a
Diarrhea	75 (43)	25 (15)	9 (5)	0	109 (63)
Nausea	59 (34)	15 (9)	4 (2)	0	78 (45)
Fatigue	38 (22)	27 (16)	5 (3)	0	70 (41)
Vomiting	31 (18)	10 (6)	2 (1)	0	43 (25)
Leukopenia	9 (5)	17 (10)	17 (10)	0	43 (25)
Thrombocytopenia	21 (12)	7 (4)	12 (7)	0	40 (23)
Neutropenia	6 (4)	15 (9)	16 (9)	2 (1)	39 (23)
Anemia	13 (8)	14 (8)	7 (4)	0	34 (20)
Anorexia	22 (13)	8 (5)	0	0	30 (17)
Creatinine increased ^b	12 (7)	7 (4)	0	0	19 (11)
Weight loss	14 (8)	4 (2)	0	0	18 (10)

• No Grade 5 adverse events reported

^aIncludes all tumor-specific cohorts receiving single-agent abemaciclib for NSCLC, glioblastoma, breast cancer, melanoma, or colorectal cancer. ^bAbemaciclib inhibits renal transporters that mediate tubular secretion of creatinine, so serum creatinine may not accurately reflect renal function in patients receiving abemaciclib

Outline

- CDK 4/6 inhibitors: MoA and pre-clinical data
- Clinical data in ER+/HER2 neg metastatic breast cancer
- Biomarkers

Molecular determinants of response to CDK4/6 inhibition

Molecular determinants of response to CDK4/6 inhibition

PIK3CA mutation status- PALOMA-3

PIK3CA status (exon 9 and 20 hotspots) was determined by BEAMING assay on circulating DNA in 395 pts in PALOMA 3

PIK3CA status does not impact the magnitude of benefit from palbociclib

0

0

Molecular determinants of response to CDK4/6 inhibition

PALOMA 1- role of CCD1 and p16

• Phase II, 1° line

• ER+, HER2– BC status

 Same as part 1 but with CCND1 amplification and/or loss of p16

UNSELECTED (ER+/HER2 neg)

Palbociclib 125 mg QD + Letrozole 2.5 mg QD

Letrozole 2.5 mg QD

CCD1 amplif. and/or p16 loss

Finn R. et al Lancet Oncology 2015: 16: 25-35

Molecular determinants of response to CDK4/6 inhibition

PROs: highly specific and sensitive for CDK4/6i CONs: more complex

Rb loss signature in Luminal BC

Thangavel C et al. Endocr Relat Cancer 2011

Construction of our RBsig

*TCGA: The Cancer Genome Atlas, CCLE: Cancer Cell Line Encyclopedia

RBsig expression in BC subtypes

RBsig levels are higher basal BC and, among Luminal BC, are higher in LumB

Malorni L. et al; Oncotarget 2016

Does RBsig hold prognostic information in ER+ BC?

p= 1.14e-11

50

202 57

0.0

LOW ____235

HIGH -

Ń

_ 89

HR=3.34 (2.3-4.8, p=6.97e-10)

100

Time

144

30

p= 2.22e-09

50

289

91

0.0

LOW ____349

HIGH

HR=2.37 (1.8-3.2, p=1.87e-08)

150

57

12

200

7

100

Time

197

58

Malorni L. et al; Oncotarget 2016

200

150

9 3

HR=2.52 (1.55-4.08, p=0.0003)

100

51

18

Time

p = 0.0001

50

83 21

0.0

LOW ____110 HIGH ____ 47

HIGH -

200

7

150

47

6

Does RBsig predict response to CDK4/6 inhibitors?

Malorni L. et al; Oncotarget 2016

Conclusions

- CDK4/6 inhibitors represent a new standard of care for the treatment of ER+/HER2neg MBC
- Clinical data are very convincing but... biomarkers are lacking
- Given the high activity and good tolerability of single agent hormonal therapy, biomarkers for selecting patients more likely to benefit from CDK4/6 inhibition would be of great clinical utility to maximize benefit and containing costs.

Perspectives

- A more detailed knowledge of the biology of metastatic breast cancer is needed to ensure that our fight to this disease will finally be successful (AURORA program)
- Comprehensive assessment of molecular pathways functional status vs. single marker status

Metastatic Breast Cancer - molecular aberrations

Biological samples for translational research through AURORA:

FFPE blocks from primary tumor and metastatic lesion

Whole blood sample for pharmacogenomics

Serial plasma & serum samples for biomarker analysis: at baseline, every 6 months and at progression

Acknowledgements

Azienda USL 4 Prato

Servizio Sanitario della Toscana

Backup

Acknowledgements

Translational Research Unit, Hospital of Prato "Sandro Pitigliani" Medical Oncology Unit, Hospital of Prato Functional Genomics & Bioinformatics Units, Proxenia S.r.I

Nature Reviews | Cancer

Molecular determinants of response to CDK4/6 inhibition

CDK (Cyclin partner)	IC ₅₀ (μΜ)		
CDK4/Cyclin D1	0.011		
CDK4/Cyclin D3	0.009		
CDK6/Cyclin D2	0.015		
CDK2/Cyclin A	>5		
CDK1/Cyclin B	>5		
CDK5/p25	>5		

ΙС ₅₀ (μΜ)		
0.002		
0.009		
1.6		

CDK (Cyclin partner)	ΙС ₅₀ (μΜ)		
CDK4/cyclin D1	0.010		
CDK6/cyclin D3	0.039		
CDK1/cyclin B	113		
CDK2/cyclin A	76		

Fry DW, et al. Mol Cancer Ther 2004;

Ribociclib (600 mg/day) **Primary endpoint** 3-weeks-on/1-week-off Postmenopausal women · PFS (locally assessed per with HR+/HER2-RECIST v1.1) Letrozole (2.5 mg/day) advanced breast cancer n=334 Randomization (1:1) Secondary endpoints · No prior therapy for Overall survival (key) Stratified by the Placebo advanced disease presence/absence · Overall response rate of liver and/or lung Letrozole (2.5 mg/day) N=668 Clinical benefit rate metastases Safety

ITT LOCALLY ASSESSED

Abemaciclib in later treatment lines MBC (JPBH)

A Phase 1b Study of Abemaciclib in Combination With Therapies for Patients With MBC

Median number of regimens received prior to study entry: • 2/4 (Cohorts A-E)

• 10.5 (Cohort F)

- 1. Tolaney SM et al. Poster presented at ASCO 2015. Abstract 522
- 2. Goetz MP et al. Presented at SABCS 2015. P4-13-25

Abemaciclib (JPBH) clinical outcome

	<mark>Cohort A</mark> Letrozole (N=20)	Cohort B Anastrozole (N=16)	Cohort C Tamoxifen (N=16)	Cohort D Exemestane (N=15)	Cohort E EXE + EVE (N=17)	
					150 mg (n=13)	200 mg (n=4)
Clinical Benefit Rate (CR+PR+SD ≥24 wks), %	40	81	75	60	Data not mature	

Best Change in Tumor Size From Baseline for Patients With Measurable Diseasease

^aFor this patient, change in tumor size greater than 100% ^bFor Cohort F, data not mature due to short duration of enrollment ^cGraph includes only patients with available pre- and post-treatment lesion measurements

Goetz MP et al. Presented at SABCS 2015. P4-13-25

RBsig correlates with RB1 status in BC subtypes

RBsig levels are higher in BC samples with loss of Rb, across multiple BC subtypes

Malorni L. et al; Oncotarget 2016