Selecting Therapy for Breast Cancer Patients in the Genomic Era

Marc Lippman, MD The Sylvester Comprehensive Cancer Center at the University of Miami

 A WORKING DEFINITION: SUFFICIENT KNOWLEDGE ABOUT THE MOLECULAR FEATURES OF THE TUMOR OR HOST TO MAKE SPECIFIC THERAPEUTIC CHOICES WHICH MAXIMIZE EFFECTIVENESS AND MINIMIZE TOXICITY.

• Perhaps not quite such new thing...

- Perhaps not quite such new thing...
- A BRIEF HISTORICAL PERSPECTIVE THE TUMOR
 - THE ESTROGEN/PROGESTERONE RECEPTOR AXIS
 - HER2/neu/ERBB2
 - CLONOGENIC AND OTHER IN VITRO SENSITIVITY ASSAYS
 - PDX MODELS FOR CUSTOMIZED TESTING

- A BRIEF HISTORICAL PERSPECTIVE THE HOST
 - CUSTOMIZED DRUG DOSING
 - MTX, PLATINUM,
 - CUSTOMIZED ANALYSES OF PHARMACOGENOMICS
 - TAMOXIFEN

The Evolution of Targeted Therapies for Cancer

- 1970: ER Testing and Hormonal Therapy for Breast Cancer
- 1990: Cytogenetics/FISH Testing and Therapy for Heme Malignancies
- 1998: HER2 Testing and Trastuzumab for Breast Cancer
- 2001: BCR-ABL Testing and Imatinib for CML
- 2003: *EGFR* Mutation Testing and Erlotinib for NSCLC
- 2007: KRAS Mutation Testing and Cetuximab/Panitumumab for CRC
- 2010: *EML4-ALK* Testing and Crizotinib in NSCLC
- 2011: BRAF Mutation Testing and Vemurafenib in Melanoma
- 2012: ROS1 and RET Fusion Testing for Crizotinib and RET inhibitors in NSLC
- 2013: *HER2* mutation identification and anti-HER2 targeted therapy in NSCLC, breast cancer and micropapillary urothelial cancer
- 2013: NTRK1 Fusion Testing and crizotinib in NSCLC
- 2014: PD1 and PDL1 and Immunotherapies

The era of companion diagnostics or drug-test combinations has begun in earnest for anti-cancer drugs and biologics. It is now an era of predictive pathology. It is the next generation of pathology.

Selected Examples of Cancer Genome Sequencing and Anti-Cancer Drug Selection

Genetic Event	Disease	Drug
KRAS Mutation	CRC	Cetuximab/Panitumumab (contraindicated by KRAS mutation)
BRAF Mutation	Melanoma	Vemurafenib/Dabrafenib
EGFR Mutation	NSCLC	Gefitinib/Erlotinib/Afatinib
EML4-ALK Translocation	NSCLC	Crizotinib
KIT Mutation	GIST/melanoma	Imatinib/Sunitinib/Regorafenib/Pazopanib
BCR-ABL Translocation	CML	Imatinib/Dasatinib/Nilotinib/Bosutinib
<i>PML-RARA</i> Translocation t(15;17)	APL	ATRA
HER2 Gene	Breast and Upper GI	Trastuzumab/Lapatinib
Amplification*	Cancer	
ROS1 Fusion	NSCLC	Cabozantinib (investigational)
RET Fusion	NSCLC	Cabozantinib (investigational)

Rembrandt's anatomy lesson of professor Nicolaes Tulp (1632)

Courtesy of Carlos Cordon-Cardo, M.D., Ph.D. Columbia University

THE END OF COUNTRY OF ORIGIN AS THE CRITICAL FACT DETERMINING CANCER TREATMENT ??

Sorlie, T et al. (2003) Proc. Natl. Acad. Sci. USA 100, 8418-8423

Intrinsic Subtypes

Perou et al., Nature, 2000 Sorlie et al., PNAS, 2001 Sorlie et al., PNAS, 2003 Hu et al., BMC Genomics, 2006 Perreard et al., BCR 2006 Herschkowitz et al., GB, 2007 Mullins et al., Clin Chem, 2007 Parker et al., JCO, Feb 2009 Prat et al., Submitted

SURVIVAL FOLLOWING THE DIAGNOSIS OF METASTATIC BREAST CANCER

Months From the Start of Treatment

Overall and progression free survival of 1581 patients with metastatic breast carcinoma treated on 18 successive, doxorubicin-containing standard dose chemotherapy protocols from 1973 to 1982 at the M.D. Anderson Cancer Center.

Background Mutation Rates Across Different Cancer

Significantly Mutated Genes (All 507 Cases) (FDR<0.15)

Genomic Alterations in 1,445 Relapsed/Refractory Invasive Breast Cancers

Genomic Alterations in 1,445 Invasive Breast Cancers

Gene	% of samples
TP53	60
РІКЗСА	30
МҮС	25
MCL1	19
CCND1	15
FGF19	14
ERBB2	14
FGFR1	13
FGF4	13
ZNF703	13

Gene	% of samples
FGF3	13
PTEN	13
MYST3	11
CDH1	9
ZNF217	8
GATA3	8
BRCA2	7
RB1	7
MDM4	6
CDKN2A	6

Tumour Phylogenetic Evolution (Renal Cell Cancer)

Gerlinger, M., et al.; N Engl J Med; 2012

368:1199-209, 2013

ORIGINAL ARTICLE

Analysis of Circulating Tumor DNA to Monitor Metastatic Breast Cancer

Sarah-Jane Dawson, F.R.A.C.P., Ph.D., Dana W.Y. Tsui, Ph.D., Muhammed Murtaza, M.B., B.S., Heather Biggs, M.A., Oscar M. Rueda, Ph.D., Suet-Feung Chin, Ph.D., Mark J. Dunning, Ph.D., Davina Gale, B.Sc., Tim Forshew, Ph.D., Betania Mahler-Araujo, M.D., Sabrina Rajan, M.D., Sean Humphray, B.Sc., Jennifer Becq, Ph.D., David Halsall, M.R.C.Path., Ph.D., Matthew Wallis, M.B., Ch.B., David Bentley, D.Phil., Carlos Caldas, M.D., F.Med.Sci., and Nitzan Rosenfeld, Ph.D.

Circulating Plasma Cell Free Tumor DNA in Breast Cancer

Figure 2. Monitoring Multiple Point Mutations and Structural Variants Dawson et al. N Engl J Med 368:1199-209, 2013

Mutation Tracking of ptDNA May Be More Prognostic than a Single Point in Time

Garcia-Murllias et al Science Translational Med 2015

Personalized approach improves cancer treatment outcomes

Genomics-matched targeted therapy = BEST OUTCOME

Targeted therapy w/o mutation matching = Worst outcome

Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial

Christophe Le Tourneau, Jean-Pierre Delord, Anthony Gonçalves, Céline Gavoille, Coraline Dubot, Nicolas Isambert, Mario Campone, Olivier Trédan, Marie-Ange Massiani, Cécile Mauborgne, Sebastien Armanet, Nicolas Servant, Ivan Bièche, Virginie Bernard, David Gentien, Pascal Jezequel, Valéry Attignon, Sandrine Boyault, Anne Vincent-Salomon, Vincent Servois, Marie-Paule Sablin, Maud Kamal, Xavier Paoletti, for the SHIVA investigators

A PAIR OF INFORMATIVE EXAMPLES

FOUNDATIONONE

VARPENIE

GENES ASSAYED IN FOUNDATIONONE FoundationOne is designed to include all genes known to be somatically altered in human solid tumors that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay interrogates 315 genes as well as infrons of 28 genes involved in rearrangements. The assay will be updated periodically to reflect new knowledge about cancer biology.

ADIA 1	PDAE	CHEKI	FANCC	GATA3	JAK2	MITE	PDCD1LG2	RBM10	STA14
ABLT	DRAF	CHEK2	FANCD2	GATA4	JAK3	MILH1	PDGFRA	RET	STK11
ABLZ	DRCAT	CIC	FANCE	GATAG	JUN	MPL.	PDGFRB	RICTOR	SUFU
ACVR18 AKT1	BRD4	CREBBP	FANCE	GID4 IC17prf391	KAT6A (MYST3)	MRE11A	PDK1	RNF43	SYK
AVTO		CRKI	FANCG	GLI1	KDM5A	MSH2	PIK3C2B	ROS1	TAF1
AKTZ	BTG1	CRIF2	FANCL	GNA11	KDM5C	MSH6	PIK3CA	RPTOR	TBX3
ANIS	BIGI	CSE1R	FAS	GNA13	KDM6A	MTOR	PIK3CB	RUNX1	TERC
AMER1 (FAM123B)	C11orf30 (EMSY)	CTCF	FATI	GNAQ	KOR	MUTYH	PIK3CG	RUNX1T1	TERT (promoter only)
APC	CARD11	CTNNA1	FBXW7	GNAS	KEAP1	MYC	PIK3R1	SDHA	TET2
AR	CBFB	CTNNB1	FGF10	GPR124	KEL	MYCL (MYCL1)	PIK3R2	SDHB	TGFBR2
ARAF	CBL	CUL3	FGF14	GRIN2A	KIT	MYCN	PLCG2	SDHC	TNFAIPS
ARERPI	CGND1	CYLD	FGF19	GRM3	KLHL6	MYD88	PMS2	SDHD	TNFRSF14
ARID1A	CCND2	DAXX	FGF23	GSK3B	KMT2A (MLL)	NF1	POLD1	SETD2	TOP1
ARID1B	CCND3	DDR2	FGF3	H3F3A	KMT2C (MLL3)	NF2	POLE	SF3B1	TOP2A
ARID2	CCNE1	DICER1	FGF4	HGF	KMT2D (MLL2)	NFE2L2	PPP2R1A	SLIT2	TP53
ASXI1	CD274	DNMT3A	FGF6	HNFIA	KRAS	NFKBIA	PRDM1	SMAD2	TSC1
ATM	CD79A	DOTIL	FGFR1	HRAS	LMO1	NKX2-1	PREX2	SMAD3	<i>TSC2</i>
ATR	CD79B	EGFR	FGFR2	HSD3B1	LRP1B	NOTCH	PRKAR1A	SMAD4	TSHR
ATRX	CDC73	EP300	FGFR3	HSP90AA1	LYN	NOTCH2	PRKCI	SMARCA4	U2AF1
AURKA	CDH1	EPHA3	FGFR4	IDH1	LZTR1	NOTCH3	PRKDC	SMARCB1	VEGFA
ALIRKB	CDK12	EPHA5	FH	IDH2	MAGI2	NPM1	PRSS8	SMO	VHL
AVIAIT	CDK4	EPHA7	FLCN	IGF1R	MAP2K1	NRAS	PTCHI	SNCAIP	WISP3
AY1	CDK6	EPHB1	FLTI	IGF2	MAP2K2	NSD1	PTEN	SOCS1	WT1
RAPI	CDK8	ERBB2	FLT3	IKBKE	MAP2K1	NTRK1	PTPN11	SOX10	XPO1
RAPD1	CDKN1A	ERBB3	FLT4	IKZF1	MAP3K1	NTRK2	QKI	SOX2	ZBTB2
BC/2	CDKMIR	FRBB4	FOXL2	IL7R	MCL1	NTRK3	RAC1	SOX9	ZNF217
BCI 211	CDKN2A	FRG	FOXP1	INHBA	MDM2	NUP93	RAD50	SPEN	ZNF703
BC1212	CDKN28	ERREIT	FRS2	INPP4B	MDM4	PAK3	RAD51	SPOP	
BCIS	CDKN2C	ESR1	FUBP1	IRF2	MED12	PALB2	RAF1	SPTA1	
BCOR	CEBPA	EZH2	GABRAG	IRF4	MEF2B	PARK2	RANBP2	SRC	
BCORL1	CHD2	FAM46C	GATA1	IRS2	MENT	PAX5	RARA	STAG2	
DUNL I	CHD4	FANCA	GATA2	JAK1	MET	PBRM1	RB1	STAT3	

DOAG	0004	EDM	FGFRI	KIT	MYC	NTRK2	RARA	TMPRSS2
BRAF	BRD4	2104	10/11/			000504	OFT	
BRCAT	FGFR	ETV5	FGFR2	MSH2	NOTCH2	PUGFRA	REI	
DITUAL	20.11			1 43 463	AITOKA	DAET	POST	
BRC42	FT11	ETV6	FGFR3	MYB	NTRK1	RAFT	RUST	1935
	BRAF BRCA1 BRCA2	BRAF BRD4 BRCA1 EGFR BRCA2 FTV1	BRAF BRD4 EIV4 BRCA1 EGFR EIV6 BPCA2 ETV1 ETV6	BRAF BRD4 EIV4 FGFR1 BRCA1 EGFR EIV6 FGFR2 BPCA2 ETV1 ETV6 FGFR3	BRAF BRD4 EIV4 FGFR1 KIT BRCA1 EGFR EIV6 FGFR2 MSH2 BPCA2 ETV1 ETV6 FGFR3 MYB	BRAF BRD4 EIV4 FGFR1 KIT MYC BRCA1 EGFR EIV5 FGFR2 MSH2 NOTCH2 BPCA2 ETV1 ETV6 FGFR3 MYB NTRK1	BRAF BRD4 ETV4 FGFR1 KIT MYC NTRK2 BRCA1 EGFR ETV5 FGFR2 MSH2 NOTCH2 PDGFRA BRCA2 ETV1 ETV6 FGFR3 MYB NTRK1 RAF1	BRAF BRD4 ETV4 FGFR1 KIT MYC NTRK2 RARA BRCA1 EGFR ETV6 FGFR2 MSH2 NOTCH2 PDGFRA RET BRCA2 ETV4 FGFR3 MYB NTRK1 RAF1 ROS1

Specimen ID US12-3778 Bit Pathologian

ABOUT THE TEST:

FoundationOne[®] is a next-generation sequencing (NGS) based assay that identifies genomic alterations within hundreds of cancer-related genes.

INCLUTION OCCU

FoundationOne [®] is a next-gene	ration sequencing (NGS) based a	area mar los	annos garanno acertatona manifina	THE WAY OF SALLING CONSIGNATION
PATIENT RESULTS			TUMOR TYPE: BREAST IN CARCINOMA (IDC)	IVASIVE DUCTAL
THERAPEUTIC IMP	Alto potential feliate al benefi Alta felixo, (esponse)		Genomic Alterations Iden ERBB2 amplification PIK3CA E545K MYC amplification – equ 7P53 L194H CREBBP S23* LRP1B splice site 7514- PIK3C2B amplification – [†] For a complete list of the genes a specifications, please refer to the [†] See Appendix for details	tified [†] ivocal≋ 1G>A equivocal [≋] cssayed and performance Appendix
ອັດດີເກດເຫັນດີຈາກເຮັດເປັນການ ເອີດເຫັນການເຮັດ	EDA Approved Therapic (inpelicit's tuntor type)		FDA Approved Theraples (In another tumor type)	e v Polentiskom takiniskom
<i>ERBB2</i> amplification	Ado-trastuzumab emtansine Lapatinib Pertuzumab Trastuzumab	Afatiı	dib	Yes, see clinical trials section
<i>РІКЗСА</i> Е545К	Everolimus	Tem	sirolimus	Yes, see clinical trials section
MYC amplification - equivocal	None	None)	Yes, see clinical trials section
<i>ТР53</i> L194Н	None	None	9	Yes, see clinical trials

CREBBP 523*

LRP18 splice site 7514-1G>A

-1G>A None

None

None

None

1e

None

None

.

And the second second second

Genes on the Guardant360 Panel

Genes with Complete Exon and Partial Intron Coverage

Gene	LOD	Cente	100	Gene	100	Gene	LOD	-
APC	< 0.1%	AR	< 0.1%	ARID1A	< 0.1%	BRAF	< 0.1%	
BRCA1	< 0.1%	BRCA2	< 0.1%	CCND1	< 0.1%	CCND2	< 0.1%	
CCNE1	< 0.1%	CDK4	< 0.1%	CDK6	< 0.1%	CDKN2A	< 0.1%	
CDKN2B	< 0.1%	EGFA	< 0.1%	ERBB2	< 0.1%	FGFR1	< 0.1%	
FGFR2	< 0.1%	HRAS	< 0.1%	KIT	< 0.1%	KRAS	< 0.1%	
MET	< 0.1%	MYC	< 0.1%	NF1	< 0.1%	NRAS	< 0.1%	
PDGFRA	< 0.1%	PIK3CA	< 0.1%	PTEN	< 0.1%	RAF1	< 0.1%	
TP53	< 0.1%							

Genes in bold are those that are also analyzed for copy number variations (CNVs).

* EGFR indels in exon 19 and 20

Genes with Critical Exon Coverage

Gene	LOD	Gene	LOD	Gene	LOD	Gene	1.00
AKT1	< 0.1%	ALK	< 0.1%	ARAF	< 0.1%	ATM	< 0.1%
CDH1	< 0.1%	CTNNB1	< 0.1%	ESR1	< 0.1%	EZH2	< 0.1%
FBXW7	< 0.1%	FGFR3	< 0.1%	GATA3	< 0.1%	GNA11	< 0.1%
GNAQ	< 0.1%	GNAS	< 0.1%	HNF1A	< 0.1%	IDH1	< 0.1%
IDH2	< 0.1%	JAK2	< 0.1%	JAK3	< 0.1%	MAP2K1	< 0.1%
MAP2K2	< 0.1%	MLH1	< 0.1%	MPL	< 0.1%	NFE2L2	< 0.1%
NOTCH1	< 0.1%	NPM1	0.1%	NTRK1	< 0.1%	PTPN11	< 0.1%
RET	< 0.1%	RHEB	< 0.1%	RHOA	< 0.1%	RIT1	< 0.1%
ROS1	< 0.1%	SMAD4	< 0.1%	SMO	< 0.1%	SRC	< 0.1%
STK11	< 0.1%	TERT	< 0.1%	VI-IL	< 0.1%		
				1977 — Walding — 1415 (1974), 1974 — — A			
Rearran	gements						

man and a start of the start of the								
Gene	LOD	Gene	001	Gene	LOD	Gene	LOD	2
ALK	< 0.1%	NTRK1	< 0.1%	RET	< 0.1%	ROS1	< 0.1%	

Guardant360 Tumor Response Map

The Guardant360 Tumor Response Map illustrates the relative changes of observed cfDNA at different sample submission time points. The "Somatic Alteration Burden" value below refers to the maximum % cfDNA detected at each time point. Amplifications are not plotted.

7 Total Alteration(s) Detected

5 with Associated Therapy 0 Associated with Lack of Response Multiple Clinical Trials Available

Summary of Alterations & Associated Treatment Options

The percentage, or allele frequency, of altered cell-free DNA (% cfDNA) circulating in blood is related to the unique tumor biology of this patient. Factors that may affect the amount/percentages of detected genomic alterations in circulating cell-free DNA in blood include tumor growth, turn-over, size, heterogeneity, vascularization, disease progression, or treatment.

Alteration		% cfDNA	cfDNA Amplification	FDA Approved in Indication	Available for Use in Other Indications	Clinical Drug Trials
TP53	R175H	7.3		None	None	Trials Available
E6D1	D538G	0.2		None	None	Trials Available
LONI	Y537S 0.2	None	None	Trials Available		
FGFR1	R56W	0.2	The functional consequences alteration is uncertain. Similar t treatment; clinical correlation is	and clinical significance of this gene varia to other alterations in circulating cfDNA, th s advised.	nt are not established. The relevanc he monitoring of this variant may be	e of therapies targeting this reflective of disease progression or
ARID1A	L2106M	0.1	The functional consequences alteration is uncertain. Similar t treatment; clinical correlation is	and clinical significance of this gene varial to other alterations in circulating cfDNA, th s advised.	nt are not established. The relevanc he monitoring of this variant may be	e of therapies targeting this reflective of disease progression or
ERBB2	AMP		++	Ado-trastuzumab emtansine, Lapatínib, Pertuzumab, Trastuzumab	Afatinib	Trials Available
RAF1	AMP		+	None	Regorafenib, Sorafenib, Trametinib	Trials Available

Guardant360 Tumor Response Map

The Guardant360 Tumor Response Map illustrates the relative changes of observed cfDNA at different sample submission time points. The "Somatic Alteration Burden" value below refers to the maximum % cfDNA detected at each time point. Amplifications are not plotted.

7 Total Alteration(s) Detected

5 with Associated Therapy 0 Associated with Lack of Response Multiple Clinical Trials Available

Summary of Alterations & Associated Treatment Options

The percentage, or allele frequency, of altered cell-free DNA (% cfDNA) circulating in blood is related to the unique tumor biology of this patient. Factors that may affect the amount/percentages of detected genomic alterations in circulating cell-free DNA in blood include tumor growth, turn-over, size, heterogeneity, vascularization, disease progression, or treatment.

Alteration		% cfDNA	cfDNA Amplification	FDA Approved in Indication	Available for Use in Other Indications	Clinical Drug Trials
TP53	R175H	7.3		None	None	Trials Available
ESD4	D538G	0.2		None	None	Trials Available
Y537S 0.2		None	None	Trials Available		
FGFR1	R56W	0.2	The functional consequences alteration is uncertain. Similar t treatment; clinical correlation is	and clinical significance of this gene varia to other alterations in circulating cfDNA, th s advised.	nt are not established. The relevance ne monitoring of this variant may be	e of therapies targeting this reflective of disease progression or
ARID1A	L2106M	0.1	The functional consequences a alteration is uncertain. Similar t treatment; clinical correlation is	and clinical significance of this gene varial to other alterations in circulating cfDNA, th s advised.	nt are not established. The relevanc te monitoring of this variant may be	e of therapies targeting this reflective of disease progression or
ERBB2	AMP		++	Ado-trastuzumab emtansine, Lapatínib, Pertuzumab, Trastuzumab	Afatinib	Trials Available
RAF1	AMP		+	None	Regorafenib, Sorafenib, Trametinib	Trials Available

GUARDANTHEALTH* Arthur Baca, MD PhD Laboratory Director | 2686 Middlefield Rd, Suite C, D, E, Redwood City, CA 94063 T: 855-698-8887 | clientservices@guardanthealth.com | https://portal.guardanthealth.com | Report Version 4.1 | TST-PRT-001 V12.0 | Pg 1 of 16

Non-Amplification *ERBB2* (*HER2*) Alterations in 7,300 Consecutive Solid Tumors

Figure 2. Schematic diagram of mutations observed in *ERBB2*. Mutation frequency at each residue is depicted by vertical red bars. All exon 20 insertions (ex20ins) are graphed in red; however, only the most frequent site is labeled (A775_G776insYVMA). For a complete list of exon 20 alterations and the diseases in which they occur, see supplemental online Table 3.

Abbreviation: CRC, colorectal cancer.

Chmielecki et al The Oncologist, Jan 2015

Distribution of ERBB2 Alterations Across Tumor Types

Figure 1. Distribution of *ERBB2* alterations across diseases. Mutations, amplifications, and rearrangements involving *ERBB2* were identified in 403 tumors across 27 disease types. Data are expressed as a percentage compared with the total number of tumors within that subtype in our data set.

Chmielecki et al The Oncologist, Jan 2015

ERBB2 Alterations in 5,605 BC SABCS 2015

- 698 (12.5%) of 5,605 mBC featured *ERBB2* alterations
- 596 (10.6%) featured ERBB2 amplifications and 137 (2.4%) featured ERBB2mut
- 35 (0.6%) of total mBC had both ERBB2 amp and ERBB2 mut, which accounted for 5.0% of all ERBB2 altered
- Of the 137 ERBB2 mut cases, 8 featured more than 1 ERBB2 mut
- There were 124 (85%) ERBB2 kinase domain mutations and 15 (10%) extra-cellular domain ERBB2 mut
- The most common genes co-altered in *ERBB2* mut mBC were *TP53* (49%), *PIK3CA* (42%), *CDH1* (37%), *MYC* (17%), and *CCND1* (16%)
- The enrichment of *ERBB2*mut in *CDH1* mut mBR was significant (p=0.0006) and associated with relapsed lobular mBC
- Multiple case examples of kinase domain and extra-cellular domain ERBB2mut mBC responding to a variety of anti-HER2 targeted therapies will be presented

Response of a HER2 FISH/IHC Negative Cutaneous Adnexal Carcinoma with an *ERBB2* S310f Mutation to anti-HER2 Targeted Therapy

Vornicova O et al. The Oncologist 2014;19:1006-1007

©2014 by Alphelled Press

IMPLICATIONS

- IT SEEMS TO ME WE ARE EITHER GOING TO HAVE TO FIGURE OUT FEASIBLE STRATEGIES TO VALIDATE THESE THERAPIES EARLIER IN THE CLINICAL COURSE, OR,
- WE MAY NEED TO RETHINK OUR PARADIGMS AND FOCUS MORE ON THE HOST.

ENDOCRINE THERAPY

Figure 2. Sensitivity Analysis of Invasive Breast Cancers in Adherent Participants by Treatment Group

Tamoxifen Overview : ER Positive Invasive Breast Cancer

All ER+ Invasive breast cancers, 5-10y SERM vs. placebo

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JUNE 23, 2011

VOL. 364 NO. 25

Exemestane for Breast-Cancer Prevention in Postmenopausal Women

Paul E. Goss, M.D., Ph.D., James N. Ingle, M.D., José E. Alés-Martínez, M.D., Ph.D., Angela M. Cheung, M.D., Ph.D., Rowan T. Chlebowski, M.D., Ph.D., Jean Wactawski-Wende, Ph.D., Anne McTiernan, M.D., John Robbins, M.D.,
Karen C. Johnson, M.D., M.P.H., Lisa W. Martin, M.D., Eric Winquist, M.D., Gloria E. Sarto, M.D., Judy E. Garber, M.D.,
Carol J. Fabian, M.D., Pascal Pujol, M.D., Elizabeth Maunsell, Ph.D., Patricia Farmer, M.D., Karen A. Gelmon, M.D.,
Dongsheng Tu, Ph.D., and Harriet Richardson, Ph.D., for the NCIC CTG MAP.3 Study Investigators*

5R— Recurrence in tamoxifen trials

For explanation, see foot of fig 5M.

THE EXACT SAME THERAPY WHICH **CAN PREVENT BREAST CANCER GIVEN BEFORE DIAGNOSIS** AND CURE SOME PATIENTS IN THE **ADJUVANT SETTING CURES NO ONE** IN THE METASTATIC SETTING. WHY WILL ANY OTHER KIND OF **THERAPY BE DIFFERENT ?**

ESR1 Mutation in Breast Cancer

- NGS study of 249 breast cancers
- 12% frequency of ESR1 somatic mutations in relapsed ER+ breast cancer
- Primary tumors were ESR1 WT
- Pre-clinical models show ESR1 activation and resistance to endocrine therapy
- ESR1 mutation testing can explain hormonal therapy resistance and can personalize therapy selection in ER+ metastatic breast cancer

Jeselsohn R, Yelensky R, Buchwalter G et al. Emergence of constitutively active estrogen receptor- α mutations in pretreated advanced estrogen receptor positive breast cancer. Clin Cancer Res. 2014 Jan 7.

ESR1 MUTATIONS

- Hypothesis
 - Prior Endocrine therapy selects for ESR1 variants
 - These variants:
 - Are still estrogen sensitive
 - But also estrogen independent
 - Als no longer effective

 Patients with ESR1 variants may respond to high doses of SERMs or SERDs.

Identification of Mutations in ESR1 in Patients with ER+ Metastatic Breast Cancer (and Endometrial Cancers)

- First identified in 1997 Fuqua in a single patient with metastatic breast cancer treated with diethylstibesterol (but since then thought to be rare)
- 6 out of 11 ER+ metastatic breast cancer (all are post- aromatase Rx)
- Not in ER- breast cancers
- Not in ER+ tamoxifen only treated patients
- 4 of 373 endometrial cancers (from TCGA)

Robinson et al, Nature Genetics 2013

ESR1 Mutant Signaling Is Estrogen Independent

HEK-293T human embryonic kidney cells transfected with ESR (WT or Mutant)

Robinson, et al., Nat Genet 2013

ESR1 activating mutations are not present in primary tumors

Clinical

•

.

Cancer Research

Human Cancer Biology See related article by Segal and Dowsett, p. 1724

Emergence of Constitutively Active Estrogen Receptor- α Mutations in Pretreated Advanced Estrogen Receptor-Positive Breast Cancer

Rinath Jeselsohn^{1,2,3}, Roman Yelensky⁶, Gilles Buchwalter^{1,2,3}, Garrett Frampton⁶, Funda Meric-Bernstam⁷, Ana Maria Gonzalez-Angulo⁶, Jaime Ferrer-Lozano⁶, Jose A. Perez-Fidalgo¹⁰, Massimo Cristofanili¹¹, Henry Gómez¹², Carlos L. Arteaga¹³, Jenniffer Gilthane¹³, Justin M. Balko¹³, Maureen T. Cronin⁶, Mima Jarosz⁶, James Sun⁶, Matthew Hawryluk⁶, Doron Lipson⁶, Geoff Otto⁶, Jeffrey S. Ross⁶, Addie Dvir¹⁴, Lior Soussan-Gutma¹⁴, Ido Wolf¹⁵, Tamar Rubinek¹⁵, Lauren Gilmore⁴, Stuart Schnitt⁴, Steven E. Come⁵, Lajos Puzztal¹⁶, Philip Stephens⁶, Myles Brown¹², and Vincent A. Mille⁶

- 58 primary BCs
- 76 metastatic samples
- 115 ER- samples
- 9/76 (12%) samples contained a somatic mutation in codon 537 or 538
- None of the primary tumors, treatment naïve ER+ cancers or ER- tumors harbored the mutation

for Acquired Endocrine Resistance in Breast Cancer

Keren Merenbakh-Lamin^{1,2}, Noa Ben-Baruch⁶, Adva Yeheskel³, Addie Dvir⁸, Lior Soussan-Gutman⁶, Rinath Jeselsohn⁶, Roman Yelensky⁹, Myles Brown⁸, Vincent A. Miller⁸, David Sarid¹, Shulamith Rizel⁷, Baruch Klein^{*}, Tami Rubinek¹, and Ido Wolf^{1,2}

- 13 ER+ samples
- 5/13 patients contained the D538G mutation in liver mets
- The mutation was not detected in the primary tumors prior to endocrine treatment

ESR1 MUTATIONS

- Conclusions
 - -Uncommon in Primary Cancers
 - -Appear to be selected by ET
 - Focused in Ligand Binding Domain
 - AA 536-538
 - Confer Ligand–independent Signaling
 - Remain dependent on ER signaling pathway
 - -Resistance:
 - ?Absolute to E2 depletion (AI)
 - Relative to SERM/SERD

CONFIRM Study: PFS

Di Leo, et al., J Clin Oncol 28:4594-600, 2010

Conclusions

Somatic variants in ESR1 are common (~20%) in advanced metastatic BC.

Tumors with these mutation are signaling through the ER pathway

Tumors are resistant to endocrine therapies

A FEW CONCLUDING COMMENTS

- UNQUESTIONABLY THE NOTION THAT THERE IS ENORMOUS CANCER DIVERSITY IMPLIES THAT THERE MUST BE DIVERSE TREATMENTS.
- AND IT ALSO IMPLIES THAT IF WE COULD ONLY MIX AND MATCH THESE CORRECTLY TO OUR PATIENTS WE WOULD ACHIEVE GREAT THINGS.

A FEW CONCLUDING COMMENTS

UNQUESTIONABLY THE NOTION THAT THERE IS ENORMOUS CANCER DIVERSITY IMPLIES THAT THERE

 HOWEVER, GIVEN THE REMARKABLE NUMBER OF POTENTIALLY CONTRIBUTORY MUTATIONS AND THE [RELATIVELY] INFREQUENT NUMBER OF AGENTS TO TARGET THESE MUTATIONS AND GIVEN THE LACK OF DURABLE SUCCESS WHEN THOSE AVAILABLE AGENTS ARE USED [AT LEAST IN THE ADVANCED DISEASE SETTING] WE OBVIOUSLY HAVE A VERY LONG WAY TO GO BEFORE "PERSONALIZED MEDICINE" IS THE REALITY WE WOULD ALL HOPE IT TO BE.....

A FEW CONCLUDING COMMENTS

- IT SEEMS TO ME WE ARE EITHER GOING TO HAVE TO FIGURE OUT FEASIBLE STRATEGIES TO VALIDATE THESE THERAPIES EARLIER IN THE CLINICAL COURSE, OR,
- WE MAY NEED TO RETHINK OUR PARADIGMS AND FOCUS MORE ON THE HOST.

