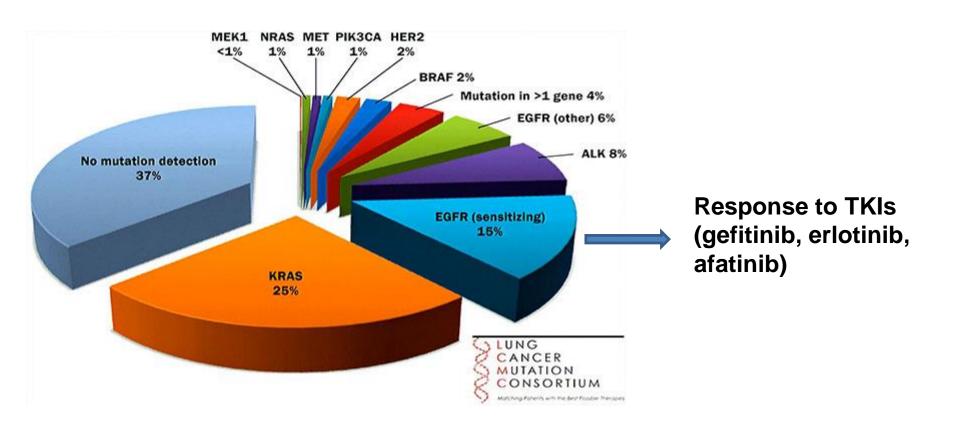
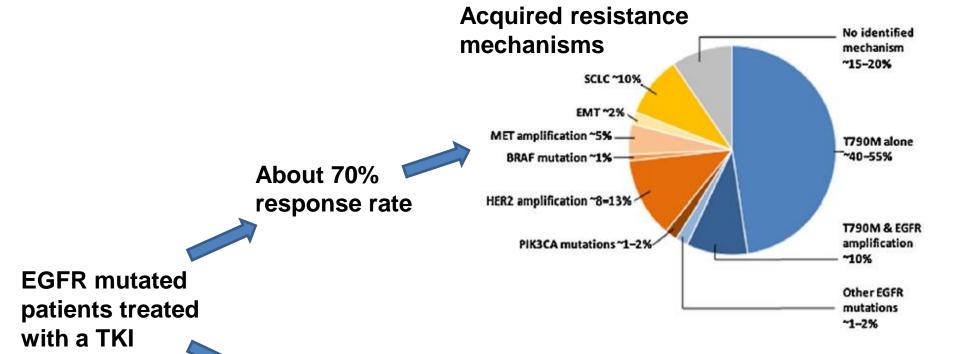
DIO E LA CURA

Istituto di Ricovero e Cura a Carattere Scientifico



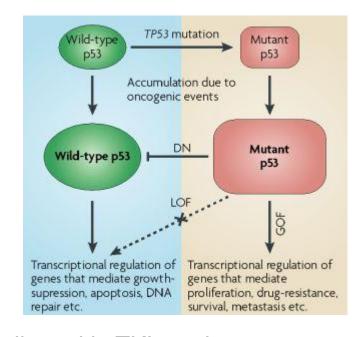
Role of TP53 mutations in determining primary TRANSLATIONAL RESEARCH resistance to first-line tyrosine kinase inhibitors in EGFRmutated NSCLC patients


Paola Ulivi¹, Matteo Canale¹, Angelo Delmonte¹, Elisabetta Petracci¹, Elisa Chiadini¹, Claudio Dazzi², Maximilian Papi³, Laura Capelli¹, Claudia Casanova², Nicoletta De Luigi¹, Marita Mariotti¹, Alessandro Gamboni⁴, Rita Chiari⁵, Chiara Bennati⁵, Daniele Calistri¹, Vienna Ludovini⁵, Lucio Crinò¹, Dino Amadori¹

¹Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola/Italy, ²S. Maria delle Croci Hospital, Ravenna/Italy, ³Infermi Hospital, Rimini/Italy, ⁴Degli Infermi Hospital, Faenza/Italy,

⁵Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia/Italy

About 30% of patients show primary resistance



TP53 is mutated in about 30% of NSCLC

TP53 GOF mutations are able to:

- Increase tumorigenicity
- Increase growth rate and motility
- Increase metastasis and invasiveness
- Up-regulate the expression of Axl
- Induce the EMT process

Both implicated in TKIs resistance

We analyzed the status of TP53 in relation to response to firstline TKIs in EGFR-mutated patients

ISTITUTO SCIENTIFICO ROMAGNOLO PER LO STUDIO E LA CURA DEI TUMORI

Istituto di Ricovero e Cura a Carattere Scientifico

Clinical-pathological characteristics of patients

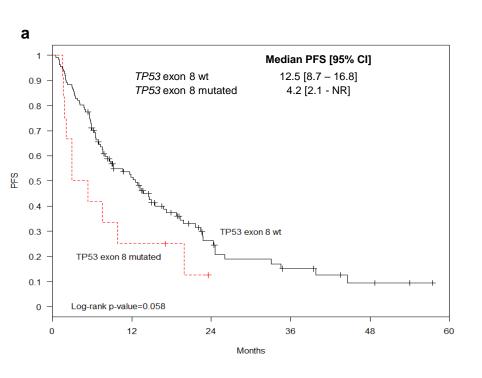
	3	
	n (%)	
Gender		
F	102 (75.0)	
М	34 (25.0)	
Age at start of first-line of therapy, years		
Mean ± sd	70.4 ± 10.7	
Smoking status		
Never smoker	62 (59.0)	
Former smoker	28 (26.7)	
Current smoker	15 (14.3)	
Missing	31	
Histology		
Adenocarcinoma	134 (98.5)	
Poorly differentiated carcinoma	2 (1.5)	
EGFR mutation		
Exon 18 point mutation	6 (4.4)	
Exon 19 deletion	74* (54.4)	
Exon 21 point mutation	56 (41.2)	
L858R	49 (36.0)	
L861Q	7 (5.1)	
Type of first-line therapy		
Gefitinib	104 (76.5)	
Erlotinib	27 (19.8)	
Afatinib	3 (2.2)	
Dacomitinib	2 (1.5)	
Therapy response		
CR	4 (3.0)	
PR	71 (52.6)	
SD	37 (27.4)	
PD	23 (17.0)	

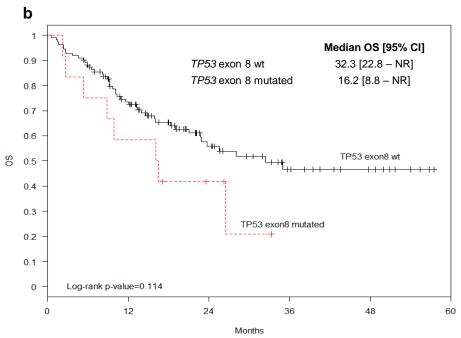
123 patients underwent TP53 mutation analysis:

37 (30%) mutated:

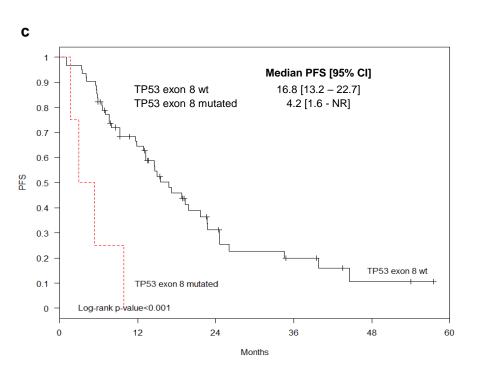
- 27% exon 5
- 16% exon 6
- 24% exon 7
- 33% exon 8

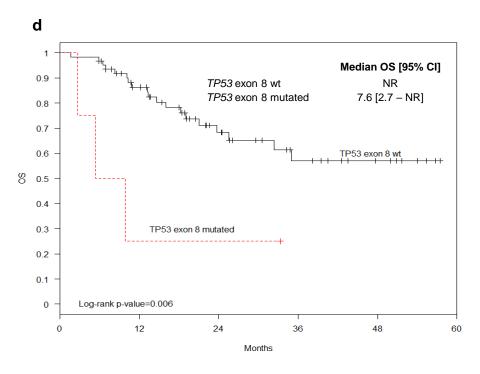
Canale M et al, Clin Cancer Res, October 2016




Disease Control Rate (DCR) in relation to the different types of *TP53* mutations

	DCR, n (%)		Unadjusted	
TP53 mutation	No (n=22)	Yes (n=101)	RR [95% CI]	Р
All mutations				
Wt	10 (11.8)	75 (88.2)	1	0.019
Mut	11 (29.7)	26 (70.3)	3.17 [1.21 - 8.48]	
Exon 5				
Wt	18 (16.1)	94 (84.0)	1	0.2745
Mut	3 (30.0)	7 (70.0)	2.24 [0.45 - 8.92]	
Exon 6				
Wt	20 (17.2)	96 (82.8)	1	0.971
Mut	1 (16.7)	5 (83.3)	0.96 [0.05 - 6.39]	
Exon 7				
Wt	21 (18.4)	93 (81.6)	1	-
Mut	-	9 (100)	-	
Exon 8				
Wt	14 (12.7)	96 (87.3)	1	< 0.001
Mut	7 (58.3)	5 (41.7)	9.6 [2.71- 36.63]	
Disr/Non disr				
Wt	10 (11.7)	75 (88.2)	1	
Disruptive	3 (25.0)	9 (75.0)	2.25 [0.25- 8.94]	0.273
Non-disruptive	8 (33.3)	16 (66.7)	3.75 [1.26 - 11.07]	0.016


PFS and OS in *TP53* exon 8-mutated patients compared to *TP53* exon 8 wt patients



PFS and OS in *TP53* exon 8-mutated patients compared to *TP53* exon 8 wt patients in the subgroup of *EGFR* exon 19 deleted patients

Risk of PFS and OS in relation to *TP53* exon 8 mutations in the subgroup of patients with *EGFR* exon 19 deletion

	PFS		OS	
	HR [95% CI]	р	HR [95% CI]	р
TP53 mutation				
wt	1		1	
mut	1.74 [0.92 – 3.29]	0.086	1.58 [0.64 – 3.87]	0.321
<i>TP53</i> exon 8				
mutation				
wt	1	0.000	1	0.013
mut	6.99 [2.34-20.87]	0.006	4.75 [1.38-16.29]	0.013

CONCLUSIONS

- > TP53 mutations were associated with a significantly lower DCR in EGFR-mutated patients treated with first-line TKIs
- > TP53 exon 8 mutations were those associated with the lowest DCR
- > TP53 exon 8 mutations were associated with a significantly shorter PFS and OS in the subgroup of patients carrying EGFR exon 19 deletion
- ➤ Once confirmed in a larger independent case series, these results could lead to a more accurate selection of *EGFR*-mutated NSCLC patients who could benefit from treatment with first-line TKIs

Thank you for your attention!!!