Targeting Bruton's Tyrosine Kinase (BTK)

Lapo Alinari, MD, PhD

4th International Conference, Translational Research in Oncology Forli', November 9-11/2016

The James

THE OHIO STATE UNIVERSITY COMPREHENSIVE CANCER CENTER

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

Conflict of Interest for Lapo Alinari

Investigator role in clinical trials	Pharmacyclics (an AbbVie Company), Merck, Bristol-Myers Squibb
Research Support	BetaCat Pharmaceuticals
Employee	None
Consultant	None
Major Stockholder	None
Scientific Advisory Board	None

- Explore the B-cell receptor signaling pathway
- Discuss BTK as a therapeutic target
- Discuss activity of and resistance to BTK inhibitors in the treatment of lymphoid malignancies
- Identify mechanisms to improve upon BTK inhibition

Objectives

- Explore the B-cell receptor signaling pathway
- Discuss BTK as a therapeutic target
- Discuss activity of and resistance to BTK inhibitors in the treatment of lymphoid malignancies
- Identify mechanisms to improve upon BTK inhibition

ITAM: immunoreceptor tyrosine-based activation motif

Zhong Y et al. Seminars in Hematology 2014

The James

THE OHIO STATE UNIVERSITY

B-cell receptor signaling

Activation of B-cell receptor signaling

Antigen dependent

Normal B cells

Chronic lymphocytic leukemia (CLL)

Mantle cell lymphoma (MCL)

Antigen independent

ABC-diffuse large B-cell lymphoma (ABC-DLBCL)

Objectives

- Explore the B-cell receptor signaling pathway
- **Discuss BTK as a therapeutic target**
- Discuss activity of and resistance to BTK inhibitors in the treatment of lymphoid malignancies
- Identify mechanisms to improve upon BTK inhibition

BTK as a therapeutic target

- BTK is a member of the Tec family kinases and plays a central role in B-cell receptor signaling pathway.
- Although BTK is expressed in multiple hematopoietic cells the primary defect in BTK-/- mice is B-cell specific.
- Loss of BTK function in humans give rise to X-linked agammaglobulinemia, an inherited disorder characterized by complete lack of mature B cells.
- BTK was identified in preclinical models as an essential signaling kinase for survival of chronic lymphocytic leukemia (CLL) and certain B-cell lymphomas.

Pros and cons of targeting BTK

Pros:

- BCR signaling is vital to malignant B cell survival, proliferation
- BTK activation leads to activation of PI3K, PLCγ2, MAPK, and NF-kB pro-survival pathways
- Mouse models of BTK deficiency suggest predominantly a B-cell defect, without impairment of T-cells

Cons:

Targeting BTK may enhance immune suppression due to influence on normal B-cells function, neutrophils maturation, and NK cells mediated ADCC

Ibrutinib: a potent Btk Inhibitor

Honigberg LA et al. PNAS 2010 Herman S et al. Blood 2011 Ponader L et al. Blood 2012

- Binds irreversibly to cysteine-481 in Btk
- Inhibits BCR signaling
- Active in preclinical models of CLL and lymphoma
- Orally available
- Once daily dosing results in 24-hr sustained target inhibition

Table S1. IC₅₀ values and fold selectivity for inhibition of enzymatic activity by PCI-32765

Kinase	IC ₅₀ , nM	Btk selectivity,	fold
втк	0.5	_	
BLK*	0.5	1	
BMX*	0.8	1.6	
CSK	2.3	4.6	
FGR	2.3	4.6	
BRK	3.3	6.6	
НСК	3.7	7.4	
EGFR*	5.6	11.2	
YES	6.5	13	
ErbB2*	9.4	18.8	
ITK*	10.7	21.4	Interleukin-in
JAK3*	16.1	32.2	
FRK	29.2	58.4	
LCK	33.2	66.4	
RET	36.5	73	
FLT3	73	146	
TEC*	78	156	
ABL	86	172	
FYN	96	192	
RIPK2	152	304	
c-SRC	171	342	
LYN	200	400	
PDGFRα	718	1436	
FMS	5545	>10,000	
FER	8070	>10,000	
JAK1	>10,000	>10,000	
JAK2	>10,000	>10,000	
NEK2	>10,000	>10,000	
p38	>10,000	>10,000	
PI3K	>10,000	>10,000	
PLK1	>10,000	>10,000	
RSK1	>10,000	>10,000	
SYK	>10,000	>10,000	

Interleukin-induced tyrosine kinase

*Kinases that contain a cysteine residue aligning with Cys-481 in Btk.

Honigberg LA et al. PNAS 2010

Objectives

- Explore the B-cell receptor signaling pathway
- Discuss BTK as a therapeutic target
- Discuss activity of and resistance to BTK inhibitors in the treatment of lymphoid malignancies
- Identify mechanisms to improve upon BTK inhibition

Ibrutinib clinical development

Phase I open-label study of ibrutinib in relapsed refractory B-cell malignancies

Patient characteristics	N = 56	Overall response rate
Histologic subtype:		
Follicular lymphoma	16	37.5%
CLL	16	67.5%
Mantle cell lymphoma	9	78%
DLBCL	7	28%
Other	8	50%

Disease focus

- Chronic lymphocytic leukemia
- Mantle cell lymphoma
- Diffuse large B-cell lymphoma

Chronic lymphocytic leukemia (CLL)

- CLL is the most prevalent adult leukemia and is characterized by a progressive accumulation of functionally incompetent B cells
- Presentation usually indolent
- Standard treatment regimen for symptomatic CLL patients: Options include purine analogs, alkylating agents, monoclonal antibodies, ibrutinib.
- Options at relapse include ibrutinib, monoclonal antibodies, bcl2 inhibitor, PI3K inhibitors, CDK inhibitors, steroids, chemo-immunotherapy, enrollment in a clinical trial, transplant

THE OHIO STATE UNIVERSITY

A Phase Ib/II Study of Ibrutinib in Relapsed CLL

PCYC-1102-CA	N = 86
Age, years	
Median (Range)	66 (37 – 82)
≥ 70 years, (%)	35%
ECOG Status	
0	41%
1	56%
2	2%
Median Prior Therapies	4 (1-12)
β ₂ Microglobulin > 3mg/L, %	49%
Rai Stage III/IV at Baseline	65%
Prognostic Markers, %	
IgV _H unmutated	85%
del(17p13.1)	35%
del(11q22.3)	39%

Byrd JC et al. NEJM. 2013

Phase III study of ibrutinib versus of atumomab in patients with relapsed/refractory CLL (RESONATE)

Phase III study of ibrutinib versus ofatumomab in patients with relapsed/refractory CLL (RESONATE)

Phase III study of ibrutinib versus chlorambucil in patients with treatment naive CLL (RESONATE-II)

THE OHIO STATE UNIVERSITY COMPREHENSIVE CANCER CENTER

Phase III study of ibrutinib versus chlorambucil in patients with treatment naive CLL (RESONATE-II)

Burger JA et al. NEJM 2015

COMPREHENSIVE CANCER CENTER

THE OHIO STATE UNIVERSITY COMPREHENSIVE CANCER CENTER

Byrd JC et al, Blood 2015

	30-months PFS
No 17p-/11q-	89.0%
17p-	45.9%

Byrd JC et al, Blood 2015

Prolonged lymphocytosis during ibrutinib treatment does not indicate suboptimal response

Mantle Cell Lymphoma (MCL)

- MCL is a rare and incurable B-cell non-Hodgkin's lymphoma
- Presentation can be indolent or aggressive
- No standard front-line regimen:
 - Rituximab(R)-chemo, R-chemo followed by ASCT
- Consolidation with autologous transplant in first remission may prolong progression-free survival
- Options at relapse include ibrutinib, bortezomib, Rbendamustine, lenalidomide, mTOR inhibitor, enrollment in a clinical trial, transplant in selected patients

The NEW ENGLAND JOURNAL of MEDICINE

established in 1812

august 8, 2013

vol. 369 no. 6

Targeting BTK with Ibrutinib in Relapsed or Refractory Mantle-Cell Lymphoma

Michael L. Wang, M.D., Simon Rule, M.D., Peter Martin, M.D., Andre Goy, M.D., Rebecca Auer, M.D., Ph.D., Brad S. Kahl, M.D., Wojciech Jurczak, M.D., Ph.D., Ranjana H. Advani, M.D., Jorge E. Romaguera, M.D., Michael E. Williams, M.D., Jacqueline C. Barrientos, M.D., Ewa Chmielowska, M.D., John Radford, M.D., Stephan Stilgenbauer, M.D., Martin Dreyling, M.D., Wieslaw Wiktor Jedrzejczak, M.D., Peter Johnson, M.D., Stephen E. Spurgeon, M.D., Lei Li, Ph.D., Liang Zhang, M.D., Ph.D., Kate Newberry, Ph.D., Zhishuo Ou, M.D., Nancy Cheng, M.S., Bingliang Fang, Ph.D., Jesse McGreivy, M.D., Fong Clow, Sc.D., Joseph J. Buggy, Ph.D., Betty Y. Chang, Ph.D., Darrin M. Beaupre, M.D., Ph.D., Lori A. Kunkel, M.D., and Kristie A. Blum, M.D.

Wang ML et al, NEJM 2013

Patient Characteristics

	Bortezomib-Naïve (N=63)	Bortezomib-Exposed (N=48)	Total (N=111)
Median Age	66 (46-83)	69 (40–84)	68 (40–84)
Median number prior			•
regimens:			3
(Range)			(1-5)
≥ 3 regimens	31 (49%)	30 (62%)	61 (55%)
Simplified MIPI			
Low risk (0-3)	9 (14)	6 (12)	15 (14)
Intermediate (4-5)	24 (38)	18 (38)	42 (38)
High risk (6-11)	30 (48)	24 (50)	54 (49)
Potrostery (loss than DP	27 (43)	23 (48)	50 (45)
to last tx)			50 (-5)

Wang ML et al, NEJM 2013

Overall response

Efficacy Population n=111, Median Follow Up ~15.3 months (range, 1.9-22.3)

Ibrutinib survival curves

Outcomes for patients relapsing/progressing on ibrutinib

- Cheah CY, Ann Onc, 2015
 42 discontinued ibrutinib (or R-ibrutinib)
 - 19% primary progression47% relapsed14% AE10% transplant10% patient choice
- Median 6.5 cycles (1-43)
- 31 patients salvage with ORR 32%

regardless of regimen

MEDIAN OS 8.4 months

Martin P, Blood, 2016

• 114 discontinued ibrutinib

32% primary progression 54% relapsed 2% AE 1% patient choice

- Median 4.7 cycles (0.7-43.6)
- 73 patients salvage with ORR 36%

no differences in median OS with any specific regimen

• MEDIAN OS 2.9 months

Diffuse large B-cell lymphoma (DLBCL)

- DLBCL is the most common NHL
- remarkable heterogeneity with diverse histologic and molecular variants: germinal center B-cell (GCB) vs activated B-cell (ABC)-DLBCL.
- ABC-DLBCL, but not GC-type, relies on constitutive activation of NF-kB for proliferation and survival and has been associated with worse outcome
- Standard front-line regimen: R-CHOP
- High dose chemotherapy followed by autologous stem cell transplant (ASCT) is standard for DLBCL patients with chemosensitive relapse
- DLBCL patients that relapse after ASCT have a very poor prognosis with reported median OS of 5-10 months
- Options at relapse after ASCT include enrollment in a clinical trial, chemotherapy, ibrutinib, lenalidomide

Molecular Subtypes of DLBCL

THE OHIO STATE UNIVERSITY COMPREHENSIVE CANCER CENTER

Lenz et al, N Engl J Med. 2008

Wyndham H Wilson¹, Ryan M Young¹, Roland Schmitz¹, Yandan Yang¹, Stefania Pittaluga², George Wright³, Chih-Jian Lih⁴, P Mickey Williams⁴, Arthur L Shaffer¹, John Gerecitano^{5,6}, Sven de Vos⁷, Andre Goy⁸, Vaishalee P Kenkre⁹, Paul M Barr¹⁰, Kristie A Blum¹¹, Andrei Shustov¹², Ranjana Advani¹³, Nathan H Fowler¹⁴, Julie M Vose¹⁵, Rebecca L Elstrom¹⁶, Thomas M Habermann¹⁷, Jacqueline C Barrientos¹⁸, Jesse McGreivy¹⁹, Maria Fardis¹⁹, Betty Y Chang¹⁹, Fong Clow¹⁹, Brian Munneke¹⁹, Davina Moussa¹⁹, Darrin M Beaupre¹⁹ & Louis M Staudt¹

Nature Medicine 2015

Wilson WH et al, Nat Med 2015

Patient characteristics (Total 70 pts, 29 ABC, 20 GCB, 16 Unclassifiable, 5 Unknown)

Characteristics	Total (N=70)	ABC (N=29)	GCB (N=20)
Median Age (range)	64 (28-92)	62 (34-89)	65 (28-92)
IPI (HI/High)	37 (59%)	61%	58%
Prior regimens median (range)	3 (1-7)	3 (1-7)	3.5 (1-7)
Prior ASCT	16 (23%)	17%	30%
Refractory disease	38 (54%)	41%	70%

Wilson WH et al, Nat Med 2015

Ibrutinib improves PFS/OS in ABC DLBCL compared to GC-subtype

THE OHIO STATE UNIVERSITY COMPREHENSIVE CANCER CENTER

Patient	Age	No. Prior Therapi es	Cytogenetics	Study Treatment	Duration on Ibrutinib	Best Respons e	Identified Mutation
1	59	5	del(17p13.1), +12	560 mg qd	621 days	PR	C481S, BTK
2	75	2	del(17p13.1), complex karyotype	420 mg qd	673 days	PR	R665W, PLCγ2
3	59	3	del(11q22.3)	BR x 6 cycles, 420 mg qd	388 days	CR	C481S, BTK
4	51	2	complex karyotype	Ofatumumab x 24 weeks, 420 mg qd	674 days	CR	C481S, BTK
5	69	9 9	del(17p13.1), complex karyotype	840 mg qd	868 days	PR	C481S, BTK
6	61	4	del(17p13.1), complex karyotype	Ofatumumab x 24 weeks, 420 mg qd	505 days	PR	L845F, PLCγ2; C481S, BTK

Woyach J et al. NEJM 2014

BTK and PLCY2 mutations

WES discovery of BTK and PLCG2 mutations: Woyach J et al, NEJM 2014 Characterization of ibrutinib resistant disease: Maddocks et al, JAMA Oncol 2015 Modeling PLC Y2 mutation: Liu et al, Blood 2015

What is the pattern of ibrutinib failure?

Patients	BTK	PLCγ2	Both	
11/13	7	2	2	

Maddocks K et al. Jama Oncol 2015

Mechanisms of ibrutinib resistance in MCL

- Balasubramian D, et al. (ASH 2014, abstract 78)
 - 25 patients refractory to ibrutinib in multi-center, phase 2 trial
 - 23 patients had pre-treatment tumor or CD19-selected peripheral blood samples sequenced
 - No BTK C481S mutations and 1 PLCγ2 mutation identified
- Chiron D, et al. (Cancer Discovery, 2014)
 - 8 patients with ibrutinib failure with BTK and PLCγ2 mutational analysis at recurrence
 - 2 patients with C481S mutations, treated for 14 and 30 months
 - 6 patients without mutations, all treated < 5 months

Martin P, et al. (Blood, 2016)

- 114 patient with ibrutinib failure
- 10 patients had BTK and PLCγ2 mutational analysis at recurrence
 - 2 patients with C481S mutations, treated for 12.1 and 12.6 months
 - 8 patients without mutations, treated 0.4-43 months

Mechanisms of ibrutinib resistance in MCL

- CARD11 mutation
 - Identified in 1 patient at relapse (Wu et al, ICML 2015)
- Genetic lesions in the alternative NF-kB pathway occur in patients with MCL (Chiron D et al, Cancer Discovery 2014)
 - TRAF2 (6%), TRAF3 (10%), BIRC2, BIRC3, MAP3K14
- BTK WT
 - Despite ongoing inhibition of BTK, high level of PI3K-AKT expression and activation has been found (Chiron D et al, Cancer Discovery 2014)

What we know about single agent ibrutinib

- Most CLL patients have durable remissions to ibrutinib
- Acquired mutations in BTK and PLCY2 appear to be the main driver to ibrutinib resistance in CLL
- 30-40% of MCL patients do not respond to ibrutinib and 10-20% have very short remissions.
- Among the MCL patients that achieve a durable remission, relapse appears universal.
- Responses in DLBCL is limited to a subset of patients.
- Duration of response in DLBCL is also short

Objectives

- Explore the B-cell receptor signaling pathway
- Discuss BTK as a therapeutic target
- Discuss activity of and resistance to BTK inhibitors in the treatment of lymphoid malignancies
- Identify mechanisms to improve upon B-cell receptor inhibition

Novel BTK inhibitors: ACP-196 in CLL

 Acalabrutinib (ACP-196) is a second generation, selective, irreversible inhibitor of BTK characterized by the absence of irreversible inhibition of other kinases (TEC, EGFR, ITK)

 Table 1. Baseline Demographic and Clinical Characteristics of the Patients.

Characteristic	Value (N = 61)
Age	
Median — yr	62
Rai risk classification — no. (%)†	
Low	1 (2)
Intermediate	19 (31)
High	41 (67)
No. of previous therapies	
Median	3
Range	1–13
Cytopenia at baseline — no. (%)	
Absolute neutrophil count ≤1500 µl	15 (25)
Hemoglobin ≤11.0 g/dl	21 (34)
Platelet count ≤100,000/µl	32 (52)
Prognostic factors — no./total no. (%)	
Unmutated immunoglobulin variable-region heavy- chain gene	38/51 (75)
Chromosome 17p13.1 deletion‡	18/59 (31)
Chromosome 11q22.3 deletion‡	17/59 (29)

24 dogs with spontaneous DLBCL received escalating dose of ACP-196 (range 2.5-20mg/kg BID)

Harrington B, et al. PlosOne 2016

Rationale for combination therapy

- Improved ORR and convert PR to CR
 - Deeper remissions = longer PFS/OS?
- Prevent relapse

Combination therapy

- With conventional chemotherapy
- With biological agents

What does chemotherapy add to ibrutinib in CLL?

Ibrutinib+BR

Phase	3
Number	289
Age	64
17p permitted ?	no
# prior regimens	1 – 11 (2)
ORR	83%
	10%
Median follow up	17 mo
PFS	72% at 24 mo
OS	88% at 24 mo

Chanan-Khan A et al, Lancet Oncol 2016

What does chemotherapy add to ibrutinib in CLL?

	lbrutinib+BR	Ibrutinib alone
Phase	3	3
Number	289	101
Age	64	64
17p permitted ?	no	yes
# prior regimens	1 – 11 (2)	1 12 (4)
ORR	83%	90%
CR	10%	7%
Median follow up	17 mo	36 mo
PFS	72% at 24 mo	69% at 30 mo
OS	88% at 24 mo	79% at 30 mo

Chanan-Khan A et al, Lancet Oncol 2016 Byrd JC et al, NEJM 2014

THE REPORT OF THE OWNER AND THE

What does chemotherapy add to ibrutinib in lymphoma?

	lbrutinib+BR	Ibrutinib alone
ABC-DLBCL		
ORR	37%	37%
CR	27%	16%
Median PFS	2.5 months	2 months
Median OS	Not provided	10 months
MCL		
ORR	94%	68%
CR	76%	21%
Median PFS	Not reached	13.9 months
Median OS	Not reached	22.5 months

Wang ML et al, NEJM 2013 Wilson WH et al, Nat Medicine 2015 Maddocks K et al, Blood 2015

Ibrutinib + Rituximab for patients with high risk CLL

- 40 patients (some previously untreated)
- ORR 95% (8% CR)

Burger JA, et al. Lancet Oncol 2014

THE OHIO STATE UNIVERSITY

In vivo ibrutinib and an anti-PD-1 blocking agent controls BTK resistant B cell lymphoma

G G C A A T C T A C G T G G C I

Conclusions

- BTK inhibitors have dramatically changed the treatment paradigm for CLL
- Ibrutinib has high single agent activity in several subtypes of NHL but most patients ultimately relapse and survival after relapse is short
- Multiple mechanisms of resistance likely exist, and these are better defined in CLL than B-cell NHL

The James

THE OHIO STATE UNIVERSITY

Thank You

Interested in a collaboration? Interested in a research experience? Please contact me: Lapo.Alinari@osumc.edu

To learn more about Ohio State's cancer program, please visit cancer.osu.edu or follow us in social media:

