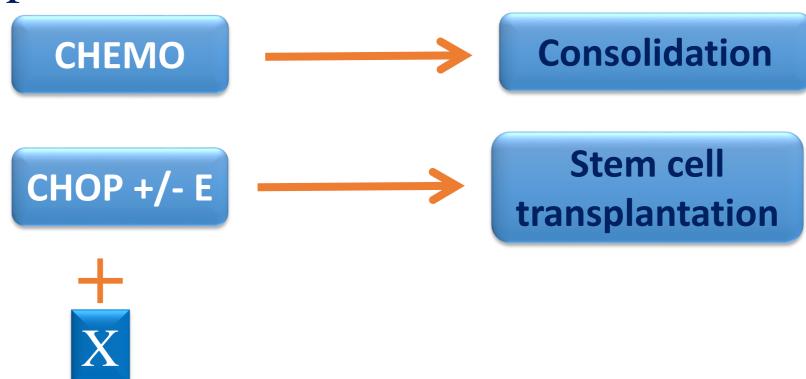

Should ASCT in 1st remission be the standard of care for patients with PTCL?

Against.....B Pro

Where we have been: Overall and Failure-free Survival

Historical data with CHOP?


Selected Studies

Reference	Treatment	Histology	N	ORR	CR	PFS / EFS
Savage KJ, et al.	Almost all DTCL LIS 117 9/10/2 ◆ ORR 60-80+% ◆ CR 39-60+%			64%	29% (5 yr)	
Reimer P, et al.	♦Lack of durable remissions Prospective AITL/ALCL				39%	ASCT
Simon KJ, et al.	CHOP vs VIP-rABVD, Prospective	PTCL (30) / AITL / ALCL	43	62%	39% (PTCL 29%)	41% (2 yr) Lower for PTCL

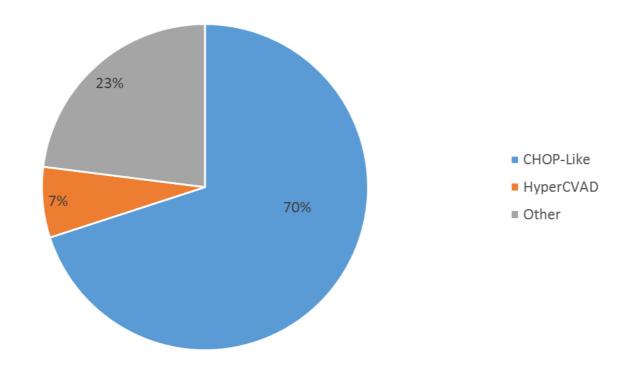
VIP-rABVD, etoposide, ifosfamide, cisplatin alternating with doxorubicin, bleomycin, vinblastine, dacarbazine (VIP-reinforced-ABVD).

Savage KJ, et al. *Ann Oncol.* 2004;15(10):1467-1475; Reimer P, et al. *J Clin Oncol.* 2009;27(1):106-113; Simon A, et al. *Br J Haematol.* 2013;151(2):159-166.

Current treatment approach for T-cell lymphomas: front-line

- -Brentuximab vedotin ---
- -Romidepsin
- -Pralatrexate
- -Belinostat
- -Alemtuzumab

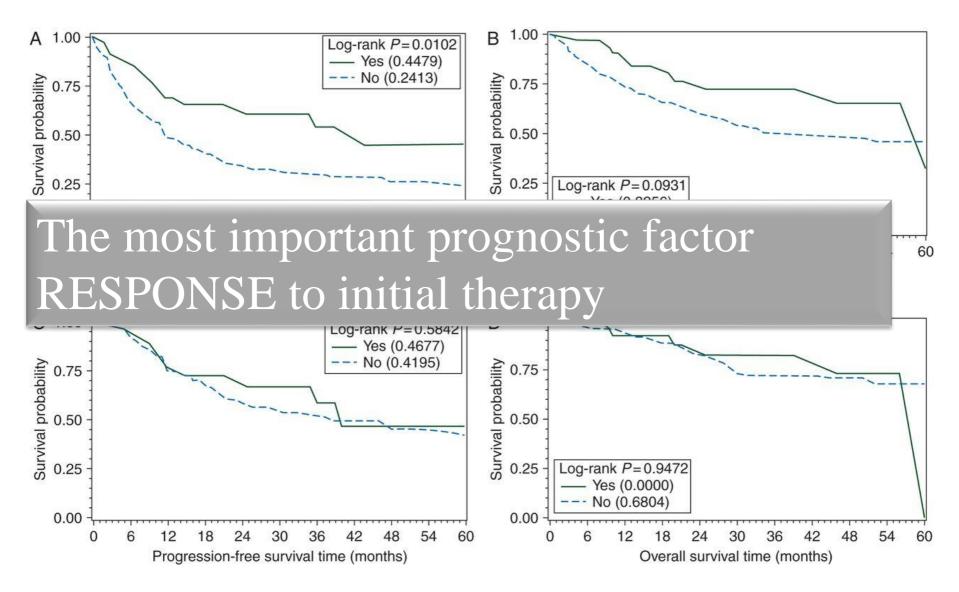
Peripheral T-cell lymphomas in a large US multicenter cohort: prognostication in the modern era including impact of frontline therapy


J. S. Abramson¹, T. Feldman², A. R. Kroll-Desrosiers³, L. S. Muffly⁴, E. Winer⁵, C. R. Flowers⁶, F. Lansigan⁷, C. Nabhan⁴, L. J. Nastoupil⁶, R. Nath³, A. Goy², J. J. Castillo⁸, D. Jagadeesh³, B. Woda³, S. T. Rosen⁹, S. M. Smith⁴ & A. M. Evens^{10*}

Center for Lymphoma, Massachusetts General Hospital Cancer Center, Boston;
 John Theurer Cancer Center, Hackensack University Medical Center, Hackensack;
 Department of Hematology/Oncology, University of Massachusetts Medical School, Worcester;
 Department of Hematology/Oncology, University of Chicago, Chicago;
 Department of Hematology/Oncology, Rhode Island Hospital, Providence;
 Department of Hematology/Oncology, Dartmouth-Hitchcock Medical Center, Lebanon;
 Department of Hematology/Oncology, Miriam Hospital, Providence;
 Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago;
 Department of Hematology/Oncology, Tufts Medical Center, Boston, USA

341 newly diagnosed patients from 2000-2011

PTCL NOS	31%
ALCL	26%
AITL	23%
NK-TCL	7%
ATLL	6%
Other	7 %


Treatment

ORR 73%
24 % had primary refractory disease

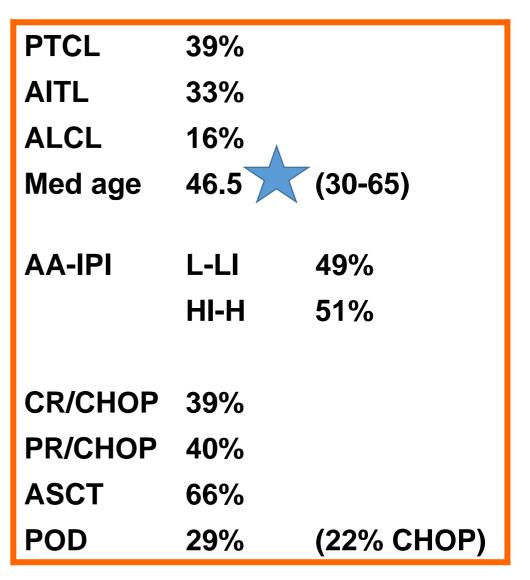
33 patients (10%) underwent SCT in first remission No benefit on MVA when controlling for CR, Stage, LDH, albumin

PFS (A) and OS (B) by consolidative SCT in all patients, and PFS (C) and OS (D) by SCT limited to patients in CR following induction chemotherapy.

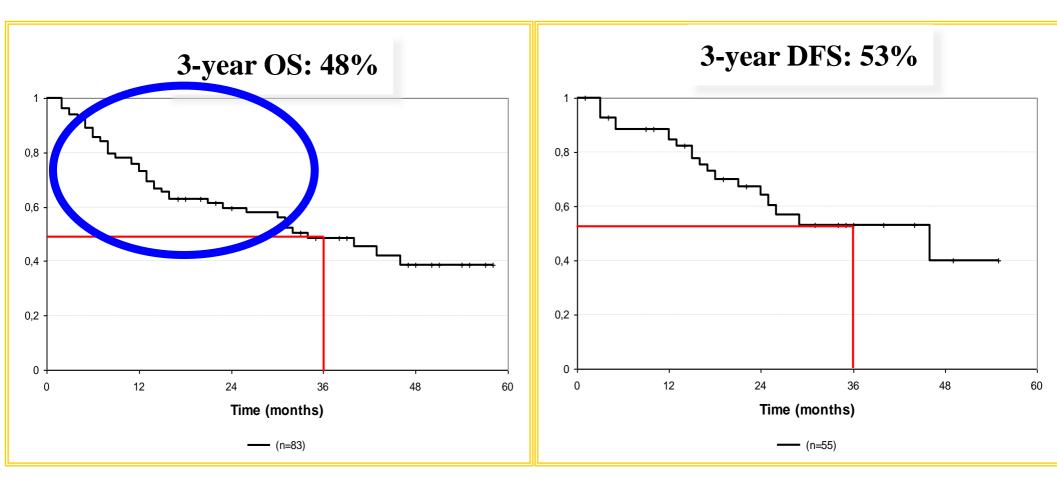
J. S. Abramson et al. Ann Oncol 2014;25:2211-2217

Autologous SCT in PTCL

Retrospective


Schetelig et al.	14	Diverse	86% CR	5yr-60%
Rodriguez et al	4	4: OC	<u> </u>	5yr-60%
Yamazaki et al. Ke	etrosp	ective OS	53-12%	3yr-72%
Rodriguez et al.	74	BEAM/BEAC/CVB/Cy+TBI	No data	5yr-68%
Feyler et al.	64	Diverse	No data	3yr-53%
Kyriakou et al	146	Diverse	70% CR	4yr-59%

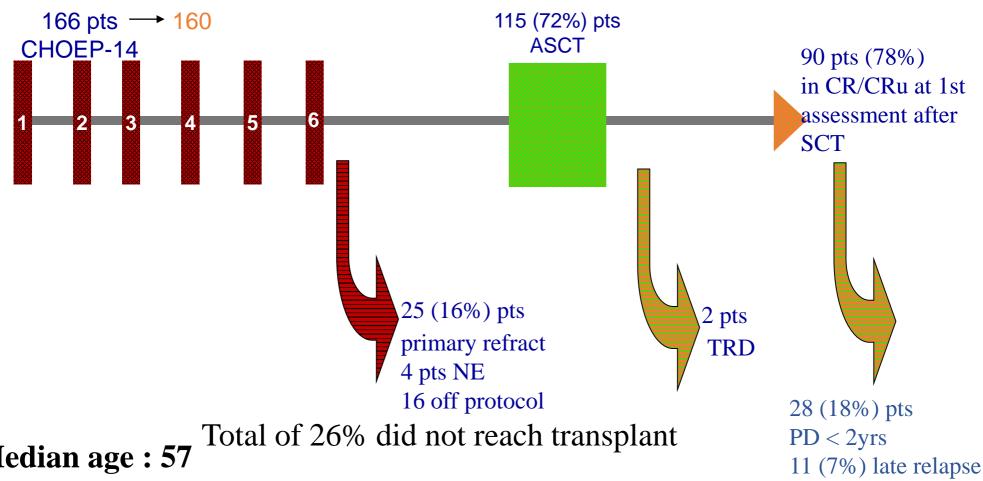
Prospective


Haioun et al.	22	Discourse and the second		No data
Gisselbrecht et	Prospe	ective OS	32-48%	5yr-32%
Reimer et al.	83	Су/ТВІ	58% CR	3yr-48%
Mercadal et al.	41	High-dose CHOP-ESHAP	51% CR	4yr-39%
D'Amore et al.	77	BEAM	71% CR	Short FU
Corradini et al.	62	Mito/Mel orBEAM	66% CR	12yr-34%
Rodriguez et al.	13	BEAM	65% CR	3yr-86%

Autologous stem cell transplantation as firstline therapy in PTCL: Results of a prospective multicenter study

- N=83
- CHOP x 4-6
- IF CR/PR
 - mobilized with DexaBEAM or ESHAP
- TBI + CY-ASCT
- Median F/U: 33 months

Autologous stem cell transplantation as first-line therapy in PTCL: Survival


Outcome

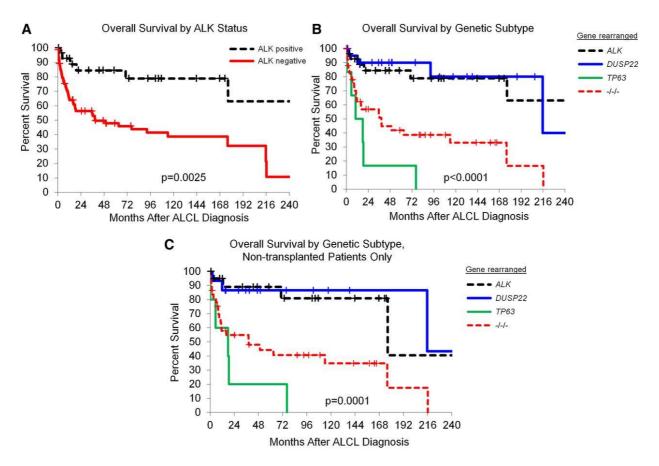
- 39% could not be transplanted due to PD
- 27% progressed after transplant

Reimer, P. et al et al. JCO epub Nov2008

Up-Front Autologous Stem-Cell Transplantation in Peripheral T-Cell Lymphoma: NLG-T-01

Francesco d'Amore, Thomas Relander, Grete F. Lauritzsen, Esa Jantunen, Hans Hagberg, Harald Anderson, Harald Holte, Anders Osterborg, Mats Merup, Peter Brown, Outi Kuittinen, Martin Erlanson, Bjøm Østenstad, Unn-Merete Fagerli, Ole V. Gadeberg, Christer Sundström, Jan Delabie, Elisabeth Ralfkiaer, Martine Vornanen, and Helle E. Toldbod

Median age: 57

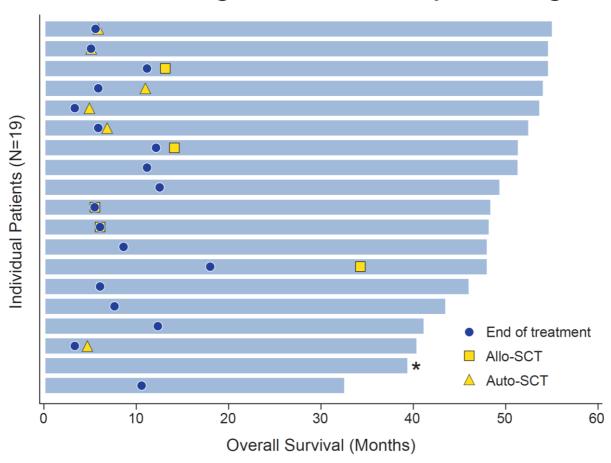

5-yr OS 51%, 5-yr PFS 44%

Best results in ALK – patients, PTCL-NOS 5-yr PFS 38%

Caveats in understanding role of ABMT

- Selection biases of series
- Challenges and changes in pathologic classification
- Non-uniform therapy
- Molecular heterogeneity
- More effective treatment (s)?

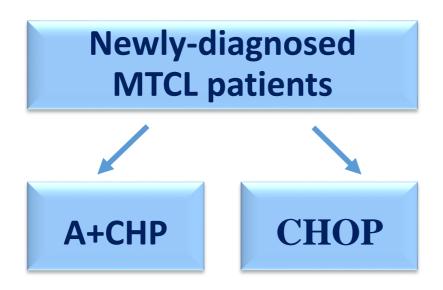
Outcomes in patients with ALK-ALCL based on genetic subtype



Edgardo R. Parrilla Castellar et al. Blood 2014;124:1473-1480

BV in Relapsed/Refractory ALCL Long-Term Follow-up

Patients with Long-Term Remissions per Investigator



^{*} Patient discontinued after 2 treatment cycles; end of treatment assessment not performed

• 19 patients remain on study, free of progression, and without the start of new anticancer therapy, other than SCT (n=11)

ECHELON-2 Phase 3 Study

- Randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of brentuximab vedotin and CHP (A+CHP) vs CHOP for the frontline treatment of CD30+ MTCL*
- Enrolling approximately 300 patients at 130 sites in 14 countries (ClinicalTrials.gov #NCT01777152)

Stratified by:

- MTCL histology: ALK-positive sALCL, all others
- IPI score: 0–1, 2–3, 4–5

Autologous Transplantation

Prospective studies

- Moderately better PFS/OS than population based series with CHOP
- Selection-
 - studies younger pts
 - frail pts less likely to go on a HDT study
- Does not address the higher rates of non-responders in PTCL
 - Primary refractoriness is still an unsolved problem in a substantial number of pts (25%-35%) on prospective trials
- Does HDT-ASCT as consolidation improve results or is it just selecting for healthier people with chemosensitive disease?
 - Randomized study?