

Different front-line treatments related to the histologic subtypes in PTCL: Is it possible today?

Steven M. Horwitz M.D. Associate Member Lymphoma Service Memorial Sloan Kettering Cancer Center Associate Professor Weill Cornell Medical College Memorial Sloan Kettering Cancer Center...

Many things are possible...

But that doesn't necessarily make them a good idea

"Standard" Approaches to the Initial Treatment of PTCL

"Standard" Approaches: CHOP or CHOEP +/-ASCT

Schmitz N, et al. Blood. 2010;116:3418-3425. D'Amore, et al. J Clin Oncol. 2012;30(25):3093-3099

Proportion of Major T-cell Subtypes: North America

Memorial Sloan Kettering Cancer Center,

NK/T-cell Lymphoma

NK/T-cell Lymphoma

- EBV driven lymphoma
- More common in Asia and Central/South America
 - NA-4-5% of TCL
 - Asia >20% of TCL
- Almost always presents in the nose or nasopharynx
- Less often: paranasal sinuses, tonsil, Waldeyer's ring, and oropharynx.
- Other sites: skin, salivary glands, testis, and gastrointestinal tract
- Quantitative of plasma EBV prognostic and predictive

NK/T cell Lymphoma- Early stage

- Prognosis favors early stage/localized to nasopharynx
- Historically no benefit to CMT over RT alone
- RT alone doses >50Gy
- Patterns of failure

International T-Cell Lymphoma Project JCO 2008;26:4124-4130 Li Y et al. JCO 2006;24:181-189

Outcomes for Chemotherapy With Radiotherapy in Stage I/II Nasal NK/T

RT + Cisplatin followed by Etoposide: 100 mg/m2 IV, days 1-3 Ifosfamide: 1200 mg/m2 IV, days 1-3 Cisplatin: 33 mg/m2 IV, days 1-3 Dexamethasone: 40 mg IV or orally, days 1-4

Kim et al. JCO December 10, 2009 vol. 27 no. 35

Concurrent radiation with Dexamethasone: 40 mg IV, days 1-3 Etoposide: 67 mg/m2 IV, days 1-3 Ifosfamide: 1000 mg/m2 IV, days 1-3 Carboplatin: 200 mg/m2 IV, day 1

Yamaguchi et al JCO November 10, 2012 vol. 30 no. 32

NK/T cell Lymphoma: MSKCC Results with mSMILE* according to Stage

*Modified from Yamaguchi et al Cancer Sci. 2008 May;99(5):1016-20

Memorial Sloan Kettering Cancer Center

Hepatosplenic T-cell lymphoma

Hepatosplenic T-cell lymphoma

- Young age, usually male
- Associated with immunosuppression-IBD
- Anti-TNF > other immunosuppressive?
- Often very aggressive course
- Clinical Features
 - Splenomegaly, BM+ ~100%,
 - Hepatomegaly 80-90%
 - Elevated LFTs 50%,
 - LDH markedly elevated
 - Peripheral blood in 50–80%
 - Lymphadenopathy usually absent
 - Cytopenia
 - Hypersplenism and/or HLH

HSTCL

Induction phase		Consolidation phase			
Regimen	Response	Regimen	Response	Status	
СНОР	CR	Chemotherapy	CR	DOD	
CHOP-like	CR	Chemotherapy	CR	DOD	
CHOP-like	CR	Auto BMT	CR	DOD	
CHOP-like	CR	Auto BMT	CR	DOD	
CHOP-like	CR	Chemotherapy	CR	DOD	
CHOP-like	CR	Allo BMT	CR	DOD	
CHOP-like	PR	Auto PBSC	CR	DOD	
CHOP-like	PR	Auto PBSC	Failure	DOD	
CHOP-like	CR	Chemotherapy	CR	DOD	
CHOP-like	Failure	—	—	DOD	
CHOP	Failure	_	—	DOD	
CHOP-like	Failure*	—	—	DOD	
CHOP-like	CR	Allo BMT	NE	TRD	
CHOP	Failure	—	—	DOD	
CHOP-like	CR	Chemotherapy	CR	DOD	
CHOP-like	PR	Allo BMT	NE	TRD	
Platinum-Ara-C based	PR	Auto PBSC	CR	Alive	
CHOP	Failure	—	—	DOD	
Platinum-Ara-C based	PR	Auto PBSC	CR	Alive	
CHOP-like	Failure	—	_	DOD	
CHOP-like	Failure	_	_	DOD	

Belhadj et al BLOOD, 15 DECEMBER 2003, VOLUME 102, NUMBER 13

MSKCC Experience with Hepatosplenic TCL Non-CHOP induction-HSCT

HSCTL Allo-HSCT: EBMT

Memorial Sloan Kettering Cancer Center

Adult T-cell Leukemia/Lymphoma HTLV-1 Associated Lymphomas

ATLL

Different front-line treatments related to the histologic subtypes in PTCL: Is it possible today?

- For some rare subtypes it is not only possible but probably should be done
- NK/T-cell
 - Localized
 - Short course chemotherapy-VIPD or SMILE or gem/oxaliplatin, asparaginase + XRT
 - Advanced
 - SMILE or other L-asparaginase containing regimen-consider consolidation but unclear best option
- HSTCL-non-CHOP (ICE or IVAC) induction followed by SCT
- ATLL--non-CHOP (VCAP-AMP-VECP or EPOCH) induction followed by Allo SCT

Memorial Sloan Kettering Cancer Center

What about "more common" subtypes?

Proportion of Major T-cell Subtypes: North America

Memorial Sloan Kettering

Cancer Center-

Memorial Sloan Kettering Cancer Center

What about "more common" subtypes?

For ALCL (Maybe other CD30 +)

Its plausible

Prognostic impact of ALK, DUSP22 and TP63 rearrangements in a ALCL

Edgardo R. Parrilla Castellar et al. Blood 2014;124:1473-1480

Brentuximab Vedotin in PTCL

PTCL	Best Clinical Response				Overall Response
	CR n (%)	PR n (%)	SD n(%)	PD n (%)	CR + PR n (%)
Mature T-/NK-cell (n=34)	8 (24)	6 (18)	6 (18)	14 (41)	14 (41)
AITL (n=13)	5 (38)	2 (15)	3 (14)	3 (23)	7 (54)
PTCL-NOS (n=21)	3 (14)	4 (19)	3 (14)	11 (52)	7 (33)

Relapsed ALCL-86% ORR

BV + CH-P

	ALCL N (%)	Other N (%)	Total N (%)
ORR	19 (100)	7 (100)	26 (100)
CR	16 (84)	7 (100)	23 (88)
PR	3 (16)		3 (12)

Horwitz S et al. Blood 2014;123:3095-3100 Pro et al. JCO 2012;30:2190-2196 Fanale et al JCO Oct 1, 2014:3137-3143;

BV + CH-P in TCL

- Median follow-up 38.7 mos (range, 4.6 to 44.3),
- Estimated 3-yr PFS rate was 52% (95% CI: 31, 69)
 - ALCL (47%)
 - non-ALCL pts (71%)
- Estimated 3-yr OS rate was 80% (95% CI: 59, 91)
 - 79% for ALCL pts
 - 86% non-ALCL pts

Memorial Sloan Kettering Cancer Center

Horwitz et al, ASH 2015, Abstract No. 1537

Mycosis Fungoides/Sezary Syndrome Correlation of skin/global response with tissue CD30_{max} by IHC

A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Study of Brentuximab Vedotin and CHP (A+CHP) Versus CHOP in the Frontline Treatment of Patients with CD30-positive Mature T-cell Lymphomas

N=300 Primary endpoint PFS approx. 45% improvement

Memorial Sloan Kettering Cancer Center

What about the "most common" subtypes? AITL or PTCL NOS

not there yet

FDA Approved Agents for PTCL: ORR (%)

	Pralatrexate	Romidepsin	Belinostat	Brentuxima b vedotin
ALL	29	25	26	
PTCL, NOS	31	29	23	33
AITL	8	30	46	54
ALCL	29	24	15	86

O' Connor OA, et al. *J Clin Oncol*. 2011;29:1182-1189 Coiffier B, et al. *J Clin Oncol*. 2012;30:631-636 O'Connor OA et al, ASCO 2013; Horwitz, S et al ICML 2013 Pro B, et al. J Clin Oncol. 2012;30:2190-2196 Horwitz S M et al. Blood 2014;123:3095-3100

Lumiere Study: Response

		Comparator			
Response n (%)	Alisertib (n=96)	All (n=85)	Pralatrexate (n=45)	Gemcitabine (n=22)	Romidepsin (n=18)
ORR (CR + PR)	35%	46%	44%	36%	61%
CR	19	28	29	23	33
PR	17	18	16	14	28
SD	30	20	24	14	17
PD	34	34	31	50	22

O'Connor et al ASH 2015 abstract 341

Romidepsin-CHOP Phase I-II PFS

Phase III Ro-CHOP Study

- International randomized, open-label study
- Principal objective: PFS improvement
- Planned accrual: 420 patients

CHOP (doxorubicin, cyclophosphamide, vincristine, prednisone)

IDH2 Mutations in T Cell Lymphoma

T follicular helper CD₄+ cells (TFH)

TFH-like lymphoma (AITL and some PTCL-NOS)

Sakata-Yanagimoto et al, Nat Gen 2014

IDH1/2 and Tet2 are mutually exclusive in AML but co-occur in TFH-like lymphoma

Molecular subgroups within PTCL-NOS

- GATA3
 - 33% of cases
 - TH2 Transcription factor
 - Poor clinical outcome
 - PI3K and mTOR pathways

- 49% of cases
- TH1 Transcription factor Plasma cell-like gene signature (good outcome)
- Cytotoxic cell-like gene signature (poor outcome)
- NFkB and STAT3

Targets for subsets of PTCL

Duvelisib (IPI-145): ORR 53%

Other Agents

- Jak Inhibitors
- MTOR Inhibitors
- Checkpoint Inhibitors
- Demethylating Agents
- Lenalidomide
- Syk inhibitors
- ITK inhibitors
- It is possible that subsets of PTCL may benefit from subtype specific approaches
- But understanding this will take sequential clinical trials
- With correlates to identify predictive biomarkers

Horwitz et al. ASH 2014; Witzig et al. Blood 2015;126:328-335

Different front-line treatments related to the histologic subtypes in PTCL: Is it possible today?

• For some rare subtypes (NK/T, HSTCL, ATLL)

– Yes

- For the more common subtypes
 - Not Really
- ALCL
 - Rare need for consolidation for ALK+ or perhaps DUSP22 rearranged
 - CD30 (ALCL and others), we should have data soon
- PTCL-NOS, AITL
 - No compelling data at present to support other than standard approach
 - Enough targets and targeted agents that this may be possible but defining who will benefit will be challenging...but not today

Memorial Sloan Kettering Cancer Center

is pleased to invite you to:

LYNPHONA State-of-the-Art in May 13-14, 2016 Biology, Therapy, and Patient Care

Memorial Sloan Kettering Cancer Center

 $\begin{array}{l} {}_{\text{ZUCKERMAN \, RESEARCH \, CENTER}} \\ www.mskcc.org/lymphoma2016 \end{array} New York \end{array}$