RARE POST-TRANSPLANT COMPLICATIONS

Management of endothelial complications

Francesco Onida
Centro Trapianti Midollo Osseo
Fondazione IRCCS Ca’ Granda
Ospedale Maggiore Policlinico
Università degli Studi di Milano
The human body contains 10^{13} endothelial cells weighing 1.5 kg and covering a surface of up to 1000 m2.

The endothelium
Vascular endothelium

- Acts as a barrier between flowing blood and vascular wall
- Regulates vascular growth, platelet function and coagulation
- Modulates vascular tone, caliber and blood flow
- Responds to numerous humoral, neural and mechanical stimuli
- Synthesizes and releases vasoactive substances (e.g., nitric oxid)
Regulatory functions of the endothelium

Normal
- Vasodilation
 - NO, PGI2, EDHF, BK, C-NP
- Thrombolysis
 - tPA, Protein C, TF-I, vWF
- Platelet disaggregation
 - NO, PGI2
- Antiproliferation
 - NO, PGI2, TGFβ, Hep
- Lipolysis
 - LPL

Dysfunction
- Vasoconstriction
 - ROS, ET-1, TxA2, A-II, PGH2
- Thrombosis
 - PAI-1, TF-α, TxA2
- Adhesion molecules
 - CAMs, P, E Selectins
- Growth factors
 - ET-1, TxA2, PDGF, ILGF, ILs
- Inflammation
 - ROS, NFkB
Endothelial damage after HSCT

AUTOLOGOUS HSCT
- Conditioning
- G-CSF
- Engraftment

ALLOGENEIC HSCT
- Conditioning
- CNI
- Engraftment
- Alloreactivity?

Courtesy of E.Carreras
Vascular endothelial syndromes after HSCT

- Hepatic Veno-Occlusive Disease (VOD)
- Transplant-Associated Thrombotic MicroAngiopathy (TA-TMA)
- Capillary Leak Syndrome (CLS)
- Diffuse Alveolar Haemorrhage (DAH)
- Idiopathic Pneumonia Syndrome (IPS)
- Engraftment Syndrome (ES)
- Graft-versus-Host Disease (GvHD)
Vascular injuries to the endothelium post HSCT

CLS, capillary leak syndrome; CNI, calcineurin inhibitors; DAH, diffuse alveolar haemorrhage; ES, engraftment syndrome; G-CSF, granulocyte-colony stimulating factor; HSCT, haematopoietic stem cell transplantation; IPS, idiopathic pneumonia syndrome; LPS, lipopolysaccharide; TAM, transplant-associated microangiopathy; VOD, veno-occlusive disease

Carreras E & Diaz-Ricart M. Bone Marrow Transplant 2011;46:1495–1502
Endothelial syndromes: common aetiology

William C. Aird Circulation Research. 2007;100:158-173
Early complications of endothelial origin after HSCT

• Observed within the first 30-60 days after HSCT

• Overlapping clinical features and imprecise diagnostic criteria

• Share common pathogenic mechanisms

• Wide spectrum of presentation and variable outcomes ➔ may be life threatening or lethal (irreversible MOF)
Hepatic veno-occlusive disease (VOD)

- Veno-occlusive disease (VOD), also known as *sinusoidal obstruction syndrome* (SOS), is a potentially life-threatening complication of haematopoietic stem cell transplantation (HSCT).

- Mean incidence ranges between 8% and 14%.

- The conditioning regimens given before HSCT result in the production of toxic metabolites by the hepatocytes in the liver.

- This ultimately leads to VOD, characterised by:
 - Increased thrombosis and decreased fibrinolysis
 - Sinusoidal damage and narrowing
 - Inflammation

Structure and role of hepatic sinusoids

- The sinusoids are small capillary-like blood vessels within the liver that are lined by sinusoidal endothelial cells.

- Sinusoidal endothelial cells play an important role in the function of the sinusoids as:
 - *selective sieves* for substances passing from the blood to hepatocytes.
 - *a scavenger system* which clears the blood from many different macromolecular waste products.

Wisse E et al. Toxicol Pathol 1996;24:100–111
VOD Pathophysiology

Structural changes
- Reduced ECM integrity via heparanase
- Apoptosis
- Detachment of ECs

Inflammatory changes
- Swelling and rounding of ECs
- Adhesion molecules

Thrombotic changes
- Clotting cascade

Structural changes result from¹,²:
- ↑ heparanase activity contributing to reduced EC membrane integrity
- rounding up and swelling of ECs triggering apoptosis, inducing a detachment of ECs

The EC dysfunction also leads to an inflammatory response resulting in expression of adhesion molecules, which attract leucocytes from the blood stream that adhere and move into the space of Disse¹

In addition, EC dysfunction leads to a shift of the physiologic antithrombotic state to a prothrombotic state which triggers the activation of a clotting cascade²³

Clinical presentation of VOD

- VOD is characterised by
 - Rapid weight gain
 - Ascites
 - Painful hepatomegaly
 - Jaundice
 - Right upper quadrant pain

- Symptoms usually present within the first 3–4 weeks following HSCT, but can occur later

- VOD is a progressive disease:
 - Severe VOD is associated with multi-organ failure and a high mortality rate (>80%)

Severe VOD is fatal in >80% of cases

- Symptoms of weight gain, blood bilirubin levels, oedema and ascites all increase with the severity of VOD, however the incidence of death increases dramatically with severe VOD (sVOD)

- Death resulting from sVOD can be due to a number of factors:
 - Kidney or heart failure
 - Respiratory failure and pleural effusion (excess fluid building up around the lungs)
 - Encephalopathy (a disorder of the brain)
 - Bleeding in the lungs or intestines
 - Infection
 - Multi-organ failure

The mortality rate of severe VOD is in excess of 80%\(^1\), in comparison to 23% and 9% for moderate and mild VOD\(^2\), respectively

New EBMT criteria for SOS/VOD diagnosis in adults

<table>
<thead>
<tr>
<th>Classical SOS/VOD</th>
<th>Late onset SOS/VOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the first 21 days after HSCT</td>
<td>>21 days after HSCT</td>
</tr>
</tbody>
</table>
| Bilirubin ≥ 2 mg/dL AND two of the following criteria must be present:
- Painful hepatomegaly
- Weight gain >5%
- Ascites | Classical VOD/SOS beyond day 21
OR
- Histologically proven SOS/VOD
OR
- Two or more of the following criteria must be present:
- Bilirubin ≥ 2 mg/dL (or 34 µmol/L)
- Painful hepatomegaly
- Weight gain > 5%
- Ascites
AND
- Hemodynamical or/and ultrasound evidence of SOS/VOD |

Mohty M et al. BMT 2016;51:906-912
Differential diagnosis of VOD

VOD is a diagnosis of exclusion

Rapid weight gain
- Congestive heart failure
- Renal failure
- Sepsis
- Capillary leak syndrome

Hepatomegaly and ascites
- Congestive heart failure
- Fungal infection
- EBV PTLD
- Pancreatitis
- Portal vein thrombosis

Jaundice
- Biliary infection
- Acute GvHD
- Cyclosporine
- Cholestasis
- Drug or TPN injury
- Haemolysis

EBV, Epstein–Barr virus; GvHD, graft-versus-host disease; TPN, total parental nutrition
Eisenberg S. Oncol Nurs Forum 2008;3:385–397
Risk factors for SOS/VOD in adults

Transplant-related factors
- Unrelated donor
- HLA-mismatched donor
- Non T-cell depleted transplant
- Myeloablative conditioning regimen
- Oral or high-dose busulfan-based regimen
- High-dose TBI-based regimen
- Second HSCT

Patient and disease related factors
- Older age
- Karnofsky score below 90%
- Metabolic syndrome
- Female receiving norethisterone
- Advanced disease (beyond second CR or relapse/refractory)
- Thalassemia
- Genetic factors (GSTM1 polymorphism, C282Y allele, MTHFR 677CC/1298CC haplotype)

Hepatic related
- Transaminases >2.5 ULN
- Serum bilirubin > 1.5 ULN
- Cirrhosis
- Active viral hepatitis
- Abdominal or hepatic irradiation
- Previous use of gemtuzumab ozogamicin or inotuzumab ozogamicin
- Hepatotoxic drugs
- Iron overload

Mohty M et al. BMT 2016;51:906-912
Risk factors for SOS/VOD in pediatric patients

- Hemophagocytic lymphohistiocytosis
- Osteopetrosis
- High dose auto-HSCT in neuroblastoma
- Young age (<2 yrs)
- Low weight
- JMML
- Second myeloablative HSCT

Mohty M et al. BMT 2016;51:906-912
New EBMT criteria for severity grading of a suspected SOS/VOD in adults

<table>
<thead>
<tr>
<th>Mild*</th>
<th>Moderate*</th>
<th>Severe</th>
<th>Very severe-MOD/MOF**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time since first clinical symptoms of SOS/VOD***</td>
<td>> 7 days</td>
<td>5-7 days</td>
<td>≤ 4 days</td>
</tr>
<tr>
<td>Bilirubin (mg/dL)</td>
<td>≥ 2 and < 3</td>
<td>≥ 3 and < 5</td>
<td>≥ 5 and < 8</td>
</tr>
<tr>
<td>Bilirubin (μmol/L)</td>
<td>≥ 34 and ≤ 51</td>
<td>≥ 51 and < 85</td>
<td>≥ 85 and < 136</td>
</tr>
<tr>
<td>Bilirubin kinetics</td>
<td></td>
<td></td>
<td>Doubling within 48h</td>
</tr>
<tr>
<td>Transaminases</td>
<td>≤ 2 × normal</td>
<td>> 2 and ≤ 5 × normal</td>
<td>> 5 and ≤ 8 × normal</td>
</tr>
<tr>
<td>Weight increase</td>
<td>< 5%</td>
<td>≥ 5 % and <10%</td>
<td>≥ 5 % and <10%</td>
</tr>
<tr>
<td>Renal function</td>
<td><1.2 × Baseline at transplant</td>
<td>≥ 1.2 and < 1.5 × baseline at transplant</td>
<td>≥ 1.5 and < 2 × baseline at transplant</td>
</tr>
</tbody>
</table>

Patients belong to the category that fulfills 2 or more criteria. If patients fulfill 2 or more criteria in 2 different categories, they must be classified in the most severe category. Patients weight increase ≥ 5 % and <10% is considered by default as a criterion for severe SOS/VOD, however if patients do not fulfill other criteria for severe SOS/VOD, weight increase ≥ 5 % and <10% is therefore considered as a criterion for moderate SOS/VOD.

*In the case of presence of two or more risk factors for SOS/VOD, patients should be in the upper grade.

**Patients with multi-organ dysfunction must be classified as very severe

Mohty M et al. BMT 2016;51:906-912
Management of VOD: a multi-disciplinary approach

• At-risk patients must be identified pre-transplant (team work)

• Nurses play an essential role in assessing and monitoring HSCT recipients

• Early detection is critically important to the overall outcome

• Crucial role of appropriate supportive care
Baseline assessment

- Vital signs
- Baseline weight
- Skin assessment
- Sclera assessment
- Abdomen (manual assessment)
- Abdominal girth (one method)
- RUQ pain
- Liver assessment
- Platelet refractoriness

Suspected VOD
(intensification of monitoring)

- At least 2 times/day: state of consciousness; weight, abdominal girth, physical exam, RUQ pain
- At least 4 times/day: vital signs, water fluid balance, diuresis, SaO2
- 2 times/day: CBC for PLT refractoriness
- Daily PT, PTT
- Provide appropriate reassurance and psychological support to pts and caregivers
- Ensure adequate vascular accesses

Wallhult E et al. - EJH 2016
VOD diagnosed (in addition to actions for suspected VOD)

- Continuous monitoring of vital signs
- Ventilatory support, if necessary (O_2)
- Fluid restriction
- Ensure adequate vascular access
- Careful monitoring of diuresis: bladder catheter, urometer, PS
- Monitoring MOF: cardiac, respiratory and renal function
- Psychological support, arrange for transfer to ICU
Principles and challenges of VOD managing (prevention and management)

Preventive measures

- Appropriate conditioning regimen selection (risk-adjusted according to HSCT-CI)
- Avoid hepatotoxic drugs during conditioning (azoles, acetaminophen)
- Identify drug-drug interactions in preparative regimens and modify as appropriate
- Pharmacologic monitoring of busulfan
- Avoid the use of progesterone and estrogen if possible
- Aggressive fluid-balance management
- UDCA: recommended by the EBMT and BCSH/BSBMT (combination with defibrotide in high-risk patients?)
- Defibrotide: recommended by the BCSH/BSBMT in high-risk patients
- Unfractioned heparin and LMWH: lack of consistent efficacy → no longer recommended
- Antithrombin not recommended

Dalle J-H et al. BBMT 2016; Wallhult E et al. EJH 2016
Principles and challenges of VOD managing (prevention and management)

Curative measures

- **Supportive care** must be initiated as soon as possible: fluid and sodium balance, careful use of diuretics, avoidance of hepatotoxic medications (may be challenging, i.e. MTX, CsA)
- **Symptomatic measures**: oxygen therapy, analgesia, paracentesis, thoracentesis, haemodialysis
- **Defibrotide** (approved in EU) 6.25 mg/kg every 6 hours for at least 21 days, to be continued until resolution of the signs and symptoms of VOD
- **High-dose methylprednisolone** may be considered but should be used cautiously due to risk of infection
- rTPA not recommended because of the risk of hemorrhage

Dalle J-H et al. BBMT 2016; Wallhult E et al. EJH 2016
Defibrotide

- Oligonucleotide with:
 - Antiinflammatory
 - Antithrombotic
 - Anti-ischemic activity

Protective effect on endothelium and restoration of thrombotic-fibrinolytic balance

- Defibrotide in 2014 in European Countries by the EMA for the treatment of severe hepatic VOD in patients undergoing HSCT
 - It is indicated in adults and in adolescents, children and infants over 1 month of age

- The BCSH/BSBMT also recommended defibrotide for the prophylaxis of VOD

- Explored used in GVHD and other endothelial syndromes

Defibrotide Mechanism of actions

I. Promotes protection of activated EC

II. Inhibits expression of heparanase contributing to ECM integrity and tissue haemostasis

III. Reduction in adhesion molecules reducing influx of inflammatory mediators

IV. ↓ PAI-1*, ↑t-PA restores thrombo-fibrinolytic balance

ECM- Extracellular Matrix; EC- Endothelial Cells; PAI- Plasminogen Activator Inhibitor; t-PA- Tissue Plasminogen Activator

TA-TMA: Definition

- Heterogeneous event occurring after HSCT as a result of treatment-related endothelial damage and underlying disease process

- Caused by the aggregation of platelets following exposition to the thrombogenic subendothelial matrix of injured endothelial cells

- Clinical manifestations include destructive thrombocytopenia, microangiopathic hemolytic anemia, ischemic neurological complications and renal dysfunction
Idiopathic TTP has been attributed to deficient activity of the metalloproteinase responsible for cleaving ultra-large vWF multimers (ADAMTS-13 <5% of normal).

Unlike classic TTP, patients with TA-TMA have >5% ADAMTS-13 serum activity.

However, recent insights include involvement of complement dysregulation, with possible presence of complement factor H autoantibodies and renal arteriolar C4d deposition.

Recently, an emerging role of renal-centered screening approach has been demonstrated, which utilize the monitoring of blood pressure, urine protein, serum lactate dehydrogenase and hemogram for early detection.
TA-TMA: Diagnostic criteria

<table>
<thead>
<tr>
<th>Clinical/laboratory findings</th>
<th>BMT-CNT criteria</th>
<th>IWG-EBMT criteria</th>
<th>O-TMA criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schistocytosis</td>
<td>>2 HPF on peripheral smear</td>
<td>>8 HPF on peripheral smear</td>
<td>>2 HPF on peripheral smear</td>
</tr>
<tr>
<td>↑ LDH</td>
<td>yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Thrombocytopenia (PLT< 50x10⁹/l)</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Anemia</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>↓ Haptoglobin</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Negative antiglobulin test</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Renal failure +/- CNS involvement</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

BMT-CTN criteria (Bone Marrow Transplant Clinical Trials Network), Ho VT. BBMT 2005
IWG-EBMT criteria (International Working Group of the EBMT), George JN. Transfusion 2004
O-TMA criteria (Overall-TMA), Cho BS. Transplantation 2010

Modified from Kim SS. Transfusion 2014
TA-TMA: Diagnostic criteria

Cho BS et al. Transplantation 2010
TA-TMA: Risk factors

Table 4

<table>
<thead>
<tr>
<th>Variate</th>
<th>Incidence of TA-TMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymph</td>
<td>Score = 2</td>
</tr>
<tr>
<td>Advar</td>
<td>Score = 1</td>
</tr>
<tr>
<td>Prior</td>
<td>Score = 0</td>
</tr>
<tr>
<td>Prior 1 or all</td>
<td></td>
</tr>
<tr>
<td>Use of FLU</td>
<td></td>
</tr>
<tr>
<td>Use of Grade Serum</td>
<td></td>
</tr>
<tr>
<td>Toxic Invasive</td>
<td></td>
</tr>
<tr>
<td>Abbrev transpl. ditionir</td>
<td></td>
</tr>
</tbody>
</table>

$P < 0.001$

Labrador J et al BMT 2014
TA-TMA and Survival

Cause of death:

- Infections (fungal and viral)
- GVHD
- DAH
- VOD
- Hemorrhages

$p < 0.001$
TA-TAM: Management

- No standard treatment exists
- Plasma exchange → not clearly efficacious
- Remove triggering agent:
 - CNI → MMF + steroids
- Not efficacious: steroids, heparin, fibrinolitics, trombolitics, iv Igs, splenectomy
- Reports on use of: rituximab, daclizumab, defibrotide
Engraftment syndrome (ES)

Generally occurring within 96 hours from engraftment

Cause: release pro-inflammatory cytokines, products of degranulation and oxidative metabolism → endothelial damage

Risk factors

- Growth factors
- PBSC
- High number HSC infused
- Autologous SCT

EBMT Handbook ed 2012; Carreras BMT (2010) 45, 1417
Engraftment syndrome (ES)

Clinical manifestations:

- Mainly post-auto SCT
- Non infectious fever (>38 w/o clinical-microbiological evidences) \(\rightarrow\) 98-100%
- High CRP \(\rightarrow\) 100%
- Skin rash mimicking aGVHD > 25% BSA \(\rightarrow\) 56%-65%
- Hepatic disfunction (bili, AST/ALT) \(\rightarrow\) 20-70%
- Pulmonary infiltrates \(\rightarrow\) 11-37 %
- Diarrhea \(\rightarrow\) 11-40%
- Renal disfunction \(\rightarrow\) 26%
- Weight gain, edema, ascites \(\rightarrow\) 20%

EBMT Handbook ed 2012
Carreras BMT (2010) 45, 1417
Lopes da Silva, BMT (2012) 47, 456
Schmid, BBMT (2008) 14:438
Engraftment syndrome (ES)

Treatment:

• Stop G-CSF
• MPD 1 mg/kg for 3 days, taper over 7-8 days
• Broad spectrum antibiotic therapy

Prognosis

Complete resolution >80% cases
Thank you!