STATO DELL'ARTE E NUOVI ORIZZONTI TERAPEUTICI NEL TRATTAMENTO DEI LINFOMI

Milano, 21 Gennaio 2020

Il concetto del consolidamento nel linfoma di Hodgkin

Alessandro Re UO Ematologia Brescia

CONFLITTO DI INTERESSI

Relatore: Alessandro Re

- Posizione di dipendente in aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Consulenza ad aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Fondi per la ricerca da aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Partecipazione ad Advisory Board (MSD, Takeda, Italfarmaco, Janssen Cilag)
- Titolarietà di brevetti in compartecipazione ad aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Partecipazioni azionarie in aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)

Consolidation in pts with HL

Aim: eliminating minimal residual disease and preventing

subsequent relapse

- When?
- How?
- Which patients?

Milano, 21 Gennaio 2020

...different challenge for different conditions...

Salvage with ASCT in Hodgkin Lymphoma

LWP EBMT/GITMO, Martinez, Ann Oncol 2013

How to improve outcome after ASCT?

- Various treatment strategies have been investigated (for high risk pts, variably defined)
 - Intensification of the conditioning regimen (Josting A, J Clin Oncol 2010)
 - Tandem transplantation Auto-Auto or Auto-Allo (Fung HC, BBMT 2007; Morshhauser F, JCO 2008, Castagna L, BMT 2015)
 - Radiation before or after transplantation (Moskowitz AJ, Br J Haematol 2009)
 - **PET-adapted approaches (Moskowitz AJ, Blood 2012)**
 - Consolidation with chemotherapy after ASCT (Rapoport AP, BMT 2004)
 - Consolidation with Panobinostat after ASCT (von Tresckow B, Blood 2013 abx)
- Challenge: difficult of delivery effective and well-tolerated therapy early after ASCT, where there might be the greatest therapeutic effect

BRENTUXIMAB VEDOTIN

• Delivery of cytotoxic agent specifically to malignant cells (CD30 is usually not tipically expressed in most human tissue under normal physiologic conditions)

- Active in Hodgkin Lymphoma in different settings
- Acceptable toxicity

Brentuximab-Vedotin as consolidation post ASCT: AETHERA trial

329 pts Median age: 33 (18-76)

Primary objectives: PFS by IRF

Mosckowitz CH et al, Lancet 2015

AETHERA trial: Baseline characteristics

	Brentuximab vedotin	Placebo
Characteristic	(n=165)	(n=164)
Median age, yrs (range)	33 (18–71)	32 (18–76)
No. of prior systemic salvage therapies		
1	57%	52%
≥2	43%	48%
HL status after frontline therapy		
Refractory	60%	59%
Relapse <12 mos	32%	33%
Relapse ≥12 mos	8%	8%
Response to salvage therapy pre-ASCT		
CR	37%	38%
PR	35%	34%
SD	28%	28%
Extranodal involvement at pre-ASCT relapse	33%	32%
B symptoms after frontline therapy	28%	24%
Pre-ASCT PET status		
FDG avid	39%	31%
FDG negative	34%	35%
Not available	27%	34%

Mosckowitz CH et al, Lancet 2015

AETHERA trial: Progression free-Survival

* Scheduled CT scans

[†] Includes information from both radiographic assessments and clinical lymphoma assessments

AETHERA trial: 5-Year PFS per investigator: All patients

Mosckowitz CH et al, Blood 2018

Subsequent antitumor therapies

Pts with subsequent antitumor therapy, n (%)	Brentuximab vedotin (n=51)	Placebo (n=85)
Single-agent BV	R (16)	72 (85)
Multi-agent regimen including BV	1 (2)	1 (1)
SCT*	13 (25)	24 (28)
Multi-agent chemotherapy	35 (69)	34 (40)
Radiation	22 (43)	23 (27)
Single-agent chemotherapy	22 (43)	22 (26)
Donor lymphocyte infusion	2 (4)	1 (1)
Other treatment	1 (2)	2 (2)

Response to Single-Agent BV as a Subsequent Therapy*

	BV arm (N=8)	Placebo arm (N=73)
Response known	7	61
ORR	6 (86%)	41 (67%)
CR	3 (43%)	21 (34%)
PR	3 (43%)	20 (33%)
SD	0	9 (15%)
PD	1 (14%)	10 (16%)
Other	0	1 (2%)
Response unknown	1	12

* For patients who received more than one course of BV, response to first course is reported

* Allo-SCT in 12 BV and 23 placebo pts

AETHERA trial: PFS by response to frontline therapy (eligibility criteria)

Mosckowitz CH et al, Lancet 2015

	Hazard ratio (95% CI)	Events/N
Intention-to-treat population	Le I	135/329
Response to salvage therapy pre-ASCT		
Complete remission	⊢ ●- <u> </u> +	41/123
Partial remission	⊢ •−	51/113
Stable disease	F-+	43/93
Hodgkin's lymphoma status after frontline therapy		
Refractory	⊢ ●	89/196
Relapse <12 months	⊢_ ●	40/107
Relapse ≥12 months		6/26
Age (years)		
<45	⊢ ●1	113/272
≥45	⊢ +ı	22/57
Sex		
Male	⊢ ∙-•-••	84/173
Female	⊢ •−-	51/156
ECOG status		
0	r ∎i	76/184
1	⊢ •–	59/144
Number of systemic treatments pre-ASCT		
≤2	⊢ ● <u>†</u> 1	68/180
>2	⊢ ●1	67/149
Fluorodeoxyglucose-negative pre-ASCT	⊢ •	34/113
Fluorodeoxyglucose-positive pre-ASCT	⊢● − ¹	56/115
B symptoms after frontline therapy		
Yes	••i	38/87
No	⊢∙−	97/239
Extranodal involvement pre-ASCT		
Yes	⊢_ ●	44/107
No	⊢ •−1	91/222
0.0313 0.13	25 0-5 2 8	→ 32
Favours brent	uximab vedotin Favours placebo	

Subgroup analysis of PFS by indipendent review

> Mosckowitz CH et al, Lancet 2015

AETHERA trial: 5-Year PFS in pts according to risk factors

Risk factors:

- Primary refractory or relapse < 12 months from completion of front-line tx
- < CR achieved with salvage tx</p>
- >1 previous salvage tx
- Extranodal disease at relapse or progression after frontline therapy
- B symptoms before starting salvage therapy

No PFS difference in pts with 1 risk factor (<15% of pts)

AETHERA trial: how many BV cycles do we need?

PFS Rate per Investigator by Treatment Duration: BV Arm

	Number of Treatment Cycles				
	1-4 5-8 9-12 13-16				
Months after first BV dose	(n=18)	(n=7)	(n=24)	(n=92)	
12	58%	67%	91%	98%	
24	58%	67%	69%	82%	
36	58%	67%	63%	77%	

Excluding patients who discontinued treatment due to PD

AETHERA trial: Toxicity

Mosckowitz CH et al, Lancet 2015

Safety Analysis of Brentuximab Vedotin from the Phase III AETHERA Trial in Hodgkin Lymphoma in the Post-Transplant Consolidation Setting

Peripheral Neuropathy 67%

- 56% sensory and 23 motor PN
- Median time to PN onset 13.7wks (.1 to 47.4)
- Most PN cases (57%) were managed with dose delays and reductions
- 23% of pts discontinued treatment because of BV–associated PN (no impact on PFS)

• After the end of treatment, **PN continued to** resolve: 60 ms after treatment, 85% of pts had resolution

• Median time to resolution or improvement was 37.6 weeks

 Of 95 pts (76 BV arm, 19 placebo arm) with treatment emergent PN who remained for > 5 ys without further treatment, 95% had resolution or improvement of PN Nademanee A BBMT 2018

Infections and polmonary toxicity

Infections and Pulmonary Toxicity* during the AETHERA Trial

Table 2

	BV (n=167)		Placebo (n = 160)	
	All	$Grade \geq 3^{\dagger}$	All	$Grade \geq 3^{\dagger}$
Any infections and infestations	100(60)	15(9)	80(50)	15 (9)
Any opportunistic infections	20(12)	4(2)	6(4)	3 (2)
Herpes zoster	12(7)	2(1)	4(3)	2 (1)
Herpes simplex	7(4)	0	1(1)	0
Bronchopulmonary aspergillosis	0	0	2(1)	1 (1)
Hepatic candidiasis	1(1)	1(1)	0	0
PCP [‡]	1(1)	1(1)	0	0
Any pulmonary toxicity event	8(5)	8(5)	5 (3)	4 (3)
Pneumonitis	4(2)	4(2)	1(1)	0
 Acute respiratory distress syndrome 	2(1)	4(2)	1(1)	2 (1)
Lung infiltration	1(1)	0	2(1)	0
Pulmonary toxicity	2(1)	2(1)	0	0
Idiopathic pneumonia syndrome	0	0	1(1)	2(1)
Radiation pneumonitis	1(1)	0	0	0

Second Malignancies

	BV+BSC, (N=165) n	PBO+BSC, (N=164)
Second malignancies (any)	6	2
AML	1	0
Myelodysplastic syndrome	2	1
Bladder cancer	1	0
Lung cancer	1	0
Mantle cell lymphoma	0	1
Pancreatic cancer	1	0

Nademanee A BBMT 2018

BV consolidation: is feasible in other setting?

Brentuximab vedotin in combination with or without donor lymphocyte infusion for patients with Hodgkin lymphoma after allogeneic stem cell transplantation

- 13 patients with relapsed HL after allo-SCT received BV as treatment for active disease
- 3 patients without progression of HL after allo-SCT received BV as consolidation (two in PR and one in CR at day +100)
- Ten out of 16 patients received BV in combination with DLI

	OR rate	CR rate	PFS
13 pts relapsed after Allo	69%	54%	NR
3 pts without progression after Allo	100%	100%	NR

Tsirigotis P, et al. BMT 2016

Post-ASCT consolidation: other than BV?

PD-1/ PD-L1 pathway in suppressing anti-tumor immunity

PD-1 blockade with pembrolizumab for classical Hodgkin lymphoma after autologous stem cell transplantation

Table 1. Baseline patient characteristics

Variable	N (%*) or median (range)
Total	30 (100)
Age, y	33 (20-69)
Sex Male Female	16 (53) 14 (47)
Frontline therapy A(B)VD† BV-A(B)VD ABVE-PC BEACOPP‡ RCHOP/REPOCH	24 (80) 1 (3) 1 (3) 2 (7) 2 (7)
Prior brentuximab exposure	6 (20)
Prior nivolumab or pembrolizumab exposure	6 (20)
Prior radiotherapy	7 (23)
Conditioning regimen BEAM	30 (100)
Risk factors Primary refractory disease Relapse within 12 mo Extranodal disease at relapse At least 1 of above 3 factors Residual disease after salvage B symptoms at relapse >1 salvage therapy At least 1 of above 6 factors At least 2 of above 6 factors	17 (57) 5 (17) 8 (27) 26 (87) 3 (10) 2 (7) 5 (17) 27 (90) 12 (40)
Disease status at study entry (post-ASCT) Partial remission Complete remission	2 (7) 28 (93)

Multicohort phase 2 study

Inclusion criteria:

- Previous ASCT and chemosensitive disease (metabolic PR or CR)
- No more than 3 previous line of therapy
- Allow prior PD-1 blockade

Pembrolizumab: 200 mg IV every 3 weeks for up to 8 cycles

Primary end point: to improve the progression-free survival (PFS) at 18 months after ASCT from 60% to 80%.

90% at least 1 risk factor (40% > 1):

- primary refractory or relapse within 1 year
- residual FDG-avid disease at ASCT
- >1 salvage regimen
- extranodal disease
- B symptoms at relapse

78% would have met eligibility criteria for the high-risk AETHERA study

Pembrolizumab as consolidation after ASCT in HL

Among patients who would have been eligible for the AETHERA study the 19month PFS was 85% (95CI, 64% to 94%).

The 19-month PFS of 85% in this subgroup compares favorably to that of patients treated with placebo (45%) and that of patients treated with BV (70%) on AETHERA.

Table 2. Summary of toxicity

AE	Grade 1	Grade 2	Grade 3	Grade 4
Total no. of AEs	308 (93)	96 (77)	21 (30)	7 (10)
Grade 2-4 TRAE Leukopenia Neutropenia Transaminitis Diarrhea/colitis Pneumonitis/ dyspnea Hypothyroidism Rash Lymphopenia Thrombocytopenia Febrile neutropenia Pulmonary hemorrhage* Hyperthyroidism Arthritis Fatigue Neck pain Creatinine increase Blurred vision		4 (7) 3 (7) 3 (10) 1 (3) 3 (7) 4 (7) 3 (7) 1 (3) 2 (7) 1 (3) 1 (3) 1 (3) 1 (3) 1 (3) 1 (3) 1 (3) 1 (3)	5 (13) 3 (7) 3 (7) 1 (3) 1 (3)	1 (3) 4 (10) 1 (3)
Total no. of TRAEs	82 (67)	30 (47)	14 (27)	6 (10)
Grade 2-4 irAEs Transaminitis Pneumonitis/ dyspnea/cough Diarrhea/colitis Rash Hypothyroidism Pulmonary hemorrhage* Hyperthyroidism Arthritis Creatinine increase		2 (7) 4 (10) 1 (3) 3 (7) 3 (3) 1 (3) 1 (3) 1 (3)	3 (7) 1 (3) 2 (7) 1 (3)	
Total no. of irAEs	16 (33)	16 (33)	7 (20)	0 (0)

"Treatment-related" refers to AEs judged to be at least possibly related to study treatment. The number of patients, expressed as the percentage of total patients, is given in parenthesis for grade 2-4 TRAEs. Events are ordered by frequency.

Pembrolizumab as consolidation after ASCT in HL

77% completed all planned 8 cycles of therapy

Toxicity in this setting appeared similar to its use in other settings
Pembro did not perturb the immune reconstitution of pts after ASCT

KEY POINTS

- PD-1 blockade using pembrolizumab administered after ASCT has an acceptable safety profile.
- This treatment results in a high PFS in patients with cHL, including in high-risk patients.

*In a patient with prior cavitary tumor lesion.

Post-ASCT consolidation: perspectives?

- Phase II Nivolumab as post-ASCT consolidation (NCT03436862). Nivo Maintenance Therapy After ASCT in Hodgkin Lymphoma Pts at Relapse/Progression Risk
- Brentuximab Vedotin + Nivolumab as post-ASCT consolidation (NVT03057795). A Phase 2 Study of Nivo and BV Consolidation After ASCT in Patients With High-Risk Classical Hodgkin Lymphoma
- Consolidation with BV after ABVD first-line, after AlloSCT, pre-post ASCT

Is it time to random BV vs anti PD-1 as consolidation after ASCT?

NCCN Guidelines[®] Insights Hodgkin Lymphoma, Version 1.2018 Featured Updates to the NCCN Guidelines

PAn integrated PET/CT or a PET with a diagnostic CT is recommended. vvSubsequent systemic therapy options include second-line therapy options that proviously used (See HODC E) ⁹See PET 5-Point Scale (Deauville Criteria) (HODG-D). ^{qq}See Principles of Systemic Therapy for Relapsed or Refractory Disease (HODGrrStrongly consider radiation therapy for selected sites that have not been previously irradiated. In a radiation-naive patient, TLI may be an appropriate component of HDT. ssAllotransplant is an option in select patients as a category 3 recommendation. consolidation therapy after autologous stem-cell transplantation in patients ^{tt}Conventional-dose chemotherapy may precede high-dose therapy. Timing of RT may vary.

^{uu}See Principles of Radiation Therapy (HODG-C).

wwPatients with 2 or more of the following risk factors are considered high risk: Remission duration less than 1 year, extranodal involvement, PET+ response at time of transplant, B symptoms, and/or >1 salvage/subsequent therapy regimen.

with Hodgkin's lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2015;385:1853-1862.

Hodgkin lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[†]

Relapsed disease

• For most patients with refractory or relapsed HL, the treatment of choice consists of HDCT followed by ASCT [I, A]

- High-risk patients may benefit from tandem ASCT [III, B]
- Consolidating treatment with brentuximab vedotin following HDCT and ASCT is recommended in patients presenting with defined poor-risk factors [II, B]
- DHAP, IGEV or ICE can be given before HDCT and ASCT [II–III, A]
- In some patients, single-agent brentuximab vedotin may be sufficient as salvage therapy before HDCT and ASCT [III, B]
- Achieving a negative PET should be the goal of salvage therapy irrespective of the applied protocol [III, B]
- RT before HDCT and ASCT may be discussed in patients with single PET-positive lymph nodes after salvage therapy [IV, C]

Annals of Oncology 29 (Supplement 4): iv19-iv29, 2018

Consolidation in pts with HL

Which patients?

Risk factors from the AETHERA study (2 or more risk factors):

•Primary refractory or relapse < 12 months from completion of front-line tx

•< CR achieved with salvage tx</p>

>1 previous salvage tx

•Extranodal disease at relapse or progression after frontline therapy

•B symptoms before starting salvage therapy

- Are there stronger risk factors?
- Other risk factors?
- If pt had already received BV?

The role of pre-transplant PET in relapsed and refractory HL

Spaepen, Blood 2003 Filmont, Cancer 2007 Jabbour, Cancer 2007 Gentzler, Br J Haematol 2014 Akthar, BMT 2013 Devillier, Haematologica 2012 Smeltzer, BBMT 2011 Mocikova, Leuk Lymphoma 2011

Moskowitz AJ; Blood 2010

EFS according FI status before transplant

Normalization of pre-ASCT, FDG-PET imaging with second-line, non-cross-resistant, chemotherapy programs improves event-free survival in patients with Hodgkin lymphoma

Craig H. Moskowitz BLOOD, 16 FEBRUARY 2012

Other risk factors?

Prognostic significance of baseline metabolic tumor volume in relapsed and refractory Hodgkin lymphoma

Rel/ref pts with HL enrolled in sequential BV > ICE protocol, receiving subsequent ASCT

- MTV improved the predictive power of pre-ASCT PET
- MTV may be used to stratify pts for more or less aggressive therapy

Moskowitz AJ et al. Blood 2017

B->D, p=0.012

p-values

A->C, p<0.001

If pts had already received BV?

Relapsed and Refractory Classical Hodgkin Lymphoma: Keeping Pace With Novel Agents and New Options for Salvage Therapy

Alison J. Moskowitz, MD1; Alex F. Herrera, MD2; and Anne W. Beaven, MD3

TABLE 1. Newer Salvage Re	gimen	s for Relapsed or Refr	actory Hodgkin Lymphoma		
Regimen	n	% PET Negative	ASCT, n (%)	PFS/EFS (ITT)	PFS/EFS (Transplanted Patients)
BV-augICE (PET-adapted, sequential) ^{17,18}	65	83; 27 (BV alone)	64 (98)	82% at 3 years	NR
BV-ICE and others (PET- adapted, sequential) ¹⁹	56	66; 43 (BV alone)	50 (89)	NR	67% at 2 years
BV plus bendamustine ²⁰	55	74	40 (72)	62.6% at 2 years	69.8% at 2 years
BeGEV ²¹	59	73	43 (73)	62.2% at 2 years	80.8% at 2 years
BV plus gemcitabine ²⁵	42	67	34 (76)	NR	NR
BV plus ICE ²³	24	87	19 (79)	NR	NR
BV plus DHAP ²²	61	79	53 (87)	76% at 2 years	NR
BV plus ESHAP ²⁴	66	70	60 (91)	71% at 30 months	NR
BV-nivolumab ²⁷	62	61	42 (68) after only BV-nivolumab; 14 (23) after additional salvage	82% at 21 months	97% at 21 months for patients transplanted after only BV-nivolumab

2019 ASCO EDUCATIONAL BOOK

Retreatment with brentuximab vedotin in patients with CD30-positive hematologic malignancies

Nancy L Bartlett^{1*}, Robert Chen², Michelle A Fanale³, Pauline Brice⁴, Ajay Gopal⁵, Scott E Smith⁶, Ranjana Advani⁷, Jeffrey V Matous⁸, Radhakrishnan Ramchandren⁹, Joseph D Rosenblatt¹⁰, Dirk Huebner¹¹, Pamela Levine¹², Laurie Grove¹² and Andres Forero-Torres¹³

Table 2 Key response results

	HL patients	ALCL patients
Parameter	(N = 20)	(N = 8)
Objective response rate (CR + PR)	12 (60)	7 (88)
Best clinical response ^a		
Complete remission	6 (30)	5 (63)
Partial remission	6 (30)	2 (25)
Stable disease	4 (20)	0
Progressive disease	4 (20)	1 (13)
95% CI for ORR ^b	36.1, 80.9	47.3, 99.7
95% CI for CR rate ^b	11.9, 54.3	24.5, 91.5
Duration of objective response for patients with OR, months ^c	12 (60)	7 (88)
Median (95% CI) ^d	9.2 (2.1, –)	12.3 (6.6, –)
Duration of response for patients with CR, months ^c	6 (30)	5 (63)
Median (95% CI) ^d	9.4 (1.7, 14.2)	12.9 (7.4, –)
Progression-free survival, months ^e		
Median (95% CI) ^d	9.9 (3.4, 13.4)	12.9 (1.4, 18.5
Overall survival, months ^e		
Median (95% CI) ^d	- (11.4, -)	- (3.3, -)

Journal of Hematology & Oncology 2014, 7:24

Post ASCT consolidation

JAMA Oncology | Special Communication

Maintenance Therapies for Hodgkin and Non-Hodgkin Lymphomas After Autologous Transplantation A Consensus Project of ASBMT, CIBMTR, and the Lymphoma Working Party of EBMT

Abraham S. Kanate, MBBS; Ambuj Kumar, MD, MPH; Peter Dreger, MD; Martin Dreyling, MD; Steven Le Gouill, MD; Paolo Corradini, MD; Chris Bredeson, MD, MSc, FRCPC; Timothy S. Fenske, MD; Sonali M. Smith, MD; Anna Sureda, MD; Alison Moskowitz, MD; Jonathan W. Friedberg, MD; David J. Inwards, MD; Alex F. Herrera, MD; Mohamed A. Kharfan-Dabaja, MD; Nishitha Reddy, MBBS; Silvia Montoto, MD; Stephen P. Robinson, MD; Syed A. Abutalib, MBBS; Christian Gisselbrecht, MD; Julie Vose, MD; Ajay Gopal, MD; Mazyar Shadman, MD; Miguel-Angel Perales, MD; Paul Carpenter, MD; Bipin N. Savani, MD; Mehdi Hamadani, MD

JAMA Oncol. 2019;5(5):715-722.

Table 1. Final Clinical Practice Guidelines Consensus Statements on Maintenance Therapy After High Dose Therapy and Autologous Hematopoietic Cell Transplantation for Hodgkin Lymphoma

Consensus Statements: Hodgkin Lymphoma	Grading of Recommendations ^a	Panelists in Agreement, % (n=26)
1. The panel recommends post-autologous HCT consolidation/ maintenance with BV for 16 cycles in BV-naïve classic Hodgkin lymphoma (HL) with at least 1 or more high-risk features as defined by the AETHERA study ^b	A	92
2. The panel does not recommend postautologous HCT consolidation/ maintenance with BV for HL with prior evidence of disease refractory to BV	C	96
3. The recommended duration of post-auto-HCT BV consolidation/ maintenance therapy is for a maximum of 16 cycles every 3 weeks as described in AETHERA trial, or until unacceptable toxicity or disease relapse/progression (whichever occurs first) ^b	A	100
4. The panel recommends post-autologous HCT consolidation/ maintenance with BV in HL with one or more high risk features as defined by the	C	100
AETHERA trial and limited prior exposure to BV (approximately 4-6 cycles) preceding the autologous HCT, but without any evidence of BV refractory disease		
5. Sufficient data do not exist to use the preautologous-HCT PET (or PET/CT) scan status to guide the use of post-autologous HCT consolidation/ maintenance therapy with BV for HL with one or more high-risk features as defined by AETHERA Trial	C	84

Comments (I)

- Post ASCT BV consolidation:
 - Prevents a relevant proportion of relapses occurring early after ASCT
 - The sustained PFS advantage is stable over time. An updated OS estimation is programmed in 2020
 - Is effective in patients with risk factors
 - Is recommended by NCCN, ESMO, ASBMT, CIBMTR, EBMT-LWP
 - Also recommended if previous BV exposure (if responsive)
- Post ASCT CPI consolidation: promising (in pts coming from BV in first line?)

Comments (II)

- Which patients?
 - One or more risk factor? (PET)
 - Other risk factors (bMTV, biomarkers after ASCT?)
- How long is it useful to treat patients?
- Next studies should enroll pts previously treated with BV and/or CPI

Guardiamo le stelle: guai a chi non le vede!

