Danni renali in corso di sindrome emolitico uremica

MARINA NORIS

Treviso 22 Novembre 2019

Disclosure: Marina Noris

- The presenter received grant/research support and/or honoraria from commercial entities:
 - Alexion (research grant and honoraria for educational talks)
 - Novartis (research grant)
 - Alnylam (honoraria for educational talks)
 - Omeros (research grant)

THROMBOTIC MICROANGIOPATHY

Histology lesions: Swelling and detachment of endothelial cells, accumulation of fluffy material in the subendothelium, thrombi and obstruction of the vessel lumina.

Ruggenenti and Remuzzi, Kidney Int 2001

ATYPICAL HEMOLYTIC UREMIC SYNDROME

A life threatening multisystem disease of microangiopathic hemolytic anemia and thrombocytopenia with predominant but not exclusive renal involvement.

Within families, subjects with lower than normal C3 serum levels had a relative risk of aHUS of 16.5 as compared to subjects with normal C3 levels

Noris et al., J Am Soc Nephrol, 1999

COMPLEMENT ACTIVATION PATHWAYS

7

Produced mainly in the liver as a single peptide glycoprotein, factor H circulates in plasma at a concentration of 50 mg/dl

CFH MUTATIONS IN ATYPICAL HEMOLYTIC UREMIC SYNDROME

SINGLE AMINO ACID CHANGES IN SCR 20 OF FACTOR H AFFECT ENDOTHELIAL CELL BINDING

HUVEC incubated with recombinant wild type or mutated factor H stained with fluorescinated antifactor H antibody and analyzed by FACS

Factor H R1210C

WT Factor H

CONSEQUENCES OF CFH aHUS-ASSOCIATED GENETIC VARIANTS

Fluid phase C3 convertase

HIGH HOMOLOGY IN THE REGULATORS OF COMPLEMENT ACTIVATION GENE CLUSTER

CFH/CFHR1 hybrid gene

- High degree of sequence identity between the gene for factor H and the genes for the five factor H-related proteins (CFHR1 to 5) which favors non-allelic homologous recombinations giving rise to hybrid genes.
- Copy number variation assays (high resolution CGH arrays or MLPA) are required to detect hybrid genes

Venables et al., Plos Medicine, 2006

FH/FHR HYBRID PROTEINS FOUND IN PATIENTS WITH aHUS

Challis et al., Blood, 2015

In the FH/FHR hybrid molecules the C-terminal SCRs of CFH are substituted with those of FHR1 or with the entire FHR3, resulting in decreased complement regulatory activity on endothelial cell surface

13

ANTI-FH AUTOANTIBODIES IN AHUS

8-9% mostly children

Dragon-Durey et al JASN 2005 Blanc et al., *J Immunol*, 2012

- Anti-FH abs mainly target the FH C-terminus
- Three linear epitopes in SCR19 and 20 of FH (1157-1171; 1177-1191, 1207-1226) and one in SCR5 of FHR1 are recognized by anti-FH abs.
- Most patients with aHUS and FH autoantibodies are homozygous for a deletion of genes encoding FH related proteins 1 and 3.

Zipfel et al, *Plos Genetics,* 2007 Jozsi et al, *Blood,* 2008 Trojnar et al, *Front Immunol,* 2017

14

Loss of function heterozygous variants: low expression or reduced C3b binding and cofactor activity

Noris et al, Lancet 2003 Richards et al, PNAS 2003 Caprioli et al, Blood 2006

Goicoechea et al., *PNAS*, 2007 Roumenina et al., *Blood*, 2009 Fremeaux-Bacchi et al, Blood 2008

GENETICS OF AHUS: AN EUROPEAN DISCOVERY

17

INCOMPLETE PENETRANCE OF aHUS IN CARRIERS OF COMPLEMENT GENE VARIANTS

* R1215Q pathogenetic change in CFH

- 3 subjects in the III generation developed aHUS in infancy: 2 died, 1 reached ESRD
- F35 never developed aHUS
- Subject F83, carrier of the R1215Q mutation developed aHUS and died at 82 years of age

Noris et al., CJASN 2010

TRIGGERING /UNDERLYING CONDITIONS

Gene mutations

Noris et al, CJASN 2010

Modified from Noris and Remuzzi, NEJM 2009

LONG TERM OUTCOME OF aHUS PATIENTS

Platelet count mean change from baseline

Estimated GFR mean change from baseline

Treatment effect was sustained for up to 26 months

TRANSPLANTATION OUTCOMES

Kidney graft lost because aHUS recurrence

Patients with :

- CFH	mutations	12 out of 17
- CFI	mutations	13 out of 21
- CFB	mutations	2 out of 3
- C3	mutations	6 out of 21

Valoti et al., *J Nephrol,* 2012 Noris and Remuzzi, *Am J Transplant,* 2011

SURVIVAL OF KIDNEY TRANSPLANT IN aHUS

Zuber et al, JASN 2019

Eculizumab in aHUS

- Life-long treatment is recommended in the EMA-approved label for all patients
- Requires one day-hospitalizations for intravenous infusions every two weeks
- Carries the risk of severe infections, mainly meningococcal meningitis and gonococcal infections
- The drug is extremely expensive (460.000 euro/year in adults and 150.000-330.000 euro/year in children)

COMPLEMENT-MEDIATED HUS: HOW TO DIAGNOSE AND MONITOR?

Genetic analysis requires time and is not always informative.

Specific and sensitive markers of complement activation in aHUS are lacking.

Goodship et al, Kidney Int 2017

Case

- A 26-year old male presents with suspicion of TMA after 1 week of vomiting and progressive asthenia:
 - Platelets: 39 x10³/µL
 - LDH: 1900 IU/L
 - Hemoglobin: 8.2 g/dL
 - Creatinine: 2.7 mg/dL
 - ADAMTS13: >10%
 - STEC tests: negative
- Serum C3, and C4 levels: normal
- Plasma C5b-9 levels: normal
- Can this be complement mediated aHUS?
 - No, because circulating complement parameters are normal
 - Yes, could be, but further tests are needed

BLOOD, 11 SEPTEMBER 2014

CLINICAL TRIALS AND OBSERVATIONS

Dynamics of complement activation in aHUS and how to monitor eculizumab therapy

Marina Noris,¹ Miriam Galbusera,¹ Sara Gastoldi,¹ Paolo Macor,² Federica Banterla,¹ Elena Bresin,¹ Claudio Tripodo,³ Serena Bettoni,¹ Roberta Donadelli,¹ Elisabetta Valoti,¹ Francesco Tedesco,⁴ Alessandro Amore,⁵ Rosanna Coppo,⁵ Piero Ruggenenti,⁶ Eliana Gotti,⁶ and Giuseppe Remuzzi^{1,6}

Both during the acute phase of the disease and at remission about half of aHUS patients had normal serum C3 and plasma sC5b-9 levels

Noris et al. Blood, 2014, volume 124, Number 11

SOLID-PHASE RESTRICTED COMPLEMENT ACTIVATION IN aHUS

30

EX VIVO C5b-9 ENDOTHELIAL DEPOSITION IN A LARGE COHORT OF aHUS PATIENTS

Galbusera et al, Am J Kidney Dis, 2019

ECULIZUMAB TREATMENT IN aHUS PATIENTS FULLY NORMALIZED EX VIVO SERUM-INDUCED FORMATION OF C5b-9 ON *ACTIVATED* HMEC-1

- In 20 aHUS cases treated with Eculizumab, serum-induced C5b-9 deposits on ADP-activated HMEC-1 ex-vivo normalized after treatment
- No significant change was observed in pre- and post-Eculizumab plasma sC5b-9 levels

Galbusera et al., Am J Kidney Dis, 2019

Case

- Serum-induced C5b-9 deposits were higher than normal on resting and on activated HMEC-1
- Eculizumab treatment was started 10 days after onset and normalized hematological and renal parameters
- Serum-induced C5b-9 deposits normalized after eculizumab

Content based on unpublished data and/or speaker experience

Every 15 days forever?

How to monitor and possibly tapering?

RISK OF ATYPICAL HEMOLYTIC UREMIC SYNDROME RELAPSE AFTER ECULIZUMAB DISCONTINUATION

38 patients (24 women - 9 children and 29 adults)

The decision to stop eculizumab was made by the clinician in charge of the patient after at least 3 months of stabilization of renal function and proteinuria

"Our series does not provide sufficient data for patients with C3 (n=1), CFI (n=2), or anti-FH antibodies (n=1)"

Fakhouri et al, CJASN, 2017

EX VIVO AHUS SERUM-INDUCED C5b-9 FORMATION ON RESTING HMEC-1 DURING ECULIZUMAB TAPERING/DISCONTINUATION

- The large majority of patients taking eculizumab at extended interdose intervals retained normal serum-induced C5b-9 deposits on unstimulated endothelium
- All five patients (colored dots) manifesting relapses showed elevated C5b-9 deposition on resting endothelial cells, in concomitance with or before worsening of clinical parameters (sensitivity for disease relapse 100%)

Galbusera et al., Am J Kidney Dis, 2019

Case #2

42 year old woman

- recurrent plasma-dependent aHUS (onset at 34 years of age)
- heterozygous CFI mutation (p.R187Q)
 - · During a recurrence the patient was treated with eculizumab resulting in disease remission
 - After 7 months of eculizumab every 2 weeks, the interval between doses was increased till discontinuation
 - Six month after eculizumab cessation, C5b-9 deposits on resting HMEC-1 rose above normal levels
 - One month later the patient developed a disease relapse

Galbusera et al., Am J Kidney Dis, 2019

Case #3

16 year old girl

- recurrent aHUS (onset at 14 years of age)
- no identified complement gene abnormalities
- During a recurrence the patient was treated with eculizumab resulting in disease remission
- After 2 year eculizumab every 2 weeks, the interval between doses was progressively increased
- Hematological and renal parameters and C5b-9 deposits on resting HMEC-1 remained stably normal

Galbusera et al., Am J Kidney Dis, 2019

Summary

- About 90% of childhood cases of HUS are caused by infections with bacteria producing shiga-like toxins that induce endothelial P-selectin expression, C3 activation and microvascular thrombosis
- Genetic abnormalities (mainly heterozygous) causing loss of function of AP complement regulators or gain of function of the components of the AP C3 convertase predispose to aHUS.
- A subgroup of aHUS patients carry anti-FH autoantibodies
- In aHUS local complement activation on endothelial surface (rather than fluid phase) plays a pathogenic role.
- The ex-vivo serum-induced C5b-9 deposition on endothelial cells is a sensitive and specific test of complement activation in aHUS and may represent a tool toward individualized anticomplement therapy

Caterina Mele

Roberta Donadelli

- Elisabetta Valoti
- **Rossella Piras**
- Marta Alberti
- Paola Cuccarolo
- Matteo Breno
- Miriam Galbusera
- Sara Gastoldi
- Erica Daina
- Elena Bresin
- Paraskevas latropoulos
- Sara Gamba

Ariela Benigni

Giuseppe Remuzzi

Thanks!

Santiago Rodriguez de Cordoba **Tim Goodship** Veronique-Fremeaux Bacchi Peter Zipfel Marina Botto **Matthew Pickering** John Atkinson **Richard Smith** Zoltan Prohaska **Marie-Agnes Dragon Durey** Lubka Roumenina Fadi Fakhouri **David Kavanagh** Josh Thurman Augustin Tortajada

These slides belong to Marina Noris, Ph.D. Mario Negri Institute for Pharmacological Research, Bergamo, Italy.

Using these slides is only authorized when mentioning the source