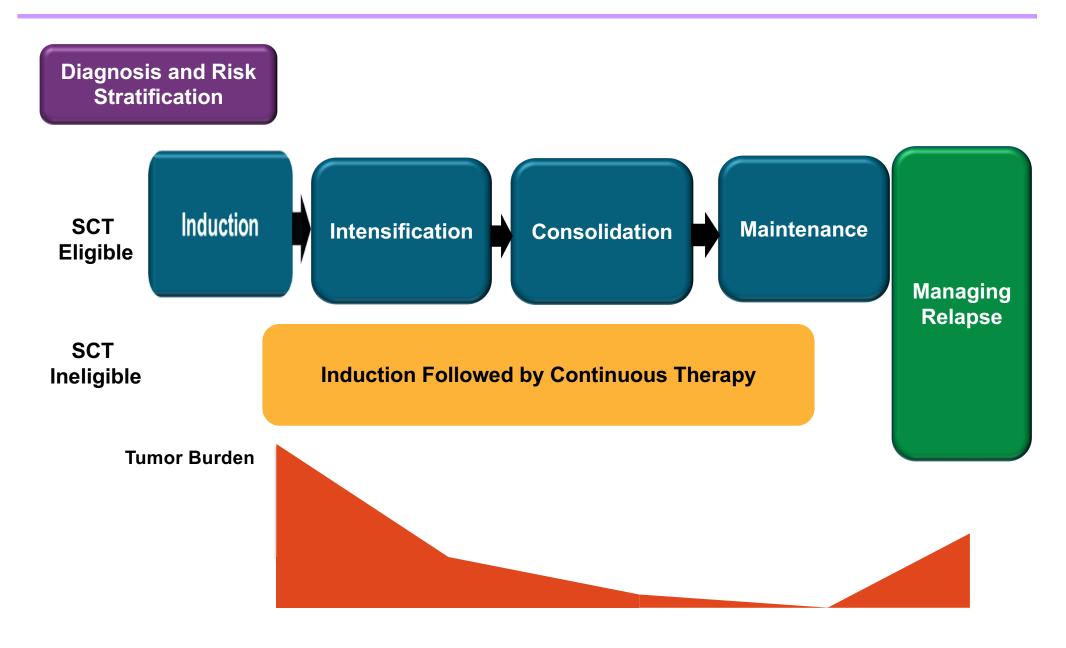

Highlights from IMW 2019

La terapia ottimale di induzione e di consolidamento

Maria Teresa Petrucci

Coordinatore Scientifico
Michele CAVO

Comitato Scientifico
Mario BOCCADORO
Michele CAVO
Maria Teresa PETRUCCI


DISCLOSURE

Maria Teresa Petrucci

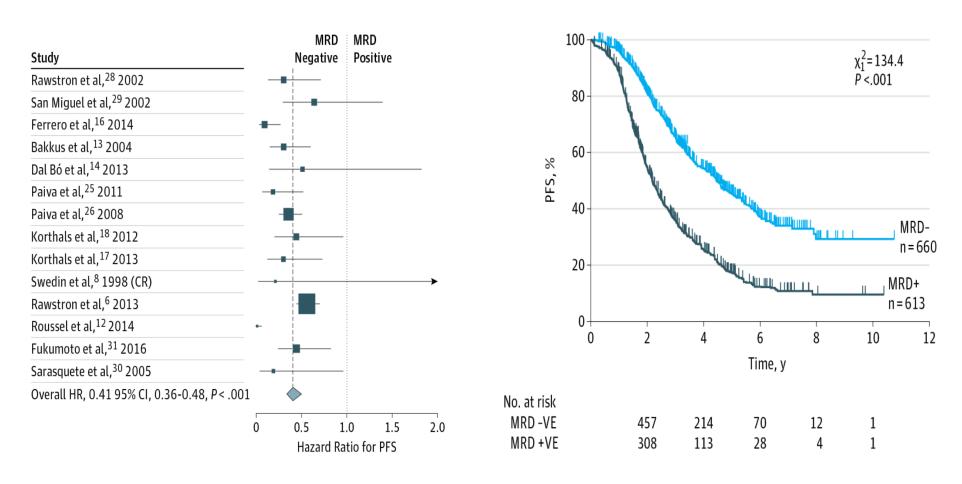
Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Honoraria
Celgene						Х	Х
Janssen- Cilag						X	X
Takeda						Х	Х
BMS						Х	Х
Amgen						Х	Х
Sanofi						Х	Х

MM Treatment Paradigm

Quale dovrebbe essere la migliore terapia di induzione per i pazienti eleggibili al trapianto?

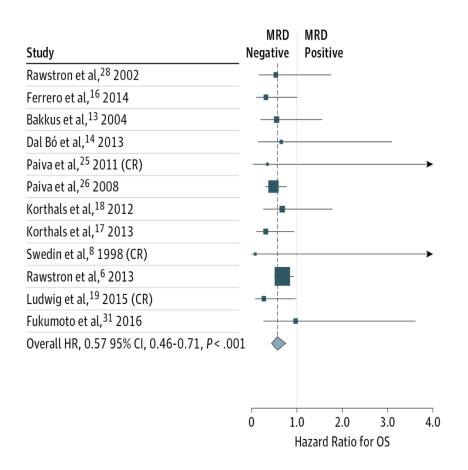
regime di induzione ideale dovrebbe...

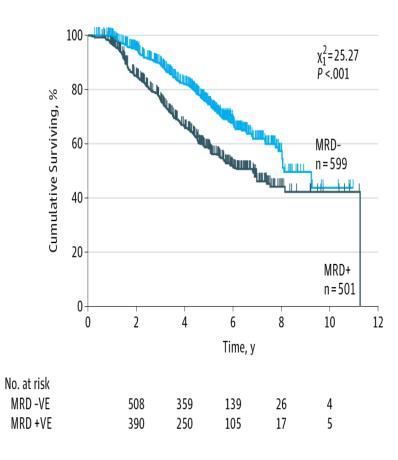
- ✓ Avere una bassa tossicità;
- ✓ Risolvere le problematiche legate alla malattia come la ipercalcemia, anemia, insufficienza renale;
- ✓ Migliorare il PS e la QoL;
- ✓ Permettere una adeguata raccolta di cellule staminali;


ma soprattutto...

✓ ottenere una rapida e profonda risposta della massa tumorale, perché una ottima qualità della risposta (≥VGPR) è il migliore predittore dell'andamento a lungo termine del paziente con mieloma multiplo;

e.... possibilmente a costi contenuti (?!?!).


Association of Minimal Residual Disease With Superior Survival Outcomes in Patients With Multiple Myeloma: A Meta-analysis


PFS

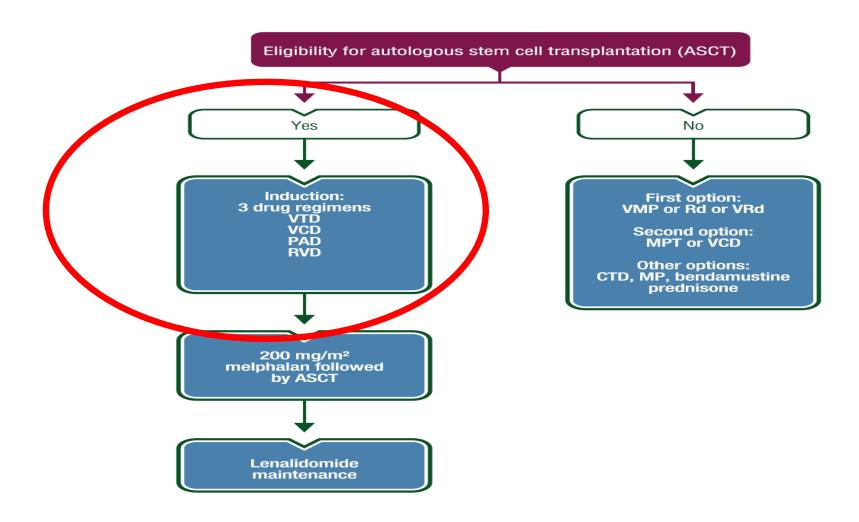
Association of Minimal Residual Disease With Superior Survival Outcomes in Patients With Multiple Myeloma: A Meta-analysis

OS

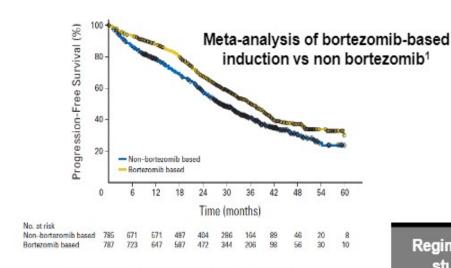
Quale dovrebbe essere la migliore terapia di induzione per i pazienti eleggibili al trapianto?

- VTD è superiore a TD in RR ≥VGPR and PFS (Cavo M et al, Lancet 2010);
- VTD is superiore a VD in RR ≥VGPR (Moreau P et al, Blood 2011);
- VRD is superiore a RD in ORR, PFS and OS (Durie BGM et al, Lancet 2017);

Consideriamo che "le triplette" contenenti un inibitore del proteasoma (PI) e un immunomedulante (IMiD) hanno "il perfetto numero e tipo" di agenti in combinazione.


I regimi preferiti attualmente, per i pazienti di nuova diagnosi eleggibili al trapianto, sono:

- VTD: bortezomib, talidomide, desametasone
- VRD: bortezomib, lenalidomide, desametasone


Ma altre due triplette devono essere considerate in casi particolari:

- VCD: bortezomib, ciclofosfamide, desametasone
- KRD: carfilzomib, lenalidomide, desametasone

Front-line treatment: ESMO 2017

Induction therapy: state of the art

CR + nCR: 38% vs 24%, P<.0001 median PFS: 35.9 vs 28.6 mos, P<.0001

OS @3-yr: 79.7% vs 74.7%, P=.0402

VTD VRD VCD PAD KRD IxaRD 3-drug bortezomib-based combinations are the current standard of care for induction therapy

Which is the best partner for bortezomib?

Regimens /	Respo	onse	Safety profile		
study	≥ VGPR %	≥ CR %	SAEs	Grade 3/4 PN	
PAD vs VCD	34.3 vs 37.0	4.4 vs 8.4	32.7% vs 24%		
Prospective ²	P = .58	P = .10	P = .04		
VTD vs VCD	66.3 vs 56.2	13.0 vs 8.9		7.7% vs 2.9%	
Prospective ³	P = .05	P = .22		P = .05	
VTD vs VCD	64 vs 37	19 vs 6		7% vs 2%	
Case-matched ⁴	<i>P</i> <.001	<i>P</i> <.001		P = .009	

Sonneveld P, et al. J Clin Oncol 2013;31(26): 3279-87;

2. Mai EK, et al. Leukemia. 2015;29(8):1721-1729; 3. Moreau P, et al. Blood. 2016;127(21):2569-2574;

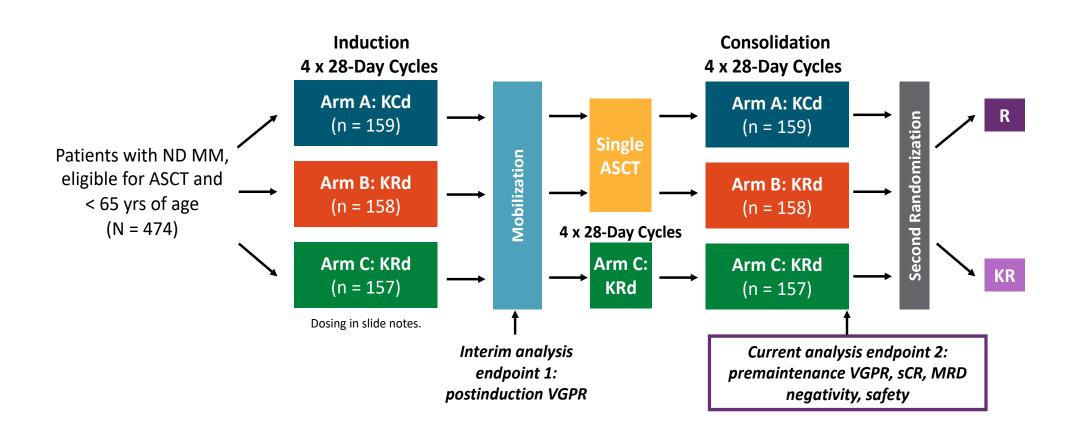
Cavo M, et al. Leukemia. 2015;29(12):2429-2431;

Management of multiple myeloma in the newly diagnosed patient

María-Victoria Mateos¹ and Jesús F. San Miguel²

How to choose the induction regimen

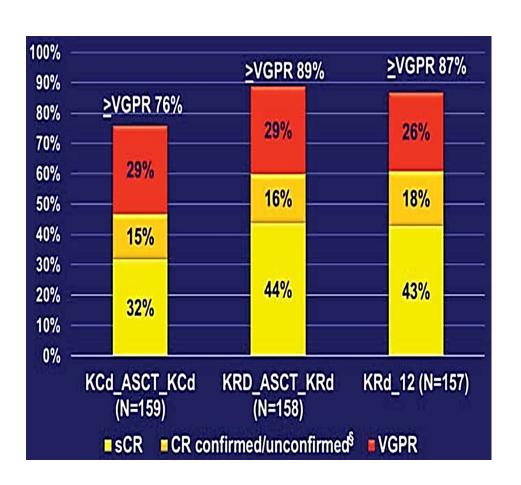
After the presentation of the different regimens, the results to date show that most MM patients will respond to triple combinations, with at least one-third achieving CR after 4 to 6 induction cycles (Table 1). Based on the previously reported results, the triplet combination should include a PI and dexamethasone. The election of the third drug must take into account various factors, including prognostic factors; the nature and extent of MM-associated organ impairment; the presence of comorbid conditions such as PN, diabetes, or heart failure; as well as patient preferences and resources and availability in different countries. The triplets combining PI, immunomodulatory drugs (IMiDs), and dexamethasone, VTD, or VRD seem to be the optimal choice, effective in both standard and high-risk patients, with good tolerability; VCD would also be appropriate, especially if IMiDs are not available or comorbid conditions make its use not possible.


Management of multiple myeloma in the newly diagnosed patient

María-Victoria Mateos¹ and Jesús F. San Miguel²

How to choose the induction regimen

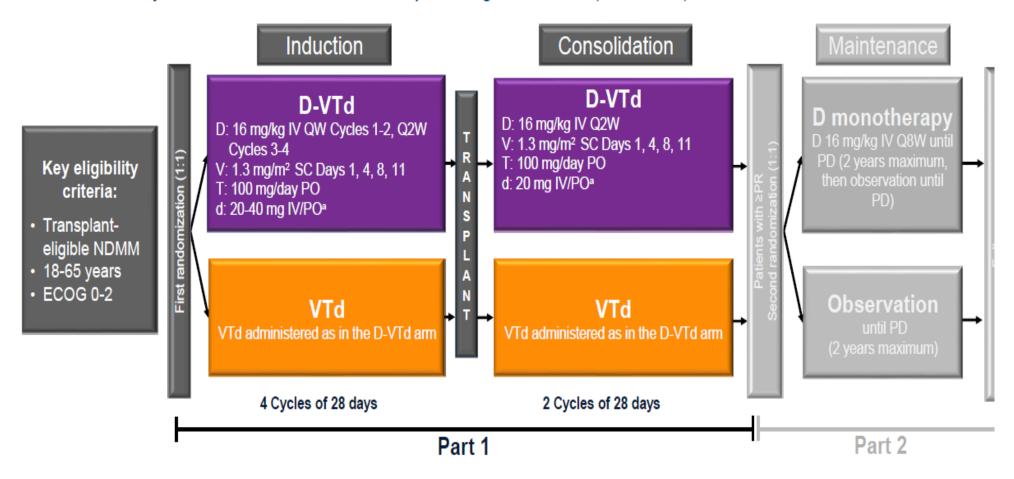
After the presentation of the different regimens, the results to date show that most MM patients will respond to triple combinations, with at least one-third achieving CR after 4 to 6 induction cycles (Table 1). Based on the previously reported results, the triplet combination should include a PI and dexamethasone. The election of the third drug must take into account various factors, including prognostic factors; the nature and extent of MM-associated organ impairment; the presence of comorbid conditions such as PN, diabetes, or heart failure; as well as patient preferences and resources and availability in different countries. The triplets combining PI, immunomodulatory drugs (IMiDs), and dexamethasone, VTD, or VRD seem to be the optimal choice, effective in both standard and bigh-risk patients, with good tolerability; VCD would also be appropriate, especially if IMiDs are not available or comorbid conditions make its use not possible.


FORTE KRd in Newly Diagnosed MM Multicenter, randomized, open-label II study

FORTE KRd in Newly Diagnosed MM Responses

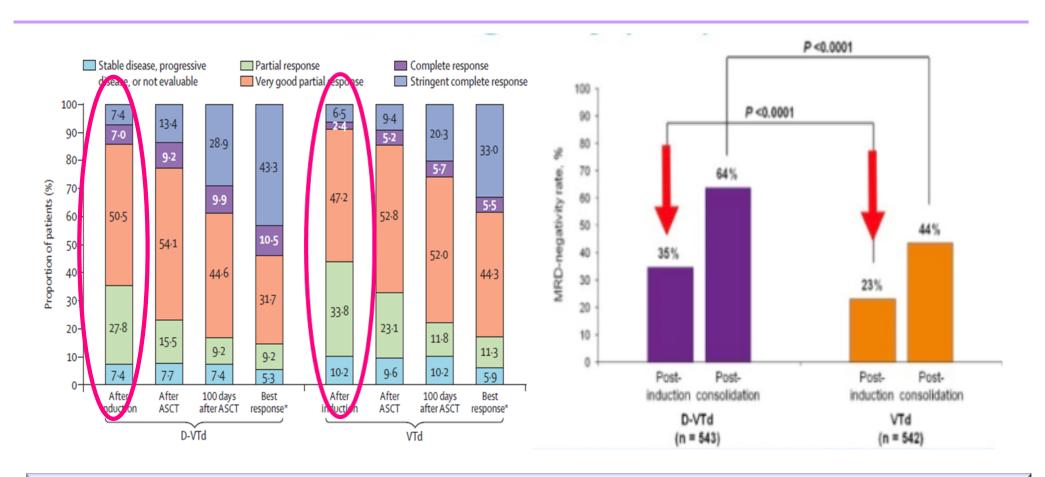
Response Rate	KCd- ASCT-KCd (n = 159)		KRd x 12 cycles (n = 157)
After ASCT or 8 KRd			
cycles (ITT), %			
■ ≥ VGPR	66	81	85
■ sCR	15	23	30
■ CR*	9	11	4
VGPR	42	47	51
Premaintenance, %			
■ ≥ VGPR	76	89	87
■ sCR	32	44	43
■ CR*	15	16	18
VGPR	29	29	26
MRD negativity [†] premaintenance, %	42	58	54

^{*}Confirmed or unconfirmed. † MRD assessed by 2nd generation flow cytometry, with sensitivity of 10⁻⁵.


FORTE KRd in Newly Diagnosed MM Safety

Safety Outcome, %	KCd-ASCT-KCd (n = 159)	KRd-ASCT-KRd (n = 158)	KRd x 12 cycles (n = 157)
Dose reduction - Reduced ≥ 1 drug	19	32	<mark>36*</mark>
Treatment-Related Grade 3/4			
Dermatologic	1	<mark>6</mark>	<mark>13*</mark>
Renal	1	1	3
Gastrointestinal	3	4	3
Infections	9	10	13
Hepatic	1	8	<mark>10*</mark>
Deep vein thrombosis/pulmonary embolism	3	1	3
Hypertension	3	<mark>3</mark>	<mark>8*</mark>
Cardiac	3	3	2
≥ 1 nonhematologic AE	26	<mark>35</mark>	<mark>48*</mark>
Death due to AE	2	1	1

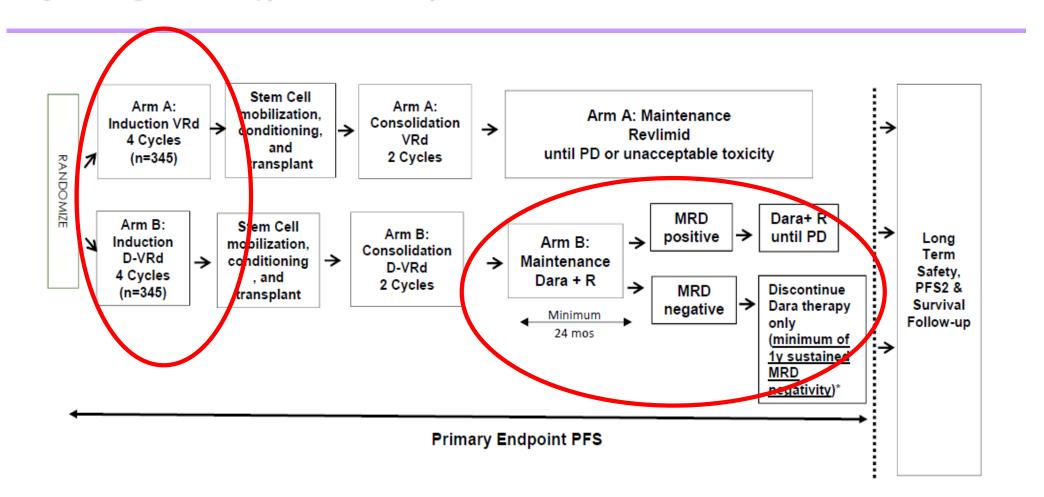
^{*}Statistically significant.


Phase 3 CASSIOPEIA Study Design

Phase 3 study of D-VTd versus VTd in transplant-eligible NDMM (N = 1,085), 111 sites from the 9/2015 to 8/2017

Endpoint primario: SCR a 100 giorni dall'ASCT

Post-induction rates of response and MRD-negativity (10⁻⁵)



Early (post-induction) significant difference in MRD-negativity rates for D-VTD versus VTd

A Phase 3 Study Comparing Daratumumab, (bortezomib), Lenalidomide, and Dexamethasone (D-VRd) vs

Lenalidomide, and Dexamethasone (VRd) in Subjects with Previously Untreated Multiple Myeloma who are

Eligible for High-Dose Therapy. The Perseus Study

Daratumumab in Combination with Carfilzomib, Lenalidomide, and Dexamethasone (**KRd**) in Patients With Newly Diagnosed Multiple Myeloma (**MMY1001**): an Open-label, Phase 1b Study

Study Design

Open-label, Multicenter, Phase 1b Study (N = 22)

- NDMM
- Transplant eligible and noneligible
- Treatment duration: ≤13 cycles or until elective discontinuation for ASCT
- No clinically significant cardiac disease; echo required at screening

Dosing Schedule (28-d cycles)

Daratumumab:

- Split dose: 8 mg/kg Days 1-2 of Cycle 1
- 16 mg/kg QW on Cycles 1-2, Q2W on Cycles 3-6, and Q4W thereafter

Carfilzomib:

- 20 mg/m² C1D1
- Escalated to 70 mg/m² C1D8+; weekly (Days 1, 8, 15)

Lenalidomide:

• 25 mg; Days 1-21 of each cycle

Dexamethasone: 40 mg/weeka

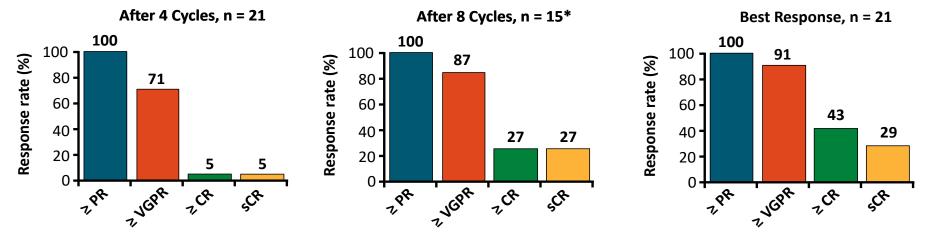
Endpoints

Primary

Safety, tolerability

Secondary

 ORR, duration of response, time to response, IRR


Exploratory

PFS

1

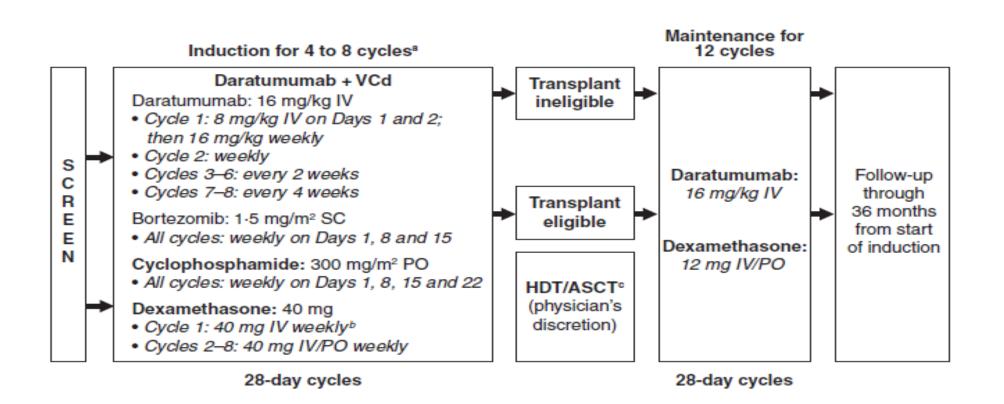
Daratumumab + KRd in Newly Diagnosed MM Response

Median number of treatment cycles: 11.5 (range: 1.0-13.0)

Depth of response improved with duration of treatment

- *5 patients who proceeded to ASCT before cycle 8 and 1 patient who discontinued due to PD at cycle 7 were excluded.
- Median follow-up: 10.8 mos (range: 4.0-12.5)
- OS: 100% at follow-up

Daratumumab + KRd in Newly Diagnosed MM


DARA + KRd was well tolerated

- Safety is consistent with previous reports of DARA and KRd
- Low IRR rates associated with split first dose; no grade 3/4

Highly effective with 100% ORR

- 91% ≥VGPR and 43% ≥CR
- Depth of response improved with duration of treatment
- No adverse impact on stem cell collection (10.4 x 10⁶ cells/kg)
 - DARA is feasible as part of induction therapy

LYRA: Daratumumab + VCd in Multiple Myeloma

Key Active and Enrolling Clinical Trials for ASCT-Eligible Patients With Newly Diagnosed MM

Trial ID	Phase	Status	Investigational Regimen	Primary Endpoint
Cassiopeia NCT02541383	III	Active, preliminary results available	Dara + VTD vs VDT (induction and consolidation); if PR or better: Dara maintenance vs observation	sCR, PFS
GRIFFIN NCT02874742	II	Active, preliminary results available	Dara + VRd (induction and consolidation) → Dara + R maintenance vs VRd (induction and consolidation) → R maintenance	sCR
GMMG-HD6 NCT02495922	III	Active, awaiting results	Elo + VRd → Elo + VRd → Elo + R maintenance Elo + VRd → VRd → R maintenance VRd → Elo + VRd → Elo + R maintenance VRd → VRd → R maintenance	PFS
ENDURANCE NCT01863550	III	Currently enrolling	1st randomization: VRd vs KRd (induction); 2nd randomization: R maintenance for 24 cycles vs until PD	OS, PFS
Perseus NCT03710603	III	Currently enrolling	Dara + VRd (induction and consolidation) → Dara + R maintenance vs VRd (induction and consolidation) → R maintenance	PFS
GMMG HD7 NCT03617731	III	Currently enrolling	1st randomization: Isatuximab + VRd vs VRd (induction) 2nd randomization: Isa + R vs R maintenance for 36 months	MRD negativity PFS
DSMM XVII NCT03948035	III	Currently enrolling	Elo + KRd (induction and consolidation) → Elo + R maintenance vs KRd (induction and consolidation) → R maintenance	MRD negativity PFS

Conclusions Induction

Induction is an important step of high-dose therapy in patients with MM eligible for ASCT

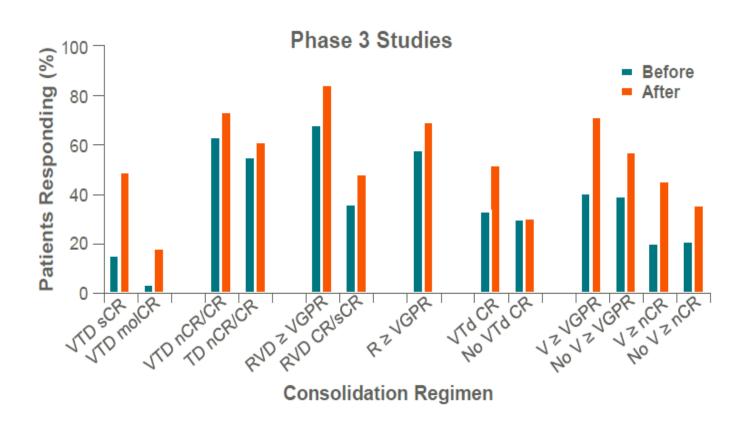
VTD/VRD are the best options up-front TODATE

KRD > VRD?

Role of quadruplet, including CD38 MoAb will increase MRD negativity rate after induction with increase surrogate for final outcome

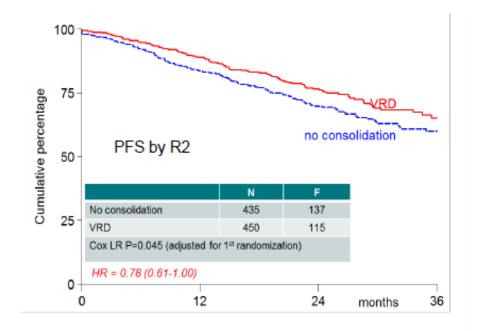
Conside the global strategy: induction/ASCT and conditioning/consolidation/maintenance

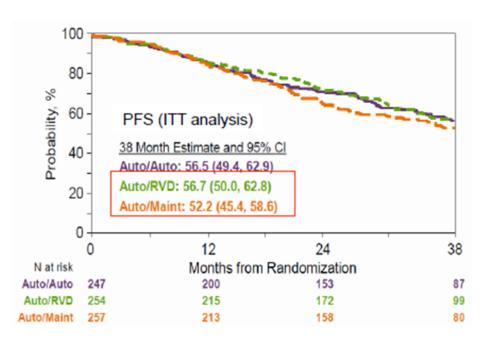
Consolidation Therapy


Short-term therapy aimed at

 enhancing the depth of response, either conventional CR (in the past) or molecular CR (at present time) after induction therapy followed or not by subsequent ASCT

- Extended PFS and OS
- Possibility of cure

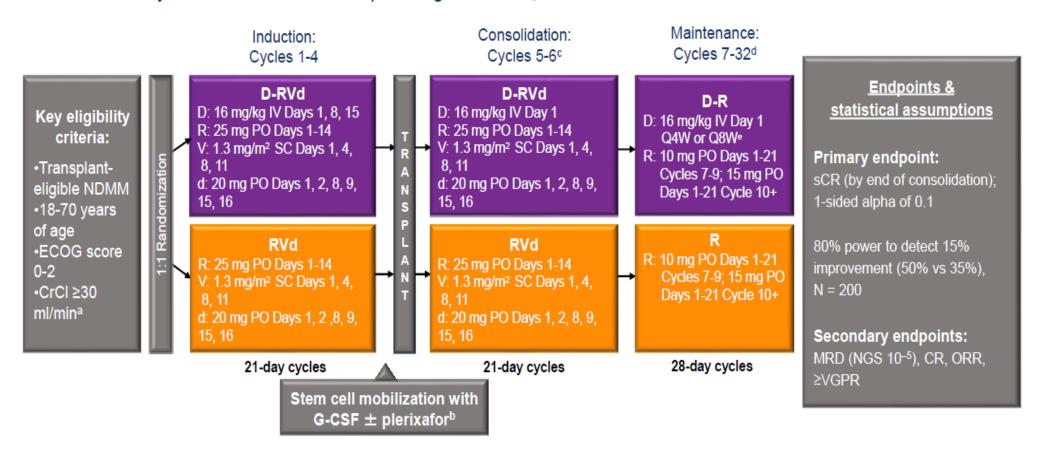

Consolidation therapy: phase2/3 studies


Consolidation therapy resulted in enhanced rates of high-quality conventional responses, in almost all the studies

Consolidation is not yet a standard clinical practice Conflicting results emerged from two large randomized phase III trials

EMN02 phase 3 study VRD consolidation vs no consolidation

STaMINA phase 3 study VRD consolidation vs no consolidation

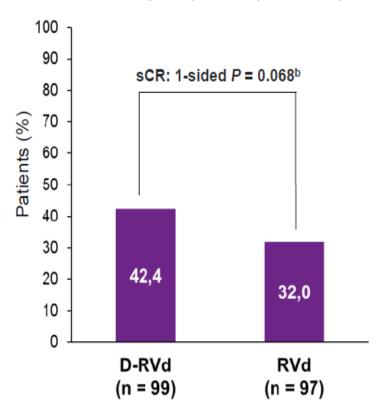


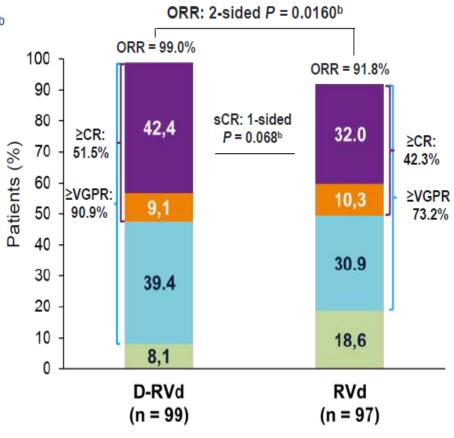
EMN02 and BMT CTN 0702: study inconsistencies

	EMN02	STAMINA
Newly diagnosed (%)	100	85
Induction regimen (%)	VCD (100)	VCD (14) VRD (55)
Length of induction therapy (months)	2-3	2-14
Failure to receive double ASCT (%)	19.8	32
Consolidation therapy (%)	Yes (50)	NO (100)
Maintenance therapy	Len (10 mg)	Len (10-15) mg
PFS at 36-38 mos (%) - All patients - High-risk patients*	73.6 64.9	56.5 42.2

GRIFFIN: randomized phase II study

Phase 2 study of D-RVd vs RVd in transplant-eligible NDMM, 35 sites in US with enrollment from 12/2016 and 4/2018


D-RVd, daratumumab-lenalidomide/bortezomib/dexamethasone; RVd, lenalidomide/bortezomib/dexamethasone; NDMM, newly diagnosed multiple myeloma; US, United States; ECOG, Eastern Cooperative Oncology Group; CrCl, creatinine clearance; IV, intravenously; PO, orally; SC, subcutaneously; G-CSF, granulocyte colony-stimulating factor; D-R, daratumumab-lenalidomide; Q4W, every 4 weeks; Q8W, every 8 weeks; SCR, stringent complete response; MRD, minimal residual disease; NGS, next-generation sequencing; CR, complete response; ORR, overall response rate; VGPR, very good partial response.


^aLenalidomide dose adjustments were made for patients with CrCl ≤50 mL/min. ^bCyclophosphamide-based mobilization was permitted if unsuccessful. ^cConsolidation was initiated 60-100 days post transplant. ^dPatients who complete maintenance cycles 7-32 may continue single-agent lenalidomide thereafter. ^eProtocol Amendment 2 allowed for the option to dose daratumumab Q4W, based on pharmacokinetic results from study SMM2001 (NCT02316106).

Primary endopoint: sCR by the end of consolidation

Primary endpoint met at pre-set 1-sided alpha of 0.1
 Post-consolidation depth of response

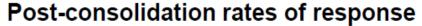
- sCR by end of consolidation
 - 42.4% D-RVd vs 32.0% RVd
 - Odds ratio, 1.57; 95% CI, 0.87-2.82; 1-sided P = 0.068^b

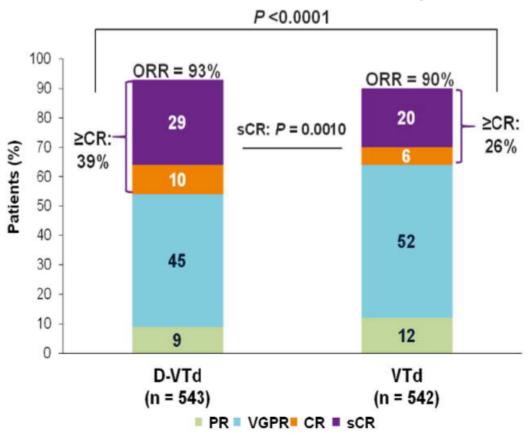
■ PR ■ VGPR ■ CR ■ sCR

PR, partial response.

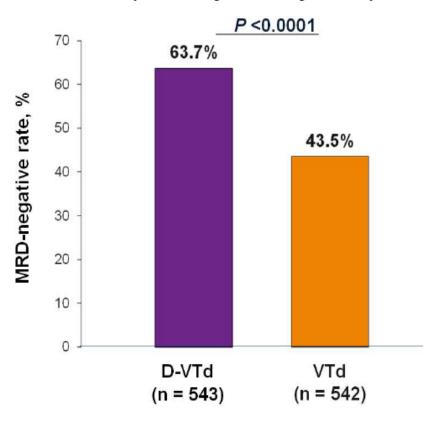
ancluded patients in the response-evaluable population (all randomized patients with a confirmed diagnoses of MM, measurable disease at baseline, received ≥1 dose of study treatment, and had ≥1 post-baseline disease assessment).

Post-baseline disease assessment at least the response of the Cochran—Mantel—Haenszel chi-square test. A 1-sided P value is reported for sCR; for all other responses, 2-sided P values not adjusted for multiplicity are reported.

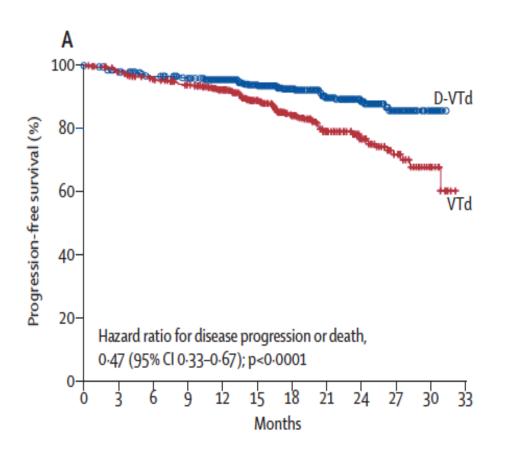

Post-Consolidation MRD Negativity


MRD-Negative Status (10 ⁻⁵), ^a n (%)	D-RVd	RVd	Odds Ratio (95% CI)	<i>P</i> value ^b
In ITT population				
MRD negative regardless of response	46/104 (44.2)	15/103 (14.6)	4.70 (2.38-9.28)	<0.0001
MRD negative with CR or better	30/104 (28.8)	10/103 (9.7)	3.73 (1.71-8.16)	0.0007
In patients achieving CR or better	30/51 (58.8)	10/41 (24.4)	4.65 (1.76-12.28)	0.0014
In patients who received ASCT	45/94 (47.9)	14/78 (17.9)	4.31 (2.10-8.85)	<0.0001

D-RVd improved MRD-negativity (10⁻⁵) rates at the end of consolidation


^aThe threshold of MRD negativity was defined as 1 tumor cell per 10⁵ white cells. MRD status is based on assessment of bone marrow aspirates by next-generation sequencing in accordance with International Myeloma Working Group criteria. MRD assessments occurred in patients who had both baseline (with clone identified/calibrated) and post-baseline MRD (with negative, positive, or indeterminate result) samples taken (D-RVd, n = 71; RVd, n = 55). Patients with a missing or inconclusive assessment were considered MRD positive. ^bP values were calculated from the Fisher's exact test.

CASSIOPEIA study: depth of response



MRD (Flow Cytometry; 10⁻⁵)

D-VTd improved the rate of sCR (primary study endpoint), ≥CR and MRD negativity

Phase 3 CASSIOPEIA Study

	D-VTd (n=536	5)	VTd (n=538)	
	Any grade	Grade 3 or 4	Any grade	Grade 3 or 4
Haematological adverse events				
Neutropenia	157 (29%)	148 (28%)	89 (17%)	79 (15%)
Thrombocytopenia	109 (20%)	59 (11%)	73 (14%)	40 (7%)
Lymphopenia	99 (18%)	91 (17%)	67 (12%)	52 (10%)
Non-haematological adverse events				
Peripheral sensory neuropathy	314 (59%)	47 (9%)	340 (63%)	46 (9%)
Constipation	272 (51%)	7 (1%)	262 (49%)	7 (1%)
Asthenia	171 (32%)	7 (1%)	155 (29%)	6 (1%)
Peripheral oedema	162 (30%)	3 (<1%)	148 (28%)	7 (1%)
Nausea	162 (30%)	21 (4%)	130 (24%)	12 (2%)
Pyrexia	140 (26%)	14 (3%)	114 (21%)	12 (2%)
Paraesthesia	118 (22%)	4 (<1%)	108 (20%)	6 (1%)
Stomatitis	86 (16%)	68 (13%)	104 (19%)	88 (16%)
Second primary malignancy	10 (2%)	NA	12 (2%)	NA
Any infusion-related reaction	190 (35%)	19 (4%)	NA	NA

Data are n (%). D-VTd=daratumumab plus bortezomib, thalidomide, and dexamethasone. VTd=bortezomib, thalidomide, and dexamethasone. NA=not applicable. *Adverse events of any grade that were reported in at least 20% of patients in either treatment group and grade 3 or 4 adverse events that were reported in at least 10% of patients in either treatment group are listed.

Table 3: Most common adverse events during treatment in the safety population*

Novel agent-based consolidation therapy of the ASCT: state of art

Modern induction and post-ASCT consolidation therapies including a PI combined with an IMiD with or without a MoAb

RESULT IN

Rates of MRD negativity 10⁻⁵ up to ∼ 60%

Future directions

- Incorporation of immunotherapy (Daratumumab, Elotuzumab) into induction regimens.
- Incorporation of novel oral agent (carfilzomi, ixazomib,) into induction regimens.
- Choosing induction regimens based on patient's risk-class.
- Extending treatment on evaluation of MRD.

