Highlights from IMW 2019

Michele Cea, MD

Clinic of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa

La leucemia plasmacellulare: Meccanismi biologici

Coordinatore Scientifico Michele CAVO Comitato Scientifico Mario BOCCADORO Michele CAVO Maria Teresa PETRUCCI

PLASMA CELL LEUKEMIA (PCL): definition

\geq 20% monoclonal plasma cells in peripheral blood and/or absolute plasma cell count \geq 2x10⁹/L

PRIMARY PLASMA CELL LEUKEMIA (pPCL):

- no previous history of MM
- 60% of all PCL (crude incidence 0.04-0.05/100.000 persons per vear in EU)

SECONDARY PLASMA CELL LEUKEMIA (sPCL)

Highlights from IMW 2019

- Leukemic transformation of Relapsed/Refractory MM
- 40% of all PCL, about 1% of chemio-resistent MM with high ٠ tumor burden

DIFFERENTLY FROM MM AND sPCL, IN WHICH MANY UNFAVORABLE GENOMIC ABERRATIONS GRADUALLY ACCUMULATE DURING PROGRESSION, MULTIPLE **GENETIC LESIONS ARE ALREADY PRESENT IN pPCL AT ONSET OR DIAGNOSIS**

Mosca L, et al. AJH 2013 Simeon V. et al. Int. J. Mol. Sci. 2015 An G, et al. Annals of Hematology. 2015 Gonsalves WI, et al. Leukemia. 2014

Musto P. J Clin Oncol. 2016 Musto P. et al. Leukemia. 2014 Gavriatopoulou M. et al. Leukemia 2018 van de Donk NW, et al. Blood. 2012 Fernandez de Larrea C. et al. Leukemia. 2013 Touzeau C, et al. Blood. 2016

Musto P, et al. Curr Treat Options Oncol. 2016 Tiedemann RE. et al. Leukemia. 2008 Neri A. et al. Expert Rev Hematol. 2016

pPCL: prognosis and overall survival (OS)

SURVIVAL TRENDS OF pPCL PATIENTS IN DIFFERENT TIME INTERVALS

High-risk of complications

Gonsalves WI et al. Blood 2014

Highlights from IMW 2019

Biology of Plasma Cell Leukemia

Highlights from IMW 2019

- Initial immortalizing events (genetic aberrations)
- Secondary (epi)genetic events
- Adhesion molecules and chemokine receptors
- Immune evasion

van de Donk NWCJ, et al. Blood 2012

Highlights from IMW 2019

Initial immortalizing events (genetic aberrations)

- Secondary (epi)genetic events
- Adhesion molecules and chemokine receptors
- Immune evasion

van de Donk NWCJ, et al. Blood 2012

Highlights from IMW 2019

Ploidy in PCL and MM tumors (%) ^a							
MM	sPCL	pPCL					
}40	42	60					
	42	40					
60	17	0					
	MM }40 60	MM sPCL }40 42 42 60 17					

Abbreviations: MM, multiple myeloma; PCL, plasma cell leukemia. ^aPercentages derived from abnormal karyotypes only.

Tiedemann et al, Leukemia 2008

In pPCL:

- hyperdiploidy is observed in only 0%-8.8% of the cases, whereas it is observed in ~ 50% of NDMM.
- incidence of hypodiploidy and IgH translocations is significantly increased.

similar pattern is observed in **sPCL**, with the exception that hyperdiploidy is slightly more prevalent in sPCL (~ 17%) compared with pPCL.

Highlights from IMW 2019

Major genetic alterations in pPCL series

Simeon et al, Int J Mol Sci 2015

Highlights from IMW 2019

Major genetic alterations in PCL vs MM

Simeon et al, Int J Mol Sci 2015

Highlights from IMW 2019

Frequency of the major genomic aberrations by FISH and/or SNP array

Genomic aberration	GIMEMA study PPCL cases pos/tested (%)	IFM study PPCL cases pos/tested (%)
t(11;14)	9/23 (39%)	16/32 (50%)
t(4;14)	3/23 (13%)	2/32 (6%)
t(14;16)	7/23 (30%)	5/32 (16%)
del(13q)	17/23 (74%)	19/32 (59%)
del(17p)	8/23 (35%)	9/32 (28%)
1q gain	10/21 (48%)	17/32 (53%)
1p loss	8/21 (38%)	5/32 (16%)
MYC locus	2/15 (13%)	9/32 (28%)
rearrangement		

FISH: fluorescence *in situ* hybridization; SNP: single-nucleotide polymorphism; PPCL: primary plasma cell leukemia; GIMEMA: Gruppo Italiano Malattie Ematologiche dell'Adulto; IFM: Intergroupe Francophone du Myélome; pos: positive; del: deletion.

Neri et al, Exp Rev Hematol 2016

Highlights from IMW 2019

Summary of pPCL cytogenetic features

• Relative occurrence of changes differs between pPCL and MM

FISH abnormalities	pPCL	ММ
Del (17p)	40%	=10%
t(11,14)	25-65%	=15%
t(14,16)	20%	4%
t(4,14)	14%	14%

- Poor prognosis of t(11;14) bearing pPCL (in contrast with the more favourable prognosis associated with this abnormality in MM).
- t(11,14) may predicts sensibility to the bcl2 inhibitor, venetoclax

.....Altogether, this suggests that non-hyperdiploid tumors are less dependent on the BM microenvironment than hyperdiploid tumors.

Highlights from IMW 2019

The genomic landscape of pPCL (mRNA)

Usmani SZ. et al, Leukemia 2012

Highlights from IMW 2019

19-20 novembre 2019 Bologna

The genomic landscape of pPCL (mRNA)

Todoerti K. et al, CCR 2013

Highlights from IMW 2019

Biological processes significantly modulated across different PC dyscre

Neri A. et al, Exp. Rev. Hem. 2016

Highlights from IMW 2019

The genomic landscape of pPCL (miRNAs)

Lionetti M. et al. CCR 2013

Highlights from IMW 2019

- Initial immortalizing events (genetic aberrations)
- Secondary (epi)genetic events
- Adhesion molecules and chemokine receptors
- Immune evasion

van de Donk NWCJ, et al. Blood 2012

Highlights from IMW 2019

The molecular landscape of pPCL (WES)

Cifola I. et al. Oncotarget 2015

Highlights from IMW 2019

19-20 novembre 2019 Bologna

- ✓ <u>cell-matrix adhesion and membrane organization (SPTB, CELA1),</u>
- \checkmark cell cycle and apoptosis (CIDEC),
- ✓ genome stability (KIF2B),
- ✓ RNA binding and degradation (DIS3, RPL17)
- ✓ protein folding (CMYA5)
- ✓ Immune respone (HLA-DQA1)
- ✓ Ion transmembrane transport (UNC80, SCN9A, ZNF598)
- ✓ Unknown (FAM166B, SRRM5, CCDC144NL)

Cifola I. et al. Oncotarget 2015

Highlights from IMW 2019

DNA repair and cell cycle check-point genes in pPC

Cifola I. et al. Oncotarget 2015

Highlights from IMW 2019

Recurrence of MM genes in pPCL (WES)

Cifola I. et al. Oncotarget 2015 Lionetti M. et al. Oncotarget 2015

Highlights from IMW 2019

Mutation frequency of most recurrently mutated genes by NGS

	Gene	PPCL cases pos/ tested (%)	MM cases pos/ tested (%)	SPCL cases pos/ tested (%)
\Rightarrow	TP53	6/24 (25%)	4/129 (3.1%)	2/10 (20%)
	DIS3	6/24 (25%)	24/130 (18.5%)	3/10 (30%)
	FAM46C	1/24 (4.2%)	15/128 (11.7%)	2/10 (20%)
1	NRAS	1/24 (4.2%)	35/132 (26.5%)	4/11 (36.4%)
\rightarrow	KRAS	4/24 (16.7%)	43/132 (32.6%)	2/11 (18.2%)
	BRAF	5/24 (20.8%)	14/132 (10.6%)	1/11 (9.1%)

Pos: positive; PPCL: primary plasma cell leukemia; MM: multiple myeloma; SPCL: secondary plasma cell leukemia.

Neri et al, Exp Rev Hematol 2016

Highlights from IMW 2019

- No mutations or / gene aberrations are specific for pPCL compared to MM
- Relative occurrence of changes differs between pPCL and MM
- NRAS, KRAS and BRAF mutations are less frequently observed in PCL than in MM
- TP53 and DIS3 mutations are more common in PCL than in MM-predictor of aggressive disease
- MYC rearrangements commonly up-regulated
- Very heterogenous mutations and complex genotypes-WGS

The Epigenomics of Cancer

Jones P.A. et al. Cell 2007

Jones P.A. Nat. Rev. Genet. 2012

Tibor A. Rauch et al. PNAS 2009

Highlights from IMW 2019

Agirre X. et al. Genome Res. 2015

100%

Highlights from IMW 2019

Global methylation patterns in pPCL

Todoerti K. et al. Leuk Res 2018

Highlights from IMW 2019

Global methylation patterns in pPCL

Todoerti K. et al. Leuk Res 2018

Highlights from IMW 2019

- Initial immortalizing events (genetic aberrations)
- Secondary (epi)genetic events

Adhesion molecules and chemokine receptors

Immune evasion

van de Donk NWCJ, et al. Blood 2012

Highlights from IMW 2019

Biology of pPCL: Immunophenotype

CD38, 138+

Myeloma cells are strongly dependent on the bone marrow microenvironment which regulates their proliferation and survival

¥

pPCL malignant plasma cells tend to eggress to the peripheral blood stream and are more immature cells

DIFFERENT PATTERNS OF EXPRESSION ADHESION MOLECULES: ROLE OF CD56/NCAM

Higher CD56 expression anchorage of plasma cells to bone marrow stroma

Lower CD56 expression migration to extramedullary sites

Higher CD20 expression

Highlights from IMW 2019

Comparison of immunophenotypic markers in pPCL vs. in MM

	CD19+ PCs		CD56+ PCs		CD20+ PCs		CD27+ PCs		CD28+ PCs	CD117+ PCs		CD44+ Cs	nestin+ PCs
Relative expression of markers on CD38+ CD138- PCs													
MM BM (n = 110) median of relative expression [%] (min–max)	38 (0.0 66.0)	-	96.3 (0.5– 100.0)		0.2 (0.0– 90.8)		16.8 (0.6– 99.7)		3.1 (0.1– 98.9)	4.5 0.0– 99.4)		84.8 1.0– 99.6)	5.3 (0.0– 99.4)
<pre>pPCL PB (n = 11) median of relative expression [%] (min-max)</pre>	0.1 (0.0– 94.7)		19.4 (0.4– 99.9)		2.5 (0.0– 94.4)		0.4 (0.0– 50.6)		0.1 (0.0– 99.6)).1 0.0– 30.2)		98.1 2.3– 100.0)	21.8 (0.1– 99.1)
pPCL BM (n = 10) median of relative expression [%] (min–max)	0.1 (0.0– 92.6)		48.9 (0.2– 99.3)		2.4 (0.0– 92.8)		0.6 (0.0– 18.5)		1.8 (0.0– 99.9)).0 0.0– 37.5)		77.0 49.8– 99.7)	53.6 (0.2– 99.1)
Positivity of expressed markers on CD38+ CD138+ PCs													
MM BM (n = 110) positivity [%]	6.4 (7/110		75.5 (83/110)	8.2 (9/110)		31.8 (35/110)	20.9 (23/110)	31.8 [35/110]		84.3 43/51)	30.5 (18/59)
pPCL PB (n = 11) positivity [%]	18.2 (2/11)		45.5 (5/11)		18.2 (2/11)		18.2 (2/11)		18.2 (2/11)	∂.1 (1/1 1) :	83.3 (5/6	50.0 (3/6)
pPCL BM (n = 10) positivity [%]	20.0 (2/10)		60.0 (6/10)		30.0 (3/10)		0.0 (0/10)		33.3 (3/9)	11.1 (1/9)		100.0 4/4)	75.0 (3/4)
													Jeli

Highlights from IMW 2019

Jelinek et al. EJH 2015

- Initial immortalizing events (genetic aberrations)
- Secondary (epi)genetic events
- Adhesion molecules and chemokine receptors
- Immune evasion

van de Donk NWCJ, et al. Blood 2012

Highlights from IMW 2019

Immune evasion: different phenotype from MGUS to MM and F

Perez-Andres M. et al. Leukemia, 2005

Highlights from IMW 2019

- It is a rare variant of multiple myeloma, which differs from secondary PCL and shows peculiar epidemiology, clinical, phenotypic and genotypic characteristics
- Prognosis remains generally poor, especially in patients who are not eligible for stem cell transplantation, though during the last five years some advances have been reached using new drugs
- Better understanding of biology of the disease
- Plasma cell leukemia prognostic index
- Improve pPCL outcome:
 - Reduce early mortality rate
 - New therapeutic targets t(11;14) and venetoclax therapy

Highlights from IMW 2019

Highlights from IMW 2019

SP-092

KD-PACE salvage therapy for aggressive relapsed multiple myeloma

Authors:

<u>Shelton Harrell</u>¹, Muhammad Khan², Binod Dhakal², Hari Parameswaran², Robert Cornell¹

Institutions:

¹Vanderbilt University Medical Center, Nashville, TN, ²Medical College of Wisconsin, Milwaukee, WI Primary Plasma Cell Leukemia: a retrospective series from a tertiary care center in India

Authors:

<u>VIKAS GARG</u>¹, Lalit Kumar², raja pramanik³, Ankur Nandan Varshney⁴, SUDHIR KUMAR¹, CHETHAN R¹, GOPILA GUPTA⁵

Institutions:

¹AIIMS, DELHI, NEW DELHI, DELHI, ²All India Institute of Medical Sciences, New Delhi, New Delhi, Delhi, ³All India Institute of Medical Sciences,New Delhi, New Delhi, Delhi, ⁴All India Institute of Medical Sciences, New Delhi, Delhi, ⁵ALL INDIA INSTITUTE OF MEDICAL SCIENCE, DELHI, india

Highlights from IMW 2019

Over 10 years relative median survival in MM patients ≤ 65 years with VGPR or better on 1st line treatment. Population-based data on patients diagnosed 2008-2018 from the Swedish Myeloma Registry

Authors:

<u>Cecilie Hveding Blimark¹</u>, Anna Genell², Johan Lund³, Hareth Nahi⁴, Kristina Carlson⁵, Karin Forsberg⁶, Gunnar Juliusson⁷, Birgitta Lauri⁸, Olle Linder⁹, Signe Danielsson⁹, Ronald Svensson¹⁰, Ljupco Vesskovski¹¹, Dorota Knut-Bojanowska¹², Ingemar Turesson¹³

Institutions:

¹Sahlgrenska University Hospital, Göteborg, Västra Götaland, ²Regional Cancer Center West, Göteborg, AS, ³Department of Hematology, Karolinska Institutet, Stockholm, Sweden, ⁴Karolinska Institute, Stockholm, Stockholm, ⁵4Department of Hematology, Uppsala University Hospital, Uppsala, Sweden, ⁶Department of Hematology, Umeå University Hospital, Umeå, ⁷Hematology/Transplantation, Stem cell center, Skåne University Hospital, Lund, ⁸Sunderby Hospital, Lulea, Sweden, ⁹Department of Hematology, Örebro University Hospital,

Örebro, ¹⁰Department of Hematology, Linköping University Hospital, Linköping, ¹¹Department of Hematology, Borås Hospital, Borås, ¹²Uddevalla sjukhus, Uddevalla, ¹³Department of Hematology, Skåne University Hospital, Malmö

SP-087

A Phase 2 Trial of the Efficacy and Safety of Elotuzumab in Combination with Pomalidomide, Carfilzomib and Dexamethasone for High Risk Relapsed/ Refractory Multiple Myeloma Patients

Authors:

<u>James Berenson</u>¹, Daisy Martinez¹, Tanya Spektor¹, Armando Sanchez¹, Matthew Ghermezi², Regina Swift², Benjamin Eades³, Gary Schwartz³, Shahrooz Eshaghian⁴, Stephen Lim⁵, Robert Vescio⁶

Institutions:

²James R

Berenson MD Inc, West Hollywood, CA, ³James Berenson MD, Inc, West Hollywrood, CA, ⁴Compassionate Oncology Medical Group, Beverly Hills, CA, ⁵9Cedars-Sinai Samuel Oschin Cancer Center, CA, ⁶Cedars-Sinai Samuel Oschin Cancer Center, Los Angeles, CA

OAB-033

Clinical Responses and Pharmacokinetics of fully human BCMA Targeting CAR T Cell Therapy in Relapsed/Refractory Multiple Myeloma

Authors:

<u>Chunrui Li</u>¹, Xiaoxi Zhou¹, Jue Wang¹, Guang Hu², yongkun yang², Li Meng¹, Zhenya Hong¹, Liting Chen¹, Jianfeng Zhou¹

Institutions:

¹Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science, Wuhan, Hubei, ²

Highlights from IMW 2019

SP-092

KD-PACE salvage therapy for aggressive relapsed multiple myeloma

Authors:

<u>Shelton Harrell</u>¹, Muhammad Khan², Binod Dhakal², Hari Parameswaran², Robert Cornell¹

Institutions:

¹Vanderbilt University Medical Center, Nashville, TN, ²Medical College of Wisconsin, Milwaukee, WI

SP-191

Primary Plasma Cell Leukemia: a retrospective series from a tertiary care center in India

Authors:

<u>VIKAS GARG</u>¹, Lalit Kumar², raja pramanik³, Ankur Nandan Varshney⁴, SUDHIR KUMAR¹, CHETHAN R¹, GOPILA GUPTA⁵

Institutions:

¹AIIMS, DELHI, NEW DELHI, DELHI, ²All India Institute of Medical Sciences, New Delhi, New Delhi, Delhi, ³All India Institute of Medical Sciences,New Delhi, New Delhi, Delhi, ⁴All India Institute of Medical Sciences, New Delhi, Delhi, ⁵ALL INDIA INSTITUTE OF MEDICAL SCIENCE, DELHI, india

Highlights from IMW 2019