Highlights from IMW 2019

Trapianto autologo: rimarrà uno standard anche nei prossimi (5) anni?

Francesca Patriarca-Universita' di Udine

> *Comitato Scientifico* Mario BOCCADORO Michele CAVO Maria Teresa PETRUCCI

Coordinatore Scientifico Michele CAVO

Great debate

Highlights from IMW 2019

Boston Backbay from the ferry boat September 15, 2019

The reasons of "yes" to ASCT

- Upgrade of response
- Results of randomized studies
- Current guidelines
- Results of new trials

Highlights from IMW 2019

Phases of first-line treatment	objective
1.Induction	Disease control
2. ASCT	3-log tumour reduction
3. Consolidation	Response upgrade
4. Maintenance	Prevent progression

Highlights from IMW 2019

RESPONSE IMPROVEMENT AT DIFFERENT TREATMENT PHASES

Table 2. Response to different treatment phases in the per-protocol population, according to central assessment

	VTD (n = 160)	TD (n = 161)	P
After induction therapy			
CR	36 (22.5%, 16.0-29.0)	9 (5.6%, 2.0-9.1)	< .000
CR/nCR	53 (33.1%, 25.8-40.4)	22 (13.7%, 8.3-19.0)	< .000
VGPR or better	100 (62.5%, 55.0-70.0)	50 (31.1%, 23.9-38.2)	< .000
PR or better	154 (96.2%, 93.3-99.2)	140 (87.0%, 81.7-92.1)	.003
MR or SD	6 (3.7%, 0.8-6.7)	21 (13.0%, 7.8-18.2)	.003
After first ASCT			
CR	70 (43.8%, 36.1-51.4)	49 (30.4%, 23.3-37.5)	.014
CR/nCR	91 (56.9%, 49.2-64.5)	66 (41.0%, 33.4-48.6)	.004
VGPR or better	131 (81.9%, 75.9-87.8)	117 (72.7%, 65.8-79.6)	.049
PR or better	156 (97.5%, 95.1-100)	156 (96.9%, 94.2-99.6)	.742
MR or SD	4 (2.5%, 0.1-0.5)	5 (3.1%, 0.04-5.8)	.742
After second ASCT			
CR	78 (48.7%, 41.0-56.5)	65 (40.4%, 32.8-47.9)	.131
CR/nCR	101 (63.1%, 55.6-70.6)	88 (54.7%, 47.0-62.3)	.123
VGPR or better	138 (86.2%, 80.9-91.6)	131 (81.4%, 75.3-87.4)	.235
PR or better	157 (98.1%, 96.0-100)	157 (97.5%, 95.1-99.9)	.709
MR or SD	3 (1.9%, 0.0-4.0)	4 (2.5%, 0.1-4.9)	.709
After consolidation therapy			
CR	97 (60.6%, 53.0-68.2)	75 (46.6%, 38.9-54.3)	.012
CR/nCR	117 (73.1%, 66.2-80.0)	98 (60.9%, 53.3-68.4)	.020
VGPR or better	147 (91.9%, 87.6-96.1)	142 (88.2%, 83.2-93.2)	.272
PR or better	156 (97.5%, 95.1-99.9)	160 (99.4%, 98.2-100)	.174
MR or SD	1 (0.6%, 0-1.8)	1 (0.6%, 0-1.8)	.996
PD	3 (1.9%, 0-4.0)		.081

Data and an inclusion of a contract

Cavo M et al, Blood 2012

Results of prospective randomized studies

autore	terapia	Median PFS	4 y OS
Palumbo et al, NEJM 2014	Induzione: RD Consolidamento: MRP vs Mel 200	MRP: 22 mesi Mel 200:42 mesi	MPR : 65% Mel 200: 81%
Gay et al, Lancet Oncology 2015	Induzione RD Consolidamento: CRD vs Mel 200	CRD: 28 mesi Mel 200:43 mesi	CRD : 73% Mel 200: 86%
Attal et al, NEJM 2017	Induzione RVD Consolidamento: RVD vs Mel 200	RVD: 34 mesi Mel 200:50 mesi	MPR : 81% Mel 200: 82%
Cavo et al, SIE 2019	Induzione VCD Consolidamento: VMP vs Mel 200	VMP:42 mesi Mel 200:57 mesi	VMP: 72% at 5 y Mel 200: 75% at 5 y

European Myeloma Network guidelines

Gay F, Haematologica 2018

Highlights from IMW 2017

11-12 aprile 2017 Bologna Royal Hotel Carlton

. .

NCCN Guidelines Version 2.2020 Multiple Myeloma

MULTIPLE MYELOMA (SYMPTOMATIC)

Category 1 evidence supports proceeding directly after induction therapy to high-dose therapy and stem cell transplant.

Coordinatore Scientifico Michele CAVO *Comitato Scientifico* Mario BOCCADORO Michele CAVO Maria Teresa PETRUCCI

UK NCRI Mieloma XI

Sequential therapy

1056 patients underwent induction randomization between December 2013 and April 2016 Median follow-up 34.5 months

Pawlyn C, et al. ASH 2015. Abstract 189; Jackson GH et al. ASH 2018. Abstract 302

Impact of response to induction

VCD vs no therapy in pts with MR/PR after induction:

Response-adapted can improve response rates and prolong PFS

Jackson GH, et al, The Lancet Haematology 2019

	CTD	CRD	KCRD
Response at end of first induction therapy	(n=265)	(n=265)	(n=526)
CR	18 (6.8%)	19 (7.1%)	93 (17.7%)
nCR	52 (19.6%)	90 (34.0)	203 (38.6)
VGPR	70 (26.4%)	63 (23.8%)	137 (26.0%)
PR	88 (33.2%)	66 (24.9%)	43 (8.2%)
>=VGPR	140 (52.8%)	172 (64.9%)	433 (82.3%)
Response at day 100 after ASCT	(n=159)	(n=179)	(n=394)
Response at day 100 after ASCT	(<i>n</i> =159) 40 (25.2%)	(<i>n</i> =179) 41 (22.9%)	(n=394) 122 (31.0%)
Response at day 100 after ASCT CR nCR	(<i>n</i> =159) 40 (25.2%) 47 (29.6%)	(n=179) 41 (22.9%) 60 (33.5%)	(n=394) 122 (31.0%) 152 (38.6%)
Response at day 100 after ASCT CR nCR VGPR	(<i>n</i> =159) 40 (25.2%) 47 (29.6%) 34 (21.4%)	(<i>n</i> =179) 41 (22.9%) 60 (33.5%) 46 (25.7%)	(n=394) 122 (31.0%) 152 (38.6%) 88 (22.3%)
Response at day 100 after ASCT CR nCR VGPR PR	(<i>n</i> =159) 40 (25.2%) 47 (29.6%) 34 (21.4%) 28 (17.9%)	(n=179) 41 (22.9%) 60 (33.5%) 46 (25.7%) 26 (14.5%)	(n=394) 122 (31.0%) 152 (38.6%) 88 (22.3%) 23 (5.8%)

- KCRD was associated with a significantly longer PFS than triplet therapy (HR 0.63, 95%CI 0.51, 0.76, median PFS KCRD NR vs CTD/CRD 36.2 months, p<0.0001).
- Improved PFS was seen in all cytogenetic risk groups.
- PFS 0.99
 Prontline therapy for transplant-eligible MM patients: fast start for a long game
 Patriarca F. The Lancet Haematology 2019
 - sequential triplet approach (HR 0.64, 95% CI 0.52, 0.78, p<0.0001).

Jackson et al, ASH meeting 2018

CASSIOPEIA Study Design

• Phase 3 study of D-VTd versus VTd in transplant-eligible NDMM (N = 1,085)

Primary end point: sCR after consolidation

Moreau et al, Oral Presentation, ASCO 2019; Lancet 2019

Efficacy: Post-consolidation Depth of Response

- Primary endpoint
 - Post-consolidation sCR
 - 29% D-VTd vs 20% **VTd**
 - Odds ratio, 1.60; _ 95% CI, 1.21-2.12; P = 0.0010

The addition of daratumumab to VTd improved depth of response

Moreau et al, Oral Presentation, ASCO 2019

Efficacy: MRD (Flow Cytometry; 10⁻⁵)^{a,b}

Moreau et al, Oral Presentation, ASCO 2019

The reasons of "yes" to ASCT

- ➢ Upgrade of response: 30-50% CR
- Results of randomized studies
- ➤ 2020 guidelines

Highlights from IMW 2019

The reasons of "no" to ASCT

The true need of MM pts is OS

First line treatments without ASCT have already achieved high rate of MRD negativity

- Sustained MRD negativity have translated in long term PFS and OS
- > Melphalan is myelotoxic with substantial risk of MDS/AML

Highlights from IMW 2019

No advantage in OS in ASCT arm in recent randomized studies

No. at Risk

Transplantation

350

350

339

330

325

313

RVD alone

Attal et al, NEJM 2017

Highlights from IMW 2019

19-20 novembre 2019 Bologna

293 281 95

89

KRD induces high rates of MRD negativity

Patients With

45 NDMM 12 SMM

KRD x 8 cycles R x 24 months

Best Response	MRD-Negative Rate by Method (Proportion)	Discordant MRD Results No. (%)
CD	MFC (29/30)	
CR N	NGS (22/30)	7 (23)
- 60	MFC (2/2)	
nCR	NGS (1/2)	1 (50)
	MFC (3/8)	
VGPR	NGS (0/8)	3 (38)
	MFC (0/0)	
PR/SD	NGS (0/0)	0
Best Response	Patients With Discordant MRD Results, Proportion (%)	Two-tailed McNemar Test P Value
At least nCR	8/32 (25)	.008
At least VGPR	11/40 (28)	<.001
At least PR/SD	11/44 (25)	<.001

40/45 at least VGPR

85% MRD neg at MFC62% MRD neg by NGS41% MRD neg by TC-PET

Korde et al, JAMA Oncology 2015

Highlights from IMW 2019

MRD negativity is associated with long term PFS

Patients who experienced MRD-negative CR by the end of carfilzomib, lenalidomide, and dexamethasone induction (8 cycles) had a significantly longer time to disease progression, with a 78% reduction in risk of progression (hazard ratio, 0.22; 95% Cl, 0.07-0.69; P = .005). Hatch marks on the curves indicate censored data.

Kazandjian D et al, JAMA Oncology 2018

Highlights from IMW 2019

FORTE: Study Design

- Multicenter, randomized, open-label phase II study
- Endpoints: induction phase safety, PBSC mobilization, preliminary efficacy

Gay FM, et al. ASH 2018. Abstract 8003. ClinicalTrials.gov. NCT02203643

Gay F et al, ASH meeting 2018

t-MN in Total Therapy (1080 pts)

Risk factors for MDS-type cytogenetic abnormalities included immunomodulatory drugs, older age, male gender, and low CD34 dose (<5 million/kg) given with first transplant.

Usmani S, Blood 2013

Highlights from IMW 2019

RISK OF MDS/AML AFTER AUTOLOGOUS TRANSPLANT

3,7% MDS/AML out of 9029 lymphoma/MM recipients of autotranplants in CIBMTR

Radivoyeevitch T, Leukemia Research 2018

Highlights from IMW 2019

Risks of developing t-MN after autotransplants for plasma cell myeloma (n=4653)

Parameter	n	Hazard Ratio (95% CI)	P-value
Age at transplant, years			
18-54	1661	1.00	
55+	2902	2.47(1.55 - 3.93)	<.01
Prior Lines of chemotherapy			0.08
1	2472	1.00	
2	1252	1.21(0.78 - 1.88)	0.39
3+	655	1.77(1.06 - 2.96)	0.03
Missing	184	0.28(0.04 - 2.06)	0.21
Sex			
Female	1859	1.00	
Male	2704	2.27(1.45-3.53)	<.01

Highlights from IMW 2019

Years Since First Cancer Diagnosis

Higher RR for developing t-MN after autotransplant (CIBMTR data-purple line) in comparison with similar subjects, most of whom did not receive autotransplant (SEER data-blu line)

Highlights from IMW 2019

The reasons of "no" to ASCT

- No OS advantage in randomized studies
- First line treatments without ASCT have already achieved high rate of MRD negativity and long term PFS and OS
- Low risk patients with sustained MRD negativity could avoid ASCT
- Melphalan is myelotoxic with substantial risk of MDS/AML

Highlights from IMW 2019

Highlights from IMW 2019

The true needs for MM patients. OS improvement in registry based studies

Turesson I JCO 2010

Highlights from IMW 2019