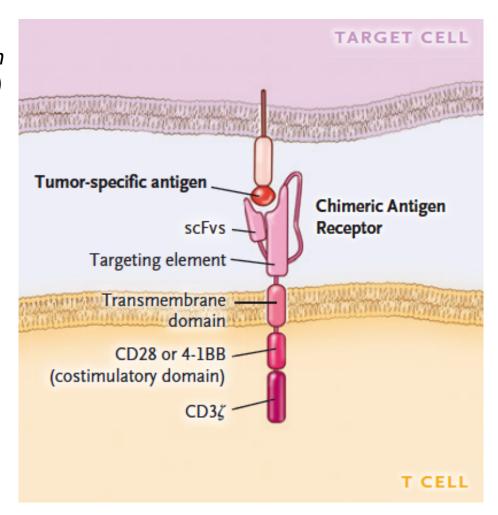


CAR-T Cells: Constructs & Target Antigens

Carmelo Carlo-Stella, MD

Department of Biomedical Sciences, Humanitas University, Milano, Italy
Humanitas Clinical and Research Center, Milano, Italy


Highlights from IMG 2019, Bologna, November 19-20, 2019

Disclosures

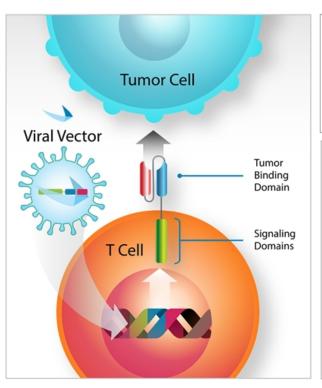
- Consulting or Advisory Role
 - ADC Therapeutics, Sanofi, Genenta Science, Novartis, Servier,
 Boehringer Ingelheim
- Honoraria
 - BMS, MSD, Servier, Janssen Oncology, Roche, Takeda

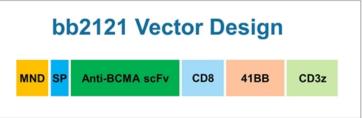
Chimeric Antigen Receptor

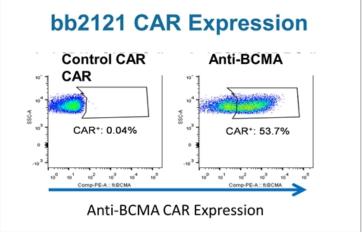
- The antigen binding site derived from single-chain variable fragments (scFv) of an Ab
- The hinge domain followed by the transmembrane domain
- The intracellular
 signaling domain
 [costimulatory domains,
 such as CD28 and 4-1BB,
 T-cell activation domain]
 which drive signal
 activation and expansion
 of CAR T cells

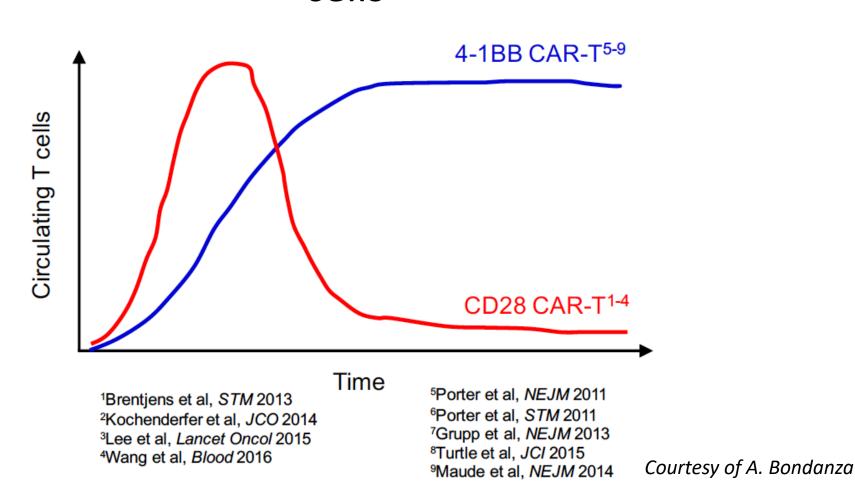
June CH, Sadelain M. N Engl J Med 2018;379:64-73

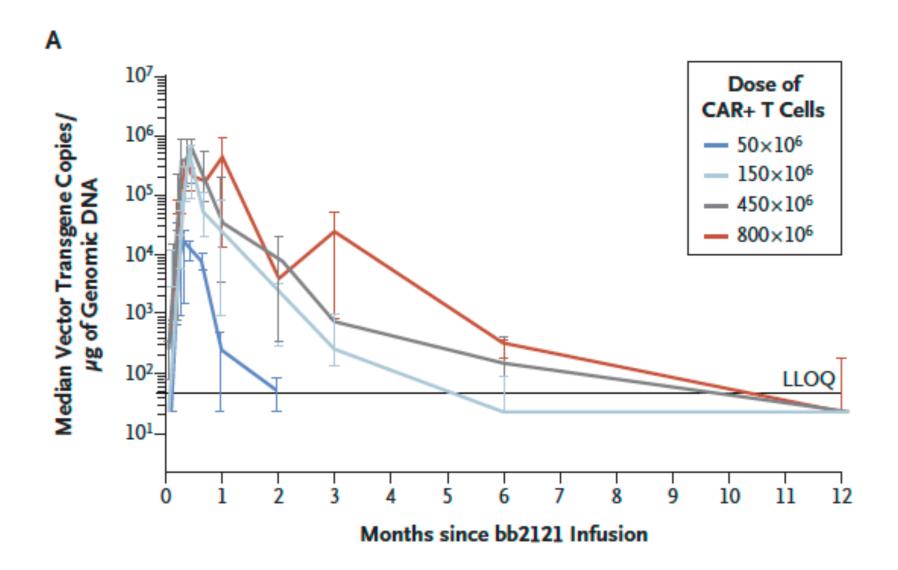
Original Article

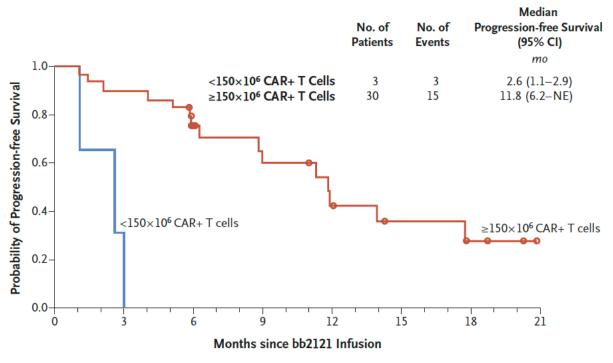

Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma


Noopur Raje, M.D., Jesus Berdeja, M.D., Yi Lin, M.D., Ph.D., David Siegel, M.D., Ph.D., Sundar Jagannath, M.D., Deepu Madduri, M.D., Michaela Liedtke, M.D., Jacalyn Rosenblatt, M.D., Marcela V. Maus, M.D., Ph.D., Ashley Turka, Lyh-Ping Lam, Pharm.D., Richard A. Morgan, Ph.D., Kevin Friedman, Ph.D., Monica Massaro, M.P.H., Julie Wang, Pharm.D., Ph.D., Greg Russotti, Ph.D., Zhihong Yang, Ph.D., Timothy Campbell, M.D., Ph.D., Kristen Hege, M.D., Fabio Petrocca, M.D., M. Travis Quigley, M.S., Nikhil Munshi, M.D., and James N. Kochenderfer, M.D.


N Engl J Med Volume 380(18):1726-1737 May 2, 2019

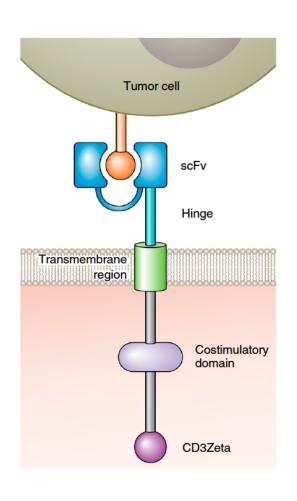

bb2121 Vector




CD28 and 4-1BB Differently Affects the PK of CAR T cells

Progression-Free Survival

Loss or downregulation of BMCA expression following CART cell therapy


No. at Risk $<150\times10^6$ CAR+T cells 3 3 2 0 $\ge150\times10^6$ CAR+T cells 30 30 28 27 26 26 17 14 14 12 12 11 8 7 6 5 5 5 3 2 2

Trials of CAR-T Cells Targeting BMCA

CAR-T cell product (ref.)	n =	ORR (n =)	median PFS (95% CI)
bb2121 (22)	33	85% (28)	11.8 months (6.2–n.e.)\$
CART-BCMA Upenn (23)	25	48% (12)	2.0 months (ND)
NCI CAR BCMA-T (24)#	10	20% (2)	1.5 months (ND)
NCI CAR BCMA-T (25)*	16	81% (13)	7.25 months (ND)
LCAR-B38M (26)	17	88% (15)	12.2 months (ND)
LCAR-B38M (27)	57	88% (50)	15.0 months (11.0-n.e.)

These data show ORR of 60% to 100%, including MRD-negative CR, after lymphodepleting conditioning. Response durability has been more variable, likely related to differences in CAR T-cell products, lymphodepleting regimens, and/or underlying biology/prognostic factors.

Modifications in CAR/Vector Design

- Overcoming resistance to CART cells
 - Optimize co-stimulatory domains
 - Novel target antigens
 - Bispecific surface targeting

Strategies for Generating CART Cells in MM

Variable	Examples
Targeted antigens ^{55,62,66,72}	BCMA, CD19, CD38, SLAMF-7, GPRC5D
Transfection system ^{41,44,52}	Lentivirus, retrovirus, nonviral systems
Manufacturing ^{50,76}	CD4/CD8 ratio, use of selected T lymphocyte subsets
Costimulatory signals	4-1BB, CD28z, OX40
Prevention of antigen loss ⁷³	Bispecific CARs, gamma secretase inhibitor
Armored CAR ⁹⁰	Cytokine release, CD40L, BiTEs
Other ^{82,89}	Allogeneic CAR T cells

Target Antigen Selection

- The optimal antigen should be expressed broadly in tumors of a given type, but should not be present in essential healthy tissues, as to avoid "on-target/off-tumor" effects and associated toxicity
- My SC antigen + My maturation antigen
- Rituximab-based experience is however conflicting with this assumptions

Published Clinical Trials

- CD138
- CD19
- CD19 & BMCA
- NKGD2
- Ig Light Chains

n = (ref.)	Antigen	Signaling domains	Cell source/type	Transfer method	Conditioning	T-cell dosage	Therapy-related side effects	Clinical effects
n = 1 (31)	CD138	ND	Autologous T cells	ND	CP/Flu	1.5 × 10 ⁸	• CRS gr. 2 (1)	• PR (1)
n = 5 (32)	CD138	4-1BB/CD3ţ	Autologous T cells	Lentiviral	PCD, CP or VAD	0.756 × 10 ⁷ /kg	 Infusion-related fever (4) Nausea and vomiting (3) † Liver function tests (1) Possible TLS (1) 	SD > 3 m (4) ↓ circulating PCL cells (1)
n = 10 (33)	CD19	4-1BB/CD3ζ	Autologous T cells	Lentiviral	HDM + ASCT	1–5 × 10 ⁷	 Hypogammaglobulinemia (1) Autologous GvHD (1) Mucositis (1) 	 CR (1) VGPR (6/10) at d100 post-ASCT PR (2/10) at d100
n = 5/8 (34)	CD19+ BCMA	OX40/CD28	Autologous or allogeneic T cells	Lentiviral	CP/Flu	1 × 10 ⁷ /kg	 CRS gr. 1–2 (7), gr.≥3 (1) Prolonged cytopenias (5/5) Coagulopathy (5) ↑ Liver function tests (4) Pulmonary edema (3) Pleural effusion and ascites (1) 	post-ASCT sCR (1/5) VGPR (1/5) PR (2/5) SD (1/5)
n = 10 (35)	CD19 + BCMA	OX40/CD28	Autologous T cells	Lentiviral	Bu-CP + ASCT	1 × 10 ⁷ /kg	 CRS gr. 1–2 (10) Coagulopathy (7) † Troponin levels (4) Atrial flutter (1) 	• CR (7/10) • VGPR (3/10)
n = 5 (36)	NKG2D ligands	CD3ţ	Autologous T cells	Retroviral	None	1–3 ×10 ^{6–7}	• None	• None
n = 7 (37)	кLC	CD28/CD3ţ	Autologous T cells	Retroviral	CP (4) or none (3)	$0.92-1.9 \times 10^{8}$ /m ²	 Lymphopenia gr. 3 (1) 	• SD 6 wk-24m (4)

Ongoing Clinical Trials

- CD38 (@Daratumumab but expression on HSC and NK cells)
- SLAMF7/CS1 (marker for malignant plasma cells but also T cells)
- CD44v6
- CD56
- GPRC5D (MM Ag; can rescue ag-loss relapse under BMCA-CART)
- TACI
- Lewis Y
- NY-ESO-1

BCMA-iNKT CAR Cell Therapy

- Toxicity reduction by expressing CAR proteins on invariant natural killer T cells (iNKTs) and the efficacy enhanced with long-acting IL-7 coexpression
- Median survival of mice was higher in the group receiving BCMA-iNKT-CAR therapy compared to CD19-iNKT-CAR (163 days versus 45 days)
- iNKTs can be an alternative source of off-the-shelf CAR cell therapies

Conclusions

- BCMA CAR-T cells show promising activity in MM patients with highly refractory disease, including patients across trials with ongoing durable remissions lasting >1-yr
- However, sample size is small and heterogeneity among the trials makes it difficult to draw firm conclusions about relative efficacy among CAR constructs

Conclusions

- Open Questions
 - BMCA expression (assays, level of expression, modulation)
 - Collection of less exhausted T cells
 - Improving CAR constructs
 - Novel target antigens
 - Novel costimulation
 - Dual-antigen targeting