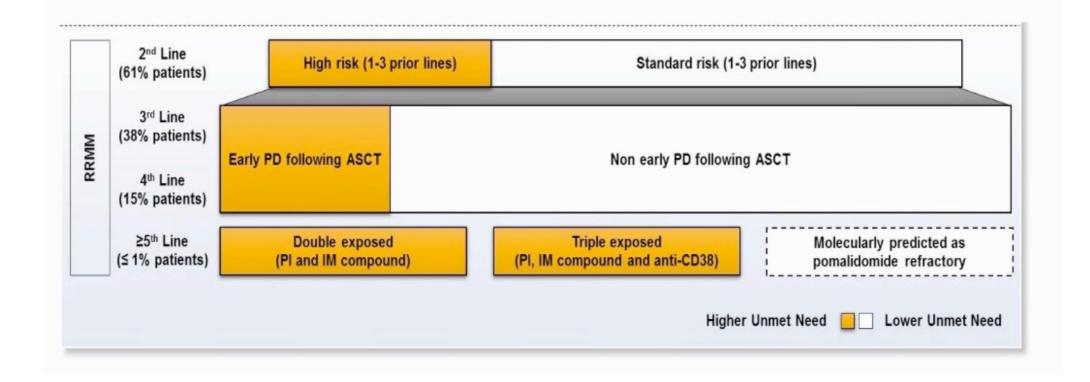
Highlights from IMW 2019

Mieloma e neoplasie plasmacellulari ad alto rischio

Strategie terapeutiche adattate al rischio

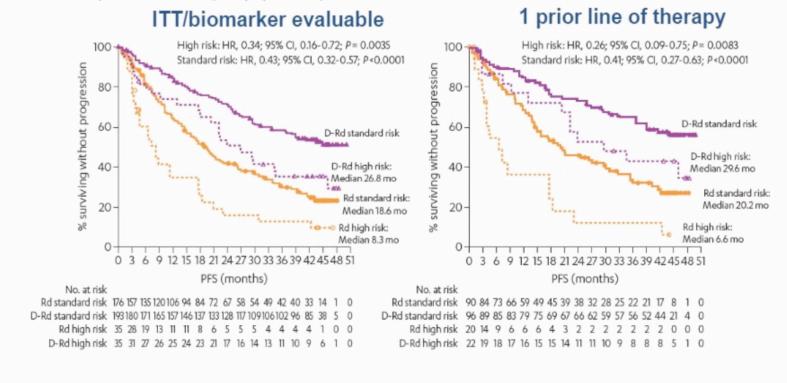
Dr. Vittorio Montefusco



DISCLOSURES

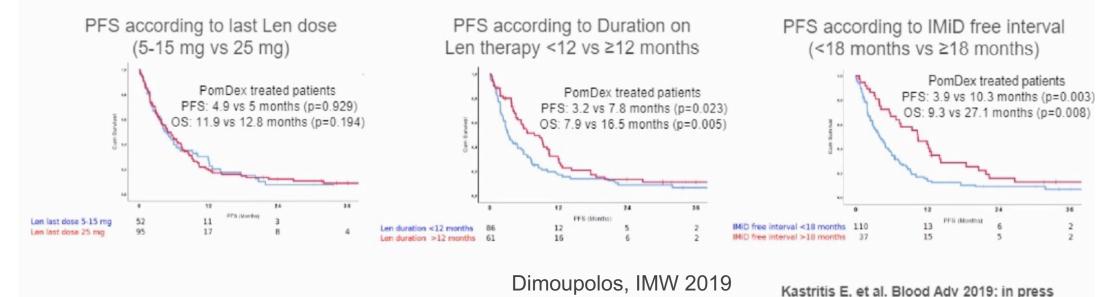
Honoraria and travel grants from:

- Celgene
- Janssen
- Amgen
- Bristol-Myers Squibb
- Takeda


Patient Populations with High Unmet Medical Need in the RR setting

High Risk Disease Remains an unmet Need in RRMM

POLLUX: Results based on Cytogenetic Risk


Median follow-up: 44.3 months (ITT population)

Kaufman JL, et al. ASCO 2019: Poster presentation (8038); EHA 2019: Poster presentation (PFS91)

Lenalidomide Refractoriness

- How is lenalidomide resistance defined? What are the mechanisms?
- What is the impact of lenalidomide dose?
- Is the duration of prior Len exposure significant? Is it the same if exposed for long or short time to Len? Is there an IMiD-sensitive MM subtype?
- Is Lenalidomide re-treatment feasible in at least a subset of patents?
- Are newer IMiDs (CellMods) able to overcome Len-resistance more efficiently?

Lenalidomide Refractoriness: An Unmet Need

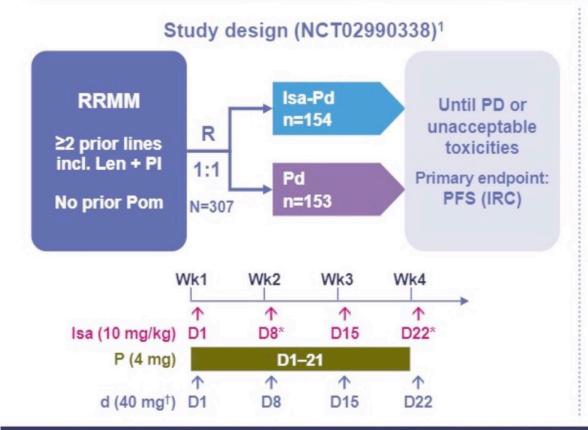
Regimen	Median PFS (months)
Kd (Endeavor)	8.6
DaraVd (Castor)	7.8
PomVd (OPTIMISMM)	9.5
DaraKd (MMY1001-phase2)	25.7
DaraPomDex (MMY1001-phase 2)	10.1

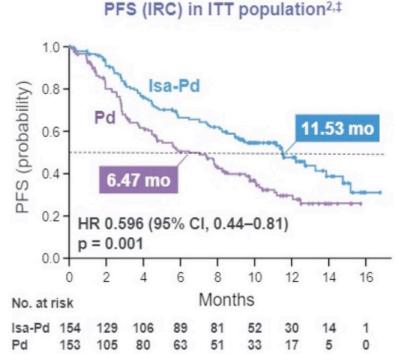
Progression on Lenalidomide maintenance:

- Is resistance to maintenance lenalidomide same as resistance to lenalidomide when given in the relapsed setting or as a full therapy (as Rd or VRd?)
- What is the impact of induction therapy?
- What is the impact of lenalidomide dose?
- Can we increase to full dose and add dexa and a 3rd agent?

Dimoupolos, IMW 2019

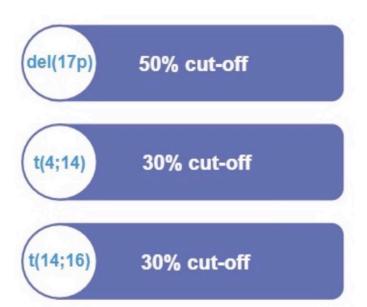
Efficacy of isatuximab/pomalidomide/dexamethasone in relapsed/refractory multiple myeloma: ICARIA-MM high-risk cytogenetics subgroup analysis




Simon J. Harrison¹, Paul G. Richardson², Adrian Alegre³, David Simpson⁴, Ming Chung Wang⁵, Andrew Spencer⁶, Sossana Delimpasi⁷, Cyrille Hulin⁸, Kazutaka Sunami⁹, Thierry Facon¹⁰, Philip Vlummens¹¹, Kwee Yong¹², Frank Campana¹³, Marlène Inchauspé¹⁴, Sandrine Macé¹⁴, Marie-Laure Risse¹⁴, Helgi van de Velde¹³, Michel Attal¹⁵

¹Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia; ²Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; ³University Hospital La Princesa, Madrid, Spain; ⁴North Shore Hospital, Aukland, New Zealand; ⁵Chang Gung Medical Foundation, Taipei, Taiwan; ⁶The Alfred Hospital/MONASH University/Australian Centre for Blood Diseases, Melbourne, Victoria, Australia; ⁷Evangelismos Hospital, Athens, Greece; ⁸Service d'Hématologie Hôpital Haut-Lévêque CHU, Bordeaux, France; ⁹Department of Hematology, National Hospital Organization Okayama Medical Center, Okayama, Japan; ¹⁰Department of Haematology, Lille University Hospital, Lille, France; ¹¹Department of Haematology, Ghent University, Ghent, Belgium; ¹²Department of Haematology, University College Hospital, London, UK; ¹³Sanofi, Cambridge, MA, USA; ¹⁴Sanofi R&D, Vitry-sur-Seine, France; ¹⁵University Cancer Center of Toulouse Institut National de la Santé, Toulouse, France

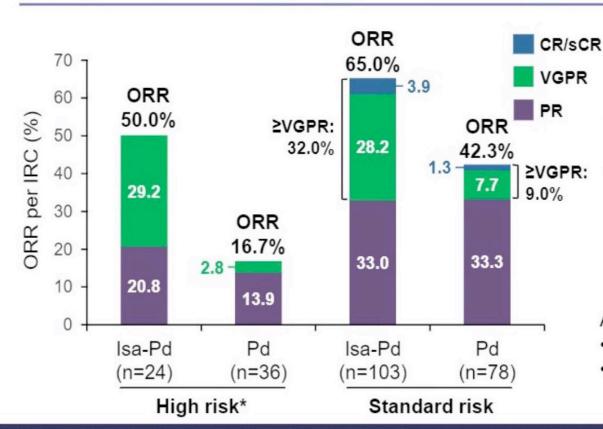
Overall study design and primary results iCaria mm



Global phase 3 ICARIA-MM study: Isa-Pd significantly improved PFS vs Pd alone

High-risk cytogenetic subgroup analysis iCaria in

High-risk cytogenetics was prespecified as ≥1 of:



Cytogenetic risk in the ITT population at baseline, n (%)	lsa-Pd (n=154)	Pd (n=153)
Standard	103 (66.9)	78 (51.0)
High	24 (15.6)	36 (23.5)
del(17p)	14 (9.1)	23 (15.0)
t(4;14)	12 (7.8)	14 (9.2)
t(14;16)	1 (0.6)	4 (2.6)
del(17p) and t(4;14)	3 (1.9)	4 (2.6)
del(17p) and t(14;16)	0	1 (0.7)
Unknown / missing	27 (17.5)	39 (25.5)

Cytogenetic testing was performed by central laboratory

Response in cytogenetic subgroups

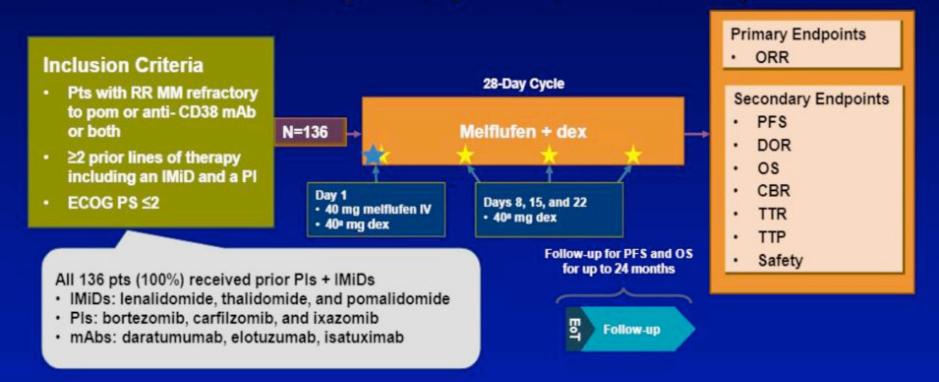
Isa-Pd vs Pd odds ratio (95% CI)	High risk	Standard risk
ORR	5.00 (1.33–19.79)	2.54 (1.33–4.86)
≥VGPR	14.41 (1.57–667.48)	4.78 (1.90–13.57)

Among patients with del(17p) and t(4;14)

- Isa-Pd (n=3), 1 VGPR
- Pd (n=4), 1 PR

ORR benefit with Isa-Pd vs Pd was maintained among patients with high-risk cytogenetics

PFS in cytogenetic subgroups


Cubaroun	Number of	patients	Median F	PFS, mo		Hazard ratio
Subgroup	Isa-Pd	Pd	Pd Isa-Pd Pd		(95% CI)	
All patients	154	153	11.5	6.5	+++	0.60 (0.44-0.81)
Cytogenetic risk						
High*	24	36	7.5	3.7	-	0.66 (0.33-1.28)
Standard	103	78	11.6	7.4	⊢● ──!	0.62 (0.42-0.93)
del(17p)						
Yes	14	23	9.1	7.4	-	0.76 (0.30-1.92)
No	118	95	11.5	5.6	⊢● →	0.57 (0.40-0.82)
t(4;14)						
Yes	12	14	7.5	2.8	-	0.49 (0.19-1.31)
No	119	101	11.6	7.0	⊢● ─	0.58 (0.40-0.83)
					0.0 0.5 1.0 1.5 2	.0
					Favors Isa-Pd Favors P	'd

PFS benefit observed in both high- and standard-risk patients with Isa-Pd vs Pd

HORIZON: Study Design

Phase 2, Single-Arm, Open-Label, Multicenter Study

ClinicalTrials.gov Identified: NCT02963493.

CBR, clinical benefit rate; dara, daratumumab; dex, dexamethasone; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; EoT, end of treatment; IMiD, immunomodulatory agent; IV, intravenous; mAbs, monoclonal antibodies; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PI, proteasome inhibitor; pom, pomalidomide; pts, patients; RR MM, relapsed/refractory multiple myeloma; TTP, time to progression; TTR, time to response.

*Pts aged >75 years received dex 20 mg.

Richardson, IMW 2019 5

Baseline Characteristics and Prior Therapy

Patient Characteristics (n=130)	Non-EMD (n=86)	EMD (n=44)
Age, median (range), years	64 (35-86)	64 (43-82)
Time since diagnosis, median, years	6.6 (1.6-24.2)	5.5 (0.6-12.7)
No. of prior lines of therapy, median (range)	5 (2-10)	5 (3-12)
	%	%
Gender (male / female)	53 / 47	59 / 41
ISS stage I / II / III / unknown	42 / 29 / 23 / 6	43/23/27/7
ECOG PS 0/1/2/unknown	27 / 58 / 13 / 2	18/64/16/2
High-risk cytogenetics ^a ≥2 high-risk abnormalities Del(17p)	57 25 19	52 10 13
Double-class (IMiD+PI) exposed / refractory	100 / 90	100 / 93
Triple-class (IMiD+PI+anti-CD38) exposed / refractory	71 / 63	93 / 91 ^b
Anti-CD38 mAb exposed / refractory	72 72	93 / 93
Alkylator exposed / refractory	91 / 58	82 / 59
≥1 Prior ASCT	69	73
≥2 Prior ASCTs	13	14
Relapsed/progressed within 1 year of ASCT	17	23
Refractory in last line of therapy	95	100

group and 13 pts in the EMD group.
Includes 2 Pl-intolerant pts.

EMD Characteristics

Bone-related or Soft Tissue EMD, n (%)	EMD Pts	CNS Involvement
Pts with EMD ^a	44 (100)	5 (11)
Soft tissue ^b	26 (59)	2 (5)
Bone-related ^c	18 (41)	3 (7)

CNS, central nervous system; EMD, extramedullary disease; Pt, patient.

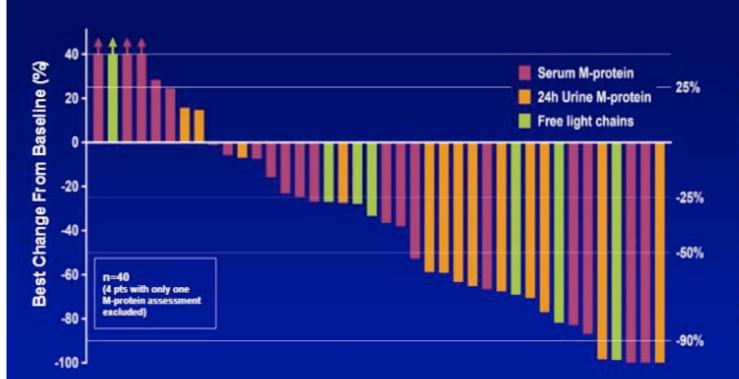
- Method of baseline assessment for known or suspected EMD was by investigator choice including PET/CT, MRI and physical examination
- 59% of pts had soft-tissue EMD (with or without additional bone-related EMD) and 41% had bonerelated EMD alone
- 5 pts (11%) had CNS involvement, of which 3 pts had bone-related EMD with extension into CNS
- Majority of pts (29 of 44) had multiple sites of EMD

Majority of pts had multiple lesions at baseline.

bincludes pts with both bone-related and soft tissue EMD.

Three pts had bone-related EMD with extension into CNS

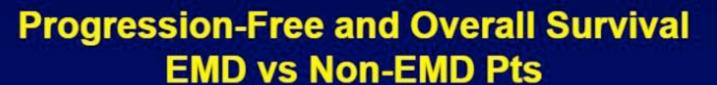
Overall Response (n=128)


- Similar ORR in non-EMD and EMD pts, with an ORR of 27% and 23% respectively
 - Investigator-assessed response¹
 - IRC review ongoing
- Median DOR for non-EMD pts 4.4 mos (95% Cl, 3.5-11.2)
- Median DOR for EMD pts 3.4 mos (95% CI, 1.8-15.4)

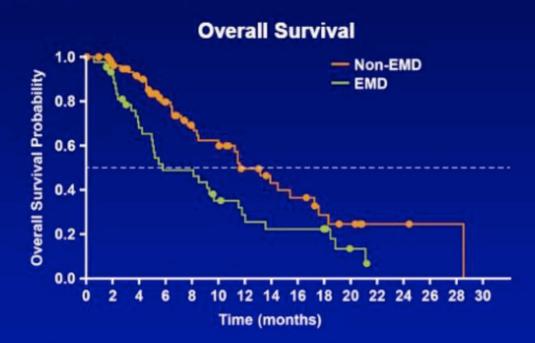
Two non-EMD pts with pending response information available at data cut off 30th July 2019.

1. Rajkumar SV, et al. *Blood*. 2011;117:4691-4695. Richardson, IMW 2019

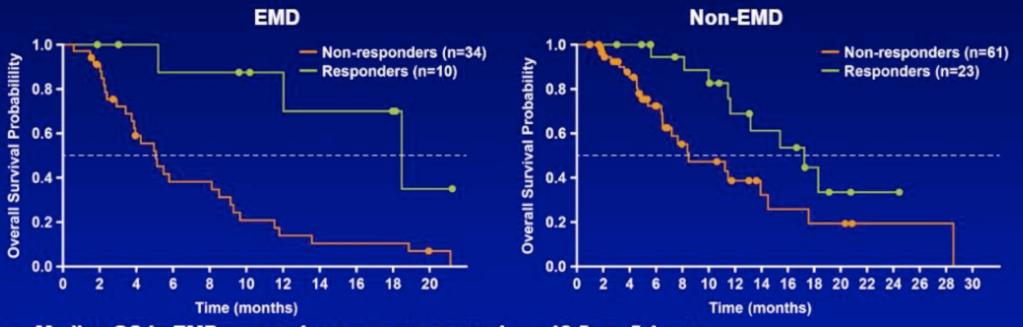
Response in EMD Pts (n=44)



n=44	ORR
Soft tissue n=26	19%
Bone-related n=18	28%
CNS n=5	0%


- PET/CT (including TIMC), MRI, physical exam for EMD assessment
- "Flaring" observed in EMD PET/CT imaging (reported by 2 lead sites)

#OAB-86


- Median PFS 2.9 mos (95% CI, 2.0-4.0) for pts with EMD vs. 4.6 mos (95% CI, 4.0-5.6) without EMD
- Median OS 5.8 mos (95% CI, 5.0-11.8) for pts with EMD vs. 11.6 mos (95% CI, 10.0-17.6) without EMD

Richardson, IMW 2019

#OAB-86

OS in EMD and Non-EMD Pts Stratified by Response

- Median OS in EMD responders vs. non-responders: 18.5 vs. 5.1 mos
- Median OS in Non-EMD responders vs. non-responders: 17.2 vs. 8.5 mos
 - Similar trend for PFS in responders vs. non-responders: 4.8 vs. 2.2 mos in EMD pts; 6.4 vs. 3.8 mos in non-EMD pts

#OAB-86

54% of ITT pts received subsequent therapy with no significant difference in outcome between EMD vs. non-EMD pts¹

Dichardson Do

Data cutoff 30 July 2019.

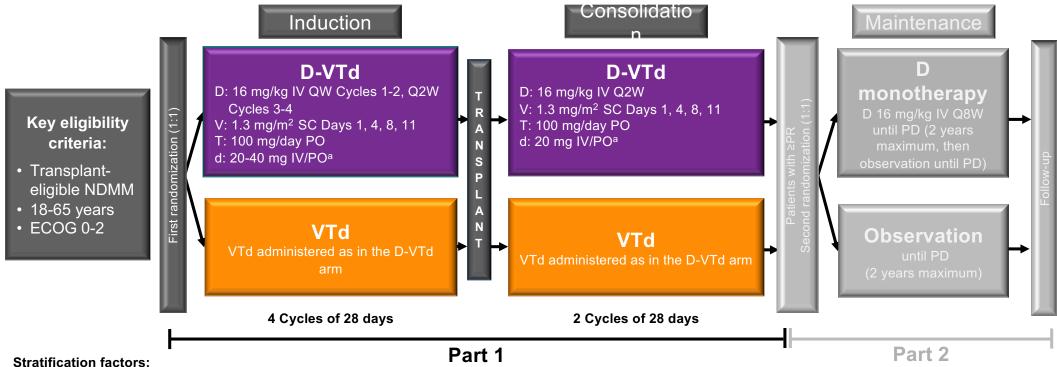
1. Gandhi UH, et al. *Blood*. 2018;132(suppl 1):Abstract 3233. Richardson, IMW 2019 ₁₃

Daratumumab Plus Bortezomib, Thalidomide, and Dexamethasone (D-VTd) in Transplant-eligible Newly Diagnosed Multiple Myeloma (NDMM): Subgroup Analysis of High-risk Patients in CASSIOPEIA*

Pieter Sonneveld,¹ Michel Attal,² Aurore Perrot,³ Cyrille Hulin,⁴ Denis Caillot,⁵ Thierry Facon,⁶ Xavier Leleu,⁷ Karim Belhadj,⁸ Lionel Karlin,⁹ Lotfi Benboubker,¹⁰ Mark-David Levin,¹¹ Monique C. Minnema,¹² Matthijs Westerman,¹³ Michel Delforge,¹⁴ Sonja Zweegman,¹⁵ Lixia Pei,¹⁶ Carla de Boer,¹⁷ Veronique Vanquickelberghe,¹⁸ Tobias Kampfenkel,¹⁷ Philippe Moreau¹⁹; on behalf of **IFM** and **HOVON**

¹Erasmus MC Cancer Institute, Rotterdam, The Netherlands; ²Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; ³Hematology Department, University Hospital, Vandoeuvre Les Nancy, France; ⁴Department of Hematology, Hospital Haut Leveque, University Hospital Bordeaux, France; ⁵CHU Dijon, Hôpital Du Bocage, Dijon, France; ⁶University of Lille, CHU Lille, Service des Maladies du Sang, Lille, France; ⁷CHU Poitiers – Hôpital la Milétrie, Poitiers, France; ⁸Hematology, Hopital Henri Mondor, Creteil, France; ⁹Centre Hospitalier Lyon-Sud Hematologie (HCL), Pierre – Benite Cedex, France; ¹⁰CHU de Tours, Hôpital de Bretonneau, Tours, Cedex 9, France; ¹¹Albert Schweitzer Hospital, Dordrecht, The Netherlands; ¹²Department of Hematology, UMC Utrecht Cancer Center, Utrecht, The Netherlands; ¹³Northwest Clinics, Alkmaar, The Netherlands; ¹⁴Universitaire Ziekenhuizen Leuven, Leuven, Belgium; ¹⁵Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands; ¹⁶Janssen Research & Development, LLC, Raritan, NJ, USA; ¹⁷Janssen Research & Development, LLC, Leiden, The Netherlands; ¹⁸Janssen Research & Development, Beerse, Belgium; ¹⁹Hematology, University Hospital Hôtel-Dieu, Nantes, France.

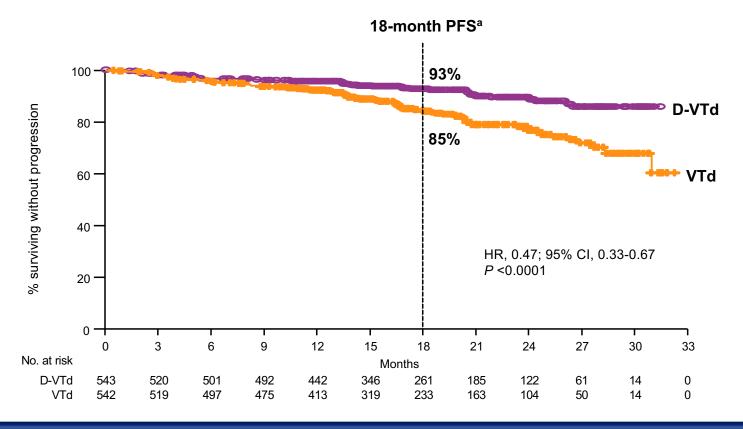
Sonneveld, IMW 2019


*ClinicalTrials.gov Identifier: NCT02541383.

CASSIOPEIA Study Design

• Phase 3 study of D-VTd versus VTd in transplant-eligible NDMM (N = 1,085), 111 sites from 9/2015 to 8/2017

- Site affiliation (IFM or HOVON)
- ISS disease stage (I, II, or III)
- Cytogenetic risk status (high or standard/unknown risk)


Sonneveld, IMW 2019

D-VTd, daratumumab/bortezomib/thalidomide/dexamethasone; VTd, bortezomib/thalidomide/dexamethasone; NDMM, newly diagnosed multiple myeloma; ECOG, Eastern Cooperative Oncology Group; IV, intravenous; QW, weekly; Q2W, every 2 weeks; SC, subcutaneous; PO, oral; PR, partial response; Q8W, every 8 weeks; PD, progressive disease; IFM, The Intergroupe Francophone du Myélome; HOVON, Dutch-Belgian Cooperative Trial Group for Hematology Oncology; ISS, International staging system.

Dexamethasone 40 mg on Days 1, 2, 8, 9, 15, 16, 22, 23 of Cycles 1-2 and Days 1 & 2 of Cycles 3-4; 20 mg on Days 8, 9, 15, 16 of Cycles 3-4; 20 mg on Days 1, 2, 8, 9, 15, 16 of Cycles 5-6.

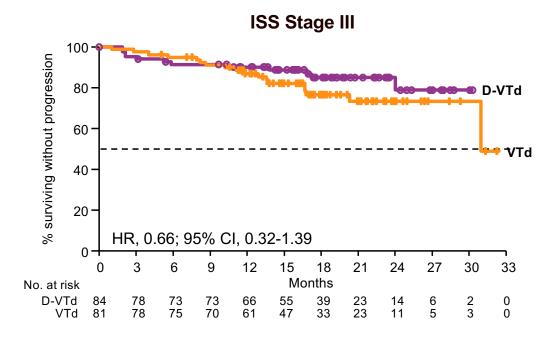
Efficacy Results: ITT Population

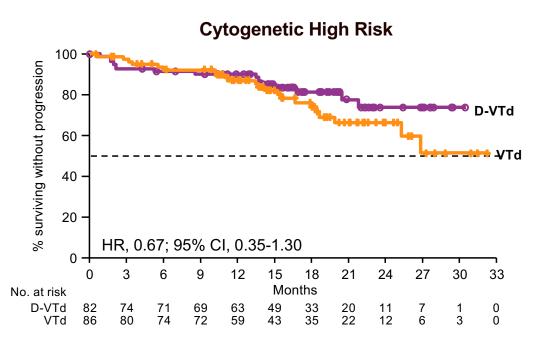
• Median (range) follow-up: 18.8 (0.0-32.2) months

53% reduction in the risk of progression or death with D-VTd

Baseline Demographic and Clinical Characteristics (ITT)

	D-VTd (n = 543)	VTd (n = 542)
Age		
Median (range), yrs	59 (22-65)	58 (26-65)
Male, n (%)	316 (58)	319 (59)
ECOG status, ^a n (%)		
0	265 (49)	257 (47)
1	225 (41)	230 (42)
2	53 (10)	55 (10)
Type of measurable disease, ^b n (%)		
IgG	331 (61)	314 (58)
IgA	80 (15)	99 (18)

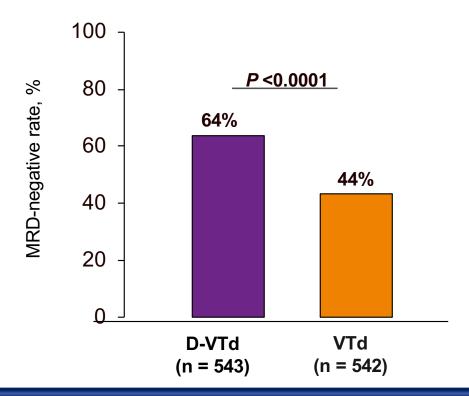

	D-VTd (n = 543)	VTd (n = 542)
ISS stage, ^c n (%)		
1	204 (38)	228 (42)
II	255 (47)	233 (43)
III	84 (16)	81 (15)
Cytogenetic profiled		
N	542	540
Standard risk, n (%)	460 (85)	454 (84)
High risk (del17p or t[4;14]), n (%)	82 (15)	86 (16)


Treatment arms were well balanced

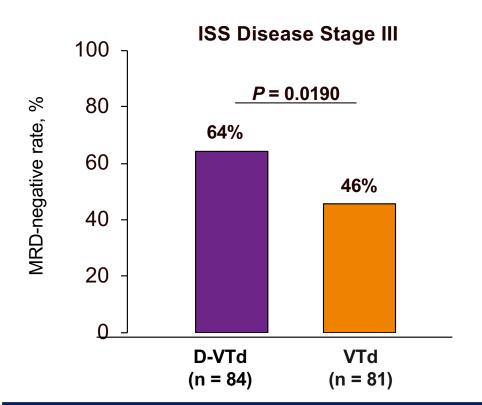
^aECOG performance status is scored on a scale from 0 to 5, with 0 indicating no symptoms and higher scores indicating increasing disability. ^bIncludes patients without measurable disease in serum and urine. ^cBased on the combination of serum β₂-microglobulin and albumin. ^dBased on fluorescence in situ hybridization; high risk was defined as the presence of del17p or t(4;14), as centrally confirmed during screening onneveld, IMW 2019 Note: Percentages may not add to 100% due to rounding.

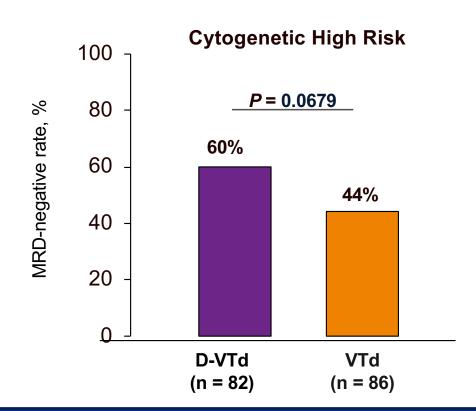
PFS in High-risk Subgroups

• Median (range) follow-up: 18.8 (0.0-32.2) months



D-VTd reduced the risk of progression or death in high-risk subgroups


Post-consolidation MRD (Flow Cytometry; 10⁻⁵)


Regardless of Response

Higher proportions of patients achieved MRD negativity with D-VTd

Post-consolidation MRD in High-risk Subgroups (Flow Cytometry; 10⁻⁵)

MRD-negativity rates were superior with D-VTd in patients with high-risk cytogenetics and ISS stage III disease

Can we abrogate High-Risk MM by making the right treatment choices?

- Choice of drugs and schedule
- Continuous treatment
- Maintenance treatment
- MRD guided treatment
- Allo-SCT Immune therapies

Strategies to overcome HR disease

Evidence based

- Single HDM/ASCT = standard; Double HDM/ASCT for patients with HR-FISH/R-ISS3 (Cavo et al., ASH 2018)
- Quadruple regimens including PI, IMiD, MoAb for induction (Moreau et al., Lancet 2019)
- Tandem auto-allo for HR-FISH (Knop et al., Leukemia 2019)
- The impact must be achieved during initial treatment before RRMM

Potential strategies to overcome HR disease

Hypothesis based

- Continuous treatment with alternating regimens/schedules
- Change of regimen if no CR/sCR or MRD negativity
 - At the end of induction (TE-MM + TNE-MM)
 - Upgrade to experimental therapy (immune) if response suboptimal

Relevant facts for clinical practice and drug choices in patients with High-Rish FISH

Proteasome inhibitors

- Improve PFS/OS for t(4;14)
- Carfilzomib may improve PFS for del17p
- May be less effective for t(14;16) (ISS3)

Immunomodulatory drugs

- Thal/Len/Pom do not improve PFS/OS for t(4;14)
- Pom may abrogate del17p for PFS/OS (RRMM)

High Dose Melphalan/ASCT

- Mel200 superior with RVd induction/consolidation
- Tandem may abrogate t(4;14) along with PI based induction/maintenance
- Tandem may help in del17p, however TP53 status is important

Relevant facts for clinical practice and drug choices in patients with High-Rish FISH

Antibodies

- Improve PFS (and OS), MRD in SR and HR
- Daratumumab improves outcome across subgroups, offers a better prognosis for HR

Targeted therapy

- Venetoclax for t(11;14), bcl-2/XL, MCL-1
- MYC, MAPK etc too early, Selinexor

Immune therapy

- Checkpoint inhibitors poor balance between efficacy and safety
- CAR-T cell and other BCMA directed treatment
- Bites under investigation

Conclusions

Find Studies ▼

About Studies ▼

Submit Studies ▼

Resources ▼

About Site ▼

Home >

Search Results >

Study Record Detail

Save this study

Trial record 2 of 73 for: car-t | Myeloma Multiple

Previous Study

Return to List

Next Study ▶

Up-front CART-BCMA With or Without huCART19 in High-risk Multiple Myeloma

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by he U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details.

Sponsor:

University of Pennsylvania

Collaborator:

Novartis

Information provided by (Responsible Party):

University of Pennsylvania

ClinicalTrials.gov Identifier: NCT03549442

Recruitment Status 1 : Recruiting

First Posted 1: June 8, 2018

Last Update Posted 1: April 18, 2019

See Contacts and Locations

Training sulla valutazione della malattia nel mieloma multiplo

www.teamm-fad.it