Highlights from IMW 2019

Immunoterapia cellulare adottiva (CAR-T) e anticorpi monoclonali (bi-specifici e coniugati)

CAR-T anti BCMA

Elena Zamagni

-

ALMA MATER STUD Università di Bo

Seràgnoli Institute of Hematology Bologna University School of Medicine

Coordinatore Scientifico Michele CAVO

19-20 novembre 2019

Royal Hotel Carlton

Bologna

Comitato Scientifico Mario BOCCADORO Michele CAVO Maria Teresa PETRUCCI

Honoraria e membro di advisory board per Celgene, Janssen, BMS, Takeda, Amgen

Highlights from IMW 2019

MAMMOTH study

suboptimal outcomes in patients refractory to anti-CD38 monoclonal antibodies

275 patients refractory to anti-CD38 mAbs

	Median OS months	
Not triple refractory	11.2	Refractory to 1 CD38 mAb, and not both PI and IMiD
Triple and quad refractory	9.2	Refractory to 1 CD38 mAb + 1 PI + 1 or 2 IMiD compounds, etc.
Penta refractory	5.6	Refractory to 1 CD38 mAb + 2 PIs + 2 IMiD compounds
Overall cohort	8.6	

249 patients received further treatment ORR 31% mPFS 3.4 months mOS 9.3 months

Unmet clinical need!

Gandhi UH et al., Leukemia. 2019

Innovative strategies are needed to overcome refractoriness to conventional drugs

	Direct targeting of tumour surface antigens Monoclonal antibodies	Boosting immune effectors Adoptive cell therapy T-cell engagers	PASSIVE IMMUNOTHERAPY
ACTIVE IMMUNOTHERAPY	Activating tumour-specific immunity Vaccines	Overcoming inhibitory immune suppression Immunomodulators: IMiDs, checkpoint inhibitors	

Rodríguez-Otero P, et al. Haematologica. 2017;102:423-32.

Surface antigens on clonal plasma cells

^aApproved by the FDA and EMA.

BCMA, B-cell maturation antigen; IL-6, interleukin-6; PD-L1, programmed cell death-ligand; RANKL, receptor activator of nuclear factor kappa-B ligand.

Bhatnagar V, et al. Oncologist. 2017;22:1347-53. Gormley NJ, et al. Clin Cancer Res. 2017;23:6759-63. Jelinek T, et al. Front Immunol. 2018;9:2431. Moreno L, et al. Clin Cancer Res. 2019;epub. Raab MS, et al. Blood. 2016;128:1152. Rawstron AC, et al. Haematologica. 2008;93:431-8. Smith EL et al. Sci Tras Med 2019; 11(485).

BCMA: a good target

- BCMA is an antigen expressed specifically on PCs and myeloma cells
 - Member of TNFR superfamily. Binds 2 ligands (BAFF e APRIL)
 - higher expression in myeloma cells than normal PCs
 - key role in B-cell maturation and differentiation
 - promotes myeloma cell growth, chemoresistance, and immunosuppression in the BM microenvironment
- Expression of BCMA increases as the disease progresses from MGUS to advanced myeloma

APRIL, a proliferation-inducing ligand; BAFF-R, B-cell activating factor receptor; GC, germinal centre; LN, lymph node; MGUS, monoclonal gammopathy of unknown significance; sBCMA, soluble BCMA; TACI, transmembrane activator and CAML interactor.

Cho SF, et al. Front Immunol. 2018;9:1821. Moreaux J, et al. Blood. 2004;103:3148-57. Sanchez E, et al. Br J Haematol. 2012;158:727-38.

BCMA CAR T cells in MM

46 clinical trials with BCMA CAR T in clinicaltrials.gov

Trial site	ScFv	Co-s domain	Gene transfer	Conditioning therapy	T-cell dose CAR+ T cells/kg
NCI ^{1,2}	11D5-3	CD28	Ƴ- retroviral	Cy 300 mg/m ² × 3 + Flu 30 mg/m ² × 3	0.3–9.0 × 10 ⁶
	NR, murine	4-1BB	Lentiviral	Cy 300 mg/m² × 3 + Flu 30 mg/m² × 3	50, 150, 450, and 800 × 10 ⁶
University of Pennsylvania ⁴	NR, human	4-1BB	Lentiviral	None or Cy 1.5 g/m²	10–50 × 10 ⁶ or 100–500 × 10 ⁶
	NR, human	4-1BB	Lentiviral	Cy 300 mg/m ² × 3	1.5–7.0 × 10 ⁶
MSKCC ^{7,8}	NR, human	4-1BB	Ƴ- retroviral	Cy 3000 mg/m² or Cy 300 mg/m² × 3 + Flu 30 mg/m² × 3	1, 150, 450, and 800 × 10 ⁶
Poseida ⁹	NRª, human	4-1BB	Transposon	Cy 300 mg/m² × 3 + Flu 30 mg/m² × 3	0.75, 2, 6, 10, and 15 × 10 ⁶

Brudno JN, et al. J Clin Oncol. 2018;36:2267-80. 2. Ali SA, et al. Blood. 2016;128:1688-700.
Berdeja JG, et al. Blood. 2017;130:740. 4. Cohen AD, et al. Blood. 2017;130:505. 5. Aili H, et al. EHA abstract. 6. Fan FX, et al. J Clin Oncol. 2017;35:18. 7. Smith EL, et al. Blood. 2017;130:742.
Hermanson DL, et al. Blood. 2016. 9. Gregory T, et al. Blood. 2018;132:1012. Presented at ASH 2018.

^a Small human ibronectin domain.

Cy, cyclophosphamide; Flu, fludarabine.

BCMA-CAR T cells in MM

Phase I study NCI: efficacy (N = 16)

CRS minimal at lower doses but substantial at 9×10^6 /kg

• 6 pts grade 3–4 CRS

٠

- 5/16 pts (31%) received tocilizumab
- 10 pts grade 1–2 CRS 4/16 pts (25%) received steroids

Brudno JN, et al. J Clin Oncol. 2018;36:2267-80.

CAR-T cell therapy (and other T-cell redirected therapies): unique acute toxicities

- Cytokine release syndrome (CRS)
 - Inflammatory process related to exponential T cell proliferation and activation
 - Release of supra-physiological levels of proinflammatory cytokines (e.g, IL-6, INFγ, TNFα)
 - IL-6 believed to be central mediator
- Time to onset: expected in first 14 days (mostly first 7 days)
- Fever, hypotension, hypoxia, multi-organ failure
- Diagnosed based on clinical symptoms; CRP used as surrogate

- Encephalopathy/Neurological toxicity
 - Exact mechanism remains unclear but pathophysiology thought to include endothelial activation/dysfunction and microangiopathy
 - May occur together with CRS or independently (after CRS).
 - Time to onset: expected in first 14 days
 - Diminished attention, language disturbance, confusion, disorientation, and occasionally seizures/cerebral oedema, delirium

BCMA CAR-T Phase I trial

- Lentiviral vector-based + 4-1BB co-stimulatory domain
- Fully human scFV fused to hinge and TM CD8

Inclusion criteria:

 RRMM with ≥ 3 prior lines of therapy (including PI and immunomodulatory drugs), or 2 prior regimens if double refractory (median: 7 lines)

CAR T-BCMA manufacturing^a

	Cohort 1 (n = 9)	Cohort 2 (n = 5)	Cohort 3 (n = 11)
Treatment	1–5 × 10 ⁸ CAR+ T cells	Cy 1.5 g/m ² + 1–5 × 10⁷ CAR+ T cells	Cy 1.5 g/m ² + 1–5 × 10 ⁸ CAR+ T cells
ORR, n (%)	4 (44)	1 (20)	7 (64)
mPFS, days	65	57	125

Cohen AD, et al. J Clin Invest. 2019;129:2210-21

BCMA CAR T cell

Ide-cel (bb2121) CRB-401 phase 1 trial

AE, adverse event; RRMM, relapsed/refractory MM.

Ide-cel CRB-401 phase 1 trial:

baseline demographics and patient characteristics

Characteristic	Dose escalation (N = 21)		Expansion (N = 12)	
Prior anti-myeloma regimens, median (range)	7 (3–14)		8 (3–23)	
Prior ASCT, no. (%)				
0		0	1	(8)
1	15	(71)	8	(67)
≥2	6	(29)	3 (25)	
	Dose escalation (N = 21)		Expansion (N = 12)	
Characteristic	Exposed	Refractory	Exposed	Refractory
Prior therapies, n (%)				
Bortezomib	21 (100)	13 (62)	12 (100)	7 (58)
Carfilzomib	19 (91)	12 (57)	11 (92)	7 (58)
Lenalidomide	21 (100)	17 (81)	12 (100)	7 (58)
Pomalidomide	19 (91)	14 (67)	12 (100)	12 (100)
Daratumumab	15 (71)	9 (43)	12 (100)	9 (75)
Bortezomib / Lenalidomide	21 (100)	12 (57)	12 (100)	5 (42)
Bortezomib / Lenalidomide / Carfilzomib / Pomalidomide / Daratumumab	15 (71)	3 (14)	11 (92)	3 (25)

Ide-cel CRB-401 phase 1 trial:

tumour response is dose-related and independent of tumour BCMA expression

MRD-evaluable responders	0	4	11	1	16
MRD-neg ^a	0	4 (100)	11 (100)	1 (100)	16 (100)

mDOR, median duration of response; NE, not evaluable.

Ide-cel CRB-401 phase 1 trial:

tumour response by baseline characteristics

Baseline characteristic

DARA, daratumumab; EMD, extramedullary disease; PD, progressive disease.

Ide-cel CRB-401 phase 1 trial: AEs of special interest

CAR T cell therapy TEAEs All infused patients (N = 33)

TEAE, n (%)	Any Grade	Grade 3	Grade 4
CRS	25 (76)	2 (6)	0
Neurological toxic effect ^a	14 (42)	0	1 (3) ^b
Neutropenia	28 (85)	2 (6)	26 (79)
Thrombocytopenia	19 (58)	5 (15)	10 (30)
Anaemia	19 (58)	15 (45)	0
Infection	12 (36)	2 (6)	0

- Relationship tumor burden-CRS risk
- Possible but not sure relationship CAR-T dose-CRS risk

Ide-cel CRB-401 phase 1 trial: PFS

KarMMa Ide-cel pivotal phase 2 single-arm study

Exploratory: BCMA expression/loss, T cell immunophenotype, GEP in BM, HEOR

GEP, gene expression profile; HEOR, health economics and outcomes research; IMWG, International Myeloma Working Group; QoL, quality of life; TTP, time to progression; TTR, time to response.

ClinicalTrials.gov Identifier: NCT03361748.

LCAR-B38M BCMA CAR T Phase I study: design (Legend-2)

- Lentiviral vector based + 4-1BB co-stimulatory domain
- BCMA catching domain target two different epitopes simultaneously

Median number of prior lines of therapy: **3 (1–9)**

Prior bort: 68%; prior len: 44%; prior PI + IMiD: 60%; prior SCT: 18%

Zhao WH, et al. Presented at ASH 2018; abstract 955.

LCAR-B38M: Legend Biotech phase I trial updated single-centre experience (LEGEND 2)

• **Conditioning**: Cyclophosphamide 300mg/m²

ORR = 88% 74% CR and 68% MRD-neg CR)

Zhao WH, et al. Presented at ASH 2018; abstract 955.

- CAR-T cells/kg: 0.07 2.1 x 10⁶. Median dose: 0.5 x 10⁶ cells/kg
- Split infusion (Day 1 20%, Day 3 30%, Day 7 50%)
 - mDOR = 16 mo (95% Cl, 12 mo–NR)
 - mDOR for MRD-neg CR: 22 mo (95% Cl, 14 mo–NR)
 - 12 mo OS: 75%; 94% for pts achieving MRD-neg CR
 - Pts not achieving MRD-neg CR had poor outcome: mPFS 6 mo, mOS 8 mo, 12-mo OS 29%

Toxicity profile

- 35% grade 2 CRS; 7% grade 3; no grade 4
- Tocilizumab use: 46%

Ongoing trial, **phase 1b/2 CARTITUDE-1 study** (NCT03548207) evaluating **JNJ-68284528** (same **CAR as LCAR-B38M**)

> Evaluate effectiveness of LCAR-B38M in more typically heavily treated US (and ex-US) patients compared to Chinese cohort

What we know: lessons from initial studies

CAR-T cell expansion correlates with response across different trials

¹Raje N, et al. N Engl Med. 2019;380:1726-37; ²Brudno JN, et al. J Clin Oncol. 2018;36:2267-80; ³Cohen AD, et al. J Clin Invest. 2019;129:2210-21.

What we know: lessons from initial studies PFS of CAR-T cells in multiple myeloma compared with lymphoma:

Despite very high ORR and CR rates, patients continue to relapse....

Room for improvement with CAR-T.... Different biology of myeloma v. lymphoma.... What we know: lessons from initial studies CAR-T vs other therapies

CAR-T therapy may allow patients to step off the "treadmill" of continuous treatment

Current paradigm of myeloma therapy: **continuous** treatment until progression

One treatment (then observation)

What we know: Not all T-cells are the same. T-cell fitness matters

Gattinoni L et al. Nature Medicine (2017); Cohen AD, et al. J Clin Invest. 2019;129:2210-21; Dancy E et al, ASH 2018, Blood 132:1886

What we do not know yet?

Understanding the non-responders and the resistance

Slide presented by N. Raje at IMW meeting in Boston, September 2019

Not all T cells are the same

Next generation of products trying to increase the % of memory Tcells

	Bb21217	JCARH125 (Orva-cel) (EVOLVE)	
Binder	Murine	Human	
Costimulatory domain	4-1BB	4-1BB	
Vector	Lentivirus	Lentivirus	
Manufacturing Process	Unselected T cells at culture initiation + PI3K inhibitor during T cell culture	1:1 ratio of CD4/CD8 T cells at culture initiation	
T Cell Phenotype	Enriched for T_n and T_{cm} cells	Enriched for T_n and T_{cm} cells	
Preclinical	Low tonic signaling No inhibition by sBCMA	Low tonic signaling No inhibition by sBCMA	
Stage of Development	Phase I trial initiated Q3 2017	Phase I trial initiated Q1 2018	
Preliminary efficacy results	ORR 83% 150x10 ⁶ CAR T 4/4 MRDneg	ORR (n=44) 79%; CR 43%	

Shah N et al. Presented at ASH 2018; abstract 488 ASH 2018 Celgene investor relations event, december 2, 2018: https://s22.q4cdn.com/728481125/files/doc_presentations/2019 /03/ASH-2018-IR-Event_FINAL_website-version_updated.pdf Mailankody S et al.Blood;132:957. Presented at ASH 2018

MM-cell intrinsic mechanisms: BCMA loss or modulation has been described after anti-BCMA CAR T therapy

Residual MM cells from responding patients show a lower BCMA expression 1 month after CAR-T cell infusion²

CARAMBA project: SLAMF-7 CAR T

SLAMF-7 targeting, virus-free Sleeping Beauty gene transfer

Expressed on a fraction of NK, T & B cells: activating or inhibitory function **High-level expression is retained in malignant plasma cells in MM and MGUS**

Eradication of extra-/medullary myeloma after single dose of SLAMF7 CAR T

Cohen AD, et al. J Clin Invest. 2019;129:2210-21, Gogishvili T, et al. Blood 2017;130:2838-47.

First CAR-T in MM: CD-19

Rational: a minor component of the MM clone with drug-resistant, disease-propagating properties has a B-cell phenotype (99% PCs negative for CD19)

Study Design and Patient Characteristics

Garfall AL, et al. N Engl J Med 2015; 373:1040-1047

Garfall AL, et al. JCI Insight, 2018; 3(8):e120505

New targets and dual-target CAR-T

Yan Z et al. Lancet Haematol. 2019 Aug 1; Mei H et al EHA 2019 Jun 15, 2019; 267409; S826.

ORR: overall response rate; CR: complete response. sCR: stringent complete response. VGPR: very good partial remission. PR: partial response. SD: stable disease.

Improving CAR-T function: humanized CAR-Ts

Is there a role of host anti-CAR immunity?. Since most of the CARs have non-human domains
→ Role of fully humanized CAR-T

Li C. et al. Oral presentation at IMW meeting in Boston, September 2019

Development of CAR-T in MM: earlier lines of therapy

- This is just the beginning of anti BCMA CAR-T, "version 1.0": CAR-T for heavily pre-treated patients
 - Deep responses, but room for improvement with durability of response
- BCMA CAR-T pivotal trials in RRMM (≥ 3 prior lines)
 - Celgene/Bluebird; Janssen/Legend; Celgene/Juno, Poseida
 - Regulatory approval by 2020? (FDA)
- Potential advantages to CAR-T earlier in patient course:
 - Less clonal heterogeneity, less clonal evolution: less resistance to therapy
 - Lower tumor burden at first or earlier relapse
 - Better functional status, less comorbidities, better renal function
 - Source of CAR-T cells may be less "exhausted," see also comparison of T cells in healthy donors v. MGUS/myeloma patients (Bailur JK et al., JCI Insight 2019)
- KarMMa-2 (NCT03601078) in early relapse with bb2121
 - Early relapse defined as PD <18 months since start of initial therapy (with or without auto SCT)
- KarMMa-3 (NCT03651128), randomized study of bb2121 v. standard of care in patients with 2-4 prior lines of treatment

Van De Donk et al. Oral presentation at IMW meeting in Boston, September 2019

Highlights from IMW 2019

• Phase 1/2 trials for next generation CAR products (i.e. BB21217, JNJ 68284528 CARTITUDE-1)

• BCMA CAR trials in patients in earlier lines of therapy

- 1-3 prior lines (randomized with SoC regimens)
- Early relapse after optimized frontline treatment (high-risk disease)
- Consolidation in non-CR patients with HR disease

• New targets: SLAMF7 (CARAMBA trial), GPRC5D ...

- Dual CAR-T(CD19 + BCMA, CD38 + BCMA)
- Combination trials
 - Gammasecretase inhibitors, checlpoint, IMIDs
- Off-the shelf allogeneic CAR-T

Highlights from IMW 2019

Conclusion

- Despite continuous improvement in survival thanks to the incorporation of novel treatments, MM patients still relapse, and survival after failure to IMiDs, PIs and MoAbs remains poor. Therefore, there is a **need for new treatment strategies in these patients**
- BCMA is a promising therapeutic target and clinical results with the new BCMA-directed treatments are revolutionary among patients with RRMM; especially CAR-T cells showed the possibility to obtain very high CR rate and MRD-neg rates. However, no plateau has yet been seen in the curve
- Outcomes will be improved by understanding the mechanisms of action, immune response and cell biology (next-generation CAR-T products)
- CAR-T therapy should be integrated with **other TC re-directed therapies**, to define which patient may benefit from each strategy and if there is a place for **re-treatment or alternating strategies**
- Adequate patient selection and earlier use in the course of the disease may surely impact the longterm outcomes of these novel therapies.

Highlights from IMW 2019

Acknowledgements

Seràgnoli Institute of Hematology

Myeloma Research Unit Prof. Michele Cavo

Clinical Research Unit Elena Zamagni Paola Tacchetti Lucia Pantani Katia Mancuso Serena Rocchi Ilaria Rizzello Alessio Fusco Gabriella De Cicco Francesco De Felice Margherita Ursi

Data Management Federica Pedali Alessandra Gnani Giorgia Lazzarini Francesca Trombetta Alessandra Scatà Simona Barbato Claudio Mustacchio

Lab of Cytogenetics Nicoletta Testoni Giulia Marzocchi

Lab of Molecular Biology

Carolina Terragna Marina Martello Vincenza Solli Rosalinda Termini Andrea Poletti

Lab of Cellular Biology Enrica Borsi

Statistical Analysis Luca Dozza