Highlights from IMW 2019

Terapia di prima linea senza trapianto autologo

Del paziente intermediate fit/frail

Alessandra Larocca, MD, PhD
Division of Hematology
University of Torino
Torino, Italy

Coordinatore Scientifico Michele CAVO Comitato Scientifico
Mario BOCCADORO
Michele CAVO
Maria Teresa PETRUCCI

Disclosures for Alessandra Larocca, MD

Research Support/P.I.	No relevant conflicts of interest to declare
Employee	No relevant conflicts of interest to declare
Consultant	No relevant conflicts of interest to declare
Major Stockholder	No relevant conflicts of interest to declare
Speakers Bureau	No relevant conflicts of interest to declare
Honoraria	Celgene, Janssen-Cilag, Bristol-Myers Squibb, Amgen
Scientific Advisory Board	Bristol-Myer Squibb, Janssen-Cilag, Celgene, Takeda

Presentation includes discussion of the off-label use of a drug or drugs

Transplant ineligible myeloma patients Background

- Recent explosion in new treatments for MM
- Data from frailty-tailored treatments are still limited
- Older patients underrepresented in clinical trials
- Little specific evidence to guide treatment decision for intermediate/frail

"Evidence-biased

as opposed to

evidence-based medicine"

The outcome of patients >75 is inferior to patients ≤75 years

Rd continuous	Age <u><</u> 75 Years	Age >75 Years
Progression-free survival (PFS)	28 months	20 months
Overall Survival (OS)	60.9 months	52.3 months
Response Rate	82%	78%
Treatment duration (mean)	24 months	20 months
R dose reduction	37%	44%
R discontinuation	21%	26%
R full planned dose at 72 weeks	40%	30%

Elderly myeloma patients: age does matter

Survival inferior due to toxic deaths, thus precluding second line therapy

Death due to toxicity 4-fold higher and death due to other causes 2-fold higher in >80 versus <80 years

Not only chronological age affects survival

Grade 3/4 cardiac, infective, GI AEs impact on survival of 1435 myeloma patients

CHANGE IN PARADIGM FROM AGE TO FRAILTY

*At least 1 adverse event; †Due to AEs, withdrawal of consent, patient compliance, unknown; progressive disease was excluded; AE, adverse event; GI, gastrointestinal

Toxicity and compliance Toxicity profile of standard therapies

	Any grade 3-4 Adverse Events	Discontinuation rate due to toxicity
Rd (FIRST) Continuous lenalidomide	85%	30%
MPT	75%	40%
VMP (VISTA) Bortezomib twice weekly	91%	34%
VMP (GEM-2005) Bortezomib once weekly	NA	17%
VMP (GIMEMA) Bortezomib once weekly	51%	17%

Benboubker L et al. NEJM 371;10, 2014 Fayers PM, Blood 2011;118:1239-1247. San Miguel JF, et al. N Engl J Med 2008; 359:906–917. Mateos MV, et al. Lancet Oncol. 2010;11:934-41. Palumbo A., et al. J Clin Oncol 2010; 28:5101-9.

Treatment Outcome in Real World Practice

Importance of first -line treatment

4997 patients

Age<65 years 36% 65-75 years 42% >75 years 22%

Association of patient characteristics with the probability of receiving a further line of treatment

Yong K et al British Journal of Haematology, 2016, 175, 252–264

Patient-defined goals and preferences

Older adults with cancer starting chemotherapy

Attitude scale (n = 121)

Item	Strongly agree	Agree	Neither agree nor disagree	Disagree	Strongly disagree
The most important thing to me is living as long as I can, no matter what my QOL is	13%	12%	17%	34%	22%
I would rather live a shorter life than lose my ability to take care of myself	28%	31%	16%	13%	7 %
Maintaining my thinking ability is more important than living as long as possible	41%	40%	14%	2%	1%

Treatment goals in elderly MM patients

FIT

INTERMEDIATE

FRAIL

Co-morbidities, organ disfunction

Life expectancy

Impaired functional status

Deep remission

CR/MRD-negativity

Efficacy

Balance efficacy/safety

Good response

Combination of efficacy/safety

Do not harm

QoL

Low toxicity

Goal

Priority

Treatment strategies for intermediate and frail MM patients

- Does one treatment fit for all patients?
- Appropriate duration of treatment?
- Optimal dose and schedule adjustments to avoid severe toxicities?
- "Non frail" drugs?

Antibody-based therapy is safe and active in elderly patients

ALCYONE Daratumumab-VMP vs VMP MAYA Daratumumab-Rd vs Rd

Efficacy: PFS in pre-specified subgroups

		VMP Median months)	N)-VMP Median months)		HR (95% CI)
Sex						_
Male	167	18.1	160	NE	Heri	0.60 (0.42-0.87)
Female	189	17.9	190	NE	₩Н	0.41 (0.28-0.61)
Age					į	
<75 years	249	17.9	246	NE	Hel.	0.49 (0.36-0.68)
≥75 years	107	20.4	104	NE	ЮН	0.53 (0.32-0.85)
Race						
White	304	18.1	297	NE	HH	0.56 (0.42-0.74)
Other	52	16.8	53	NE	+++	0.26 (0.12-0.57)
Region						
Europe	295	18.1	289	NE	lei¦	0.57 (0.43-0.76)
Other	61	17.5	61	NE		0.22 (0.10-0.50)
Baseline renal function (CrCl)						
>60 mL/min '	211	18.3	200	NE	l e l	0.63 (0.45-0.88)
≤80 mL/min	145	16.9	150	NE	ı⊕ı	0.36 (0.24-0.56)
				(0.1 1	10
				Favor	D-VMP	Favor VMP

	D-Rd	Rd		
	N	N		HR (95% CI)
Sex			- 1	
Male	189	195	l e (0.65 (0.46-0.93)
Female	179	174	Ю	0.47 (0.32-0.69)
Age				
<75 years	208	208	 ⊕ 	0.50 (0.35-0.71)
≥75 years	160	161	10	0.63 (0.44-0.92)
Race				
White	336	339	lel :	0.55 (0.42-0.72)
Other	32	30	⊢ • ∺	0.68 (0.31-1.49)
Region				
North America	101	102	10	0.65 (0.41-1.04)
Other	267	267	 ●	0.52 (0.38-0.71)
ISS staging				
1	98	103	H•H	0.59 (0.31-1.11)
II	163	156	lel	0.43 (0.29-0.64)
III	107	110	H	0.72 (0.48-1.09)
		١	111111111	TTIIIII
		0.	1 1	10
	Favor D-Rd Favor Rd			

No impact of age was observed

Antibody-based therapy is safe and active in elderly patients

ALCYONE Daratumumab-VMP vs VMP MAYA Daratumumab-Rd vs Rd

Efficacy: PFS in pre-specified subgroups

No impact of age was observed

Facon T et al. ASH 2018

Phase II HOVON 143 trial

INDUCTION STUDY DESIGN

MAINTENANCE

9 cycles of 4 weeks

Ixazomib 4 mg day 1, 8, 15

Daratumumab 16 mg/kg

cycle 1-2 day 1, 8, 15, 22

cycle 3-6 day 1, 15

cycle 7-9 day 1

Dexamethasone

cycle 1-2 20 mg day 1, 8, 15, 22

cycle 3-6 10 mg day 1, 15

cycle 7-9 10 mg day 1

8-week cycles (until progression for a maximum of 2 years)

Ixazomib 4 mg

day 1, 8, 15,

29, 36, 43

Daratumumab 16 mg/kg day 1

Dexamethasone 10 mg day 1

Antibiotic and -viral prophylaxis: Cotrimoxazole 480 mg/day, Valaciclovir 500 mg tid Vaccinations

- Median age 76 years for unfit and 82 years for frail patients
- Efficacy data for first 10 unfit and 10 frail patients who completed first 4 cycles
- Preliminary SAE and mortality analysis of all 104 patients, median follow-up:
 3.8 months for unfit and 1.8 months for frail patients

Response after 4 induction cycles

Response rate (%)	Unfit (n=10)	Frail (n=10)
≥VGPR	30	20
>PR	100	80
SD	-	10
PD	-	-
Not evaluable	-	10
Median time to response (months)	2	1

SAE rate in unfit and frail mainly due to hospitalization

- Feasible treatment in both unfit and frail NDMM patients
- Grade 3/4 hematologic toxicity limited; none in unfit, thrombocytopenia 40% and neutropenia 20% in frail patients
- Grade 3-5 non-hematologic AEs in 7/10 frail patients; Infections and cardiotoxicity most frequent
- Low preliminary mortality rate of 6.7%, mostly in frail (9.4%) vs unfit patients (2.5%)
- Preliminary analysis shows promising ORR after first 4 induction cycles

GRADE III AND IV NON-HEMATOLOGICAL TOXICITY

OF THE FIRST 10 UNFIT AND 10 FRAIL PATIENTS COMPLETING 4 INDUCTION CYCLES

	Unfit (ı	n=10)	Frail (n=10)	
CTCAE	III (5)	IV (1)	III (6)	IV-V (1)
Infections	upper respiratory infection (1)	influenza (1)	-	-
Cardiac	atrial fibrillation (1) myocardial ischemia (1)	-	-	-
Gastro- intestinal	-	-	diarrhea (1)	-
Renal	-	-	acute renal failure (1)	-
Other	hyperglycaemia (1) pain (1)	-	depression (1) confusion (1) PE (1) GI bleeding (1)	sudden death (1)

GRADE III AND IV NON-HEMATOLOGICAL TOXICITY

OF THE FIRST 10 UNFIT AND 10 FRAIL PATIENTS COMPLETING 4 INDUCTION CYCLES

Daratumumab: optimizing administration

PLEIADES (MMY2040) Study Design

Phase 2 study of DARA SC in combination with standard treatment regimens (N = 199)

C, cycle; QW, once weekly; D, day; PO, oral; PD, progressive disease; Q3W, once every 3 weeks; Q4W, once every 4 weeks; VGPR, very good partial response; ORR, overall response rate; PK, pharmacokinetics; IRR, infusion-related reaction; CR, complete response; MRD, minimal residual disease; NGS, next generation sequencing.

Daratumumab: optimizing administration

Safety Summary

	D-VRd (n = 67)	D-VMP (n = 67)	D-Rd (n = 65)
	Transplant-eligible NDMM	Transplant-ineligible NDMM	RRMM with ≥1 prior line of therapy
Any TEAE, n (%)	67 (100.0)	67 (100.0)	65 (100.0)
Serious TEAE, n (%)	19 (28.4)	26 (38.8)	31 (47.7)
Grade 3/4 TEAE, n (%)	38 (56.7)	46 (68.7)	54 (83.1)
TEAEs leading to treatment discontinuation, n (%)	1 (1.5)	2 (3.0)	5 (7.7)
Fatal TEAE, n (%)	1 (1.5)	2 (3.0)	2 (3.1)

- IRRs occurred in 7.5% (15/199) of patients across all cohorts
 - 93.3% (14/15) of patients with IRRs experienced them on the first administration
 - IRRs were mild (grade 1/2) in 93.3% (14/15) of patients; 1 patient had a grade 3 IRR leading to discontinuation of DARA SC, and no patient had a grade 4 IRR
- Median time to onset of IRRs was 3.3 hours
 - Patients were not required to stay for observation beyond the first administration of DARA SC
- Local injection-site reactions occurred in 7.5% (15/199) of patients across all cohorts (all grade 1/2)

DARA SC combination therapy safety profiles were consistent with DARA IV, with lower rates of IRRs

Duration of treatment

Outcome of 9 cycles of Dose-Adjusted VMP In unfit and frail patients

HOVON 123 study in patients ≥ 75 years

6 cycles of VMP were feasible in 70% of all patients

with comparable ORR and ≥ VGPR

- 1. No fit patients were included, because all patients were > 75 years
- 2. Of the 64 frail patients, 44% was aged 75-80 and 13% was frail because of being >80 years only

Duration of treatment

Outcome of 9 cycles of Dose-Adjusted VMP In unfit and frail patients HOVON 123 study in patients ≥ 75 years

A LIMITED INDUCTION TREATMENT MAY BE FEASIBLE IN MOST OF UNFIT/FRAIL PATIENTS

- 1. No fit patients were included, because all patients were > 75 years
- 2. Of the 64 frail patients, 44% was aged 75-80 and 13% was frail because of being >80 years only

Dose/Schedule-Adjusted Rd-R Vs. Continuous Rd in Elderly and Intermediate-Fit (Unfit) Newly Diagnosed Multiple Myeloma Patients: RV-MM-PI-0752 Phase III Randomized Study

199 intermediate-fit patients have been enrolled and could be evaluated

^{*}The dose and schedule of continuous Rd was the one adopted in patients >75 years in the FIRST trial (Hulin C et al. JCO 2016)

Rd-R vs Rd

Progression-free survival

Overall survival

R, Lenalidomide; d, dexamethasone; PFS, progression-free survival, OS, overall survival.

Rd-R vs Rd

Progression-free survival

Overall survival

20-month PFS 20-month OS

COMPARABLE EFFICACY RD-R=RD IMPROVED TOLERANCE/FEASIBILITY RD R>RD SPARING STEROID

0.001 U.UU 10 20 30 0 10 20 30 **Months** Months 22 48 28 31 Rd-R 101 61 33 Rd-R 101 Numbers at risk Numbers at risk

Proposed dose reductions

Expert consideration of treatment adjustment based on patient frailty

Treatment doses	Level 0	Level – 1	Level -2
Prednisone	2 mg/kg days 1 – 4 of a 4–6 week cycle 60 mg/m² days 1–4 of a 6 week cycle	1 mg/kg days 1–4 of a 4–6 week cycle 30 mg/m² days 1–4 of a 6 week cycle	0.3–0.5 mg/kg days 1–4 of a 4–6 week cycle 10–15 mg/m² days 1–4 of a 6 week cycle
Dexamethasone	40 mg day 1, 8, 15, 22 of a 28-day cycle	20 mg day 1, 8, 15, 22 of a 28-day cycle	10 mg day 1, 8, 15, 22 of a 28-day cycle
Melphalan	0.25 mg/kg days 1-4 of a 4-6 week cycle 9 mg/ m ² days 1-4 of a 6 week cycle	0.18 mg/kg days 1–4 of a 4–6 week cycle 7.5 mg/m² days 1–4 of a 6 week cycle	0.13 mg/kg days 1–4 of a 4–6 week cycle 5 mg/ m ² days 1–4 of a 6 week cycle
Thalidomide	100 (-200) mg/day	50 (-100) mg/day	50 mg qod (-50 mg/day)
Lenalidomide	25 mg days 1-21 of a 28-day cycle	15 mg days 1–21 of a 28-day cyde	10 mg days 1–21 of a 28-day cycle
Pomalidomide	4 mg days 1-21 of a 28-day cycle	3 mg days 1-21 of a 28-day cycle	2 mg days 1-21 of a 28-day cycle
Bortezomib	1.3 mg/m² twice weekly Day 1, 4, 8, 11 every 3 weeks	1.3 mg/m² once weekly Day 1, 8, 15, 22 every 5 weeks	1.0 mg/m ² once weekly Day 1, 8, 15, 22 every 5 weeks
Carfilzomib ^a	20 mg/m ² day 1, 2, 8, 9, 15, 16 cycle 1, 27 mg/m ² cycle 2 every 3 weeks	20 mg/m² cycle 1 → 27 mg/m² cycle 2, day 1, 8, 15, every 3 weeks	20 mg/m ² day 1, 8, 15, every 4 (5) weeks
Ixazomib	4 mg day 1, 8, 15, every 4 weeks	3 mg day 1, 8, 15, every 4 weeks	2.3 mg day 1, 8, 15, every 4 weeks
Daratu mumab ^a	16 mg/kg bw cycle 1-8: weekly; cycle 9-24: day 1+15, from week 25: every 4 weeks	16 mg/kg bw cycle 1-8: weekly; cycle 9-24: day 1+15, from week 25: every 4 weeks	16 mg/kg bw cycle 1–8: weekly; cycle 9–24: day 1+15, from week 25: every 4 weeks
Elotu zumab ^b	10 mg/kg day 1, 8, 15, 22, cycle 1+2, from cycle 3: day 1+15	10 mg/kg bw day 1, 8, 15, 22, cycle 1+2, from cycle 3: day 1+15	10 mg/kg bw day 1, 8, 15, 22 cycle 1+2, from cycle 3: day 1+15
Panobinostat	20 mg day 1, 3, 5, 8, 10, 12 every 4 weeks	15 mg day 1, 3, 5, 8, 10, 12 every 4 weeks	10 mg day 1, 3, 5, 8, 10, 12 every 5 weeks

Proposed dose reductions

Expert consideration of treatment adjustment based on patient frailty

FIT UNFIT FRAIL

Treatment doses	Level 0	Level – 1	Level -2
Prednisone	2 mg/kg days 1 – 4 of a 4–6 week	1 mg/kg days 1-4 of a 4-6 week cyde	0.3-0.5 mg/kg days 1-4 of a

FOR FRAIL PATIENTS, STARTING AT LOWER DOSES AND INCREASING THE DOSE IF GOOD TOLERANCE?

			- mooks
Daratu mumab ^a	16 mg/kg bw cycle 1 – 8: weekly;	16 mg/kg bw cycle 1-8: weekly; cycle	16 mg/kg bw cycle 1–8: weekly;
	cycle 9 – 24: day 1+15, from	9-24: day 1+15, from week 25:	cycle 9–24: day 1+15, from
	week 25: every 4 weeks	every 4 weeks	week 25: every 4 weeks
Elotu zumab ^b	10 mg/kg day 1, 8, 15, 22, cycle 1+2, from cycle 3: day 1+15	10 mg/kg bw day 1, 8, 15, 22, cycle 1+2, from cycle 3: day 1+15	10 mg/kg bw day 1, 8, 15, 22 cycle 1+2, from cycle 3: day 1+15
Panobinostat	20 mg day 1, 3, 5, 8, 10, 12 every	15 mg day 1, 3, 5, 8, 10, 12 every 4	10 mg day 1, 3, 5, 8, 10, 12 every
	4 weeks	weeks	5 weeks

ARROW

Strategy of 'new treatment schedule' once weekly Carfilzomib

Adverse Events by Frailty Status (Safety Population)

	Fit		Intermediate		Frail	
	Once- weekly Kd70 mg/m², n=60	Twice- weekly Kd27 mg/m², n=66	Once- weekly Kd70 mg/m², n=88	Twice- weekly Kd27 mg/m², n=101	Once- weekly Kd70 mg/m², n=79	Twice- weekly Kd27 mg/m², n=60
Any-grade TEAE, n (%)	57 (95)	66 (100)	81 (92)	96 (95)	78 (99)	60 (100)
Grade ≥3 TEAEs, n (%)	33 (55)	41 (62)	60 (68)	58 (57)	64 (81)	42 (70)
Grade ≥3 TEAEs of interest, n	(%)a					
Peripheral neuropathy	0	1 (2)	0	0	n	0
Acute renal failure	0	3 (5)	6 (7)	6 (6)	3 (4)	4 (7)
Cardiac failure	1 (2)	1 (2)	3 (3)	3 (3)	3 (4)	5 (8)
Ischemic heart disease	1 (2)	0	0	1 (1)	0	1 (2)
Pulmonary hypertension	0	0	0	0	0	1 (2)
TEAEs leading to carfilzomib discontinuation, n (%)	2 (3)	5 (8)	11 (13)	11 (11)	16 (20)	11 (18)

Kd27, carfilzonib (27 mg/m²) and desamethasone; Kd70, carfilzonib (70 mg/m²) and desamethasone; TEAE, treatment-emergent adverse event. **Sandardzed MedRIAR Query, narrow scope

Presented by María-Victoria Mateos at the 17th International Myeloma Workshop in Boston, MA

IFM-2012-03 Strategy of 'prolonged tolerable therapy' with Carfilzomib maintenance

Treatment algorithm based on **Frailty Assessment**

PATIENT STATUS ASSESSMENT

Charlson (score 0-1) Age (score 0 - 1 - 2)

ADL (score 0 – 1) **IADL** (score 0 – 1)

INTERMEDIATE

FRAIL

Additive total score = 0 Additive total score = 1 Additive total score ≥ 2

Full-dose

Full-dose/Reduced

Reduced dose

TRIPLET REGIMENS

ASCT

VMP

Rd

VRD

DOUBLET REGIMENS

Rd //Rd-R Vd

Reduced-dose triplet

Doublet regimens

rd

Vd

Palliative/supportive

EMN consensus; Larocca A et al. Leukemia 2018

...also for Frail patients

Current and potential future treatment algorithms for transplant-ineligible MM patients

Until 2017

First option: VMP, Rd, RVd

Second option: VCd, MPT

Other options: BP, CTd, MP

Future trials Frailty-tailored treatments

Frailty-adjusted dosing

Myeloma XIV - FITNEsS

Frailty-adjusted therapy In Transplant Non-Eligible patients with Symptomatic myeloma

Frail patients

Using "non frail" drugs and dexamethasone sparing strategy

IFM 2017-03

340 patients

Primary endpoint - PFS

Randomization will be stratified by International Staging System (I vs II vs III) and age (<80 vs 280

In Arm A Low Dase Dex (20mg/week) during Cycle 1 and 2 then Methylprednisolone (with SC Dare)

Treatment Decision Process Unfit/Frail patients

Patients

- ADL
- IADL
- Comorbidities
- Hospitalization
- Medications
- Social Support
- Sarcopenia
- Biologic markers

Multiple Myeloma

- Cytogenetics
- Stage
- Tumor burden

Goals of Care

- CR vs Disease Control
- Expectations

Second Generation New Drugs

Comorbidities: cardiovascular Karf! pulmonary functions MoAb!

Compliance +lxazomib
Toxicities

Neuropathy + Karf
DVT/PE +MoAb
Cardiac toxicity +MoAb

We are grateful to all patients, nurses and physicians of the participating centers

1.	ALESSANDRIA	Ladetto, Baraldi
2.	ANCONA	Leoni, Offidani
3.	ASCOLI PICENO	Galieni
4.	ASTI	Saracco, Marchetti
5.	AVELLINO	Cantore, Volpe
6.	AVIANO	Micheli, Rupolo
7.	BARI	Silvestris, Ria
8.	BARI	Specchia
9.	BENEVENTO	Vallone
10.	BERGAMO	Rambaldi, Galli
11.	BIELLA	Bertinieri, Conconi
12.	BOLOGNA	Cavo, Zamagni
13.	BOLZANO	Billio, Pescosta
14.	BRESCIA	Rossi, Crippa
15.	BRESCIA	Russo, Malagola
16.	BRINDISI	Melpignano
17.	CAGLIARI	Derudas
18.	CAGLIARI	La Nasa, Ledda
19.	CAMPOBASSO	Storti
20.	CANDIOLO	Aglietta, Rota Scalabrini
21.	CATANIA	Di Raimondo
22.	CATANZARO	Molica, Piro
23.	CESENA	Ronconi, Augello
24.	CIRIÉ/CHIVASSO/IVRE	A Freilone, Falco, Aitoro
25.	CIVITANOVA	Centurioni
26.	COSENZA	Morabito, Gentile
27.	CREMONA	Lanza
28.	CUNEO	Massaia, Grasso
29.	FIRENZE	Bosi, Nozzoli
30.	FOGGIA	Capalbo
31.	GALLARATE	Ciambelli
32.	GENOVA	Gobbi, Canepa

3. GENOVA	Angelucci, Dominietto
4. LATINA	Cimino
5. LECCE	Di Renzo
6. LECCO	Ardizzoia, Ferrando
7. MANTOVA	Franchini, Zamagni
B. MELDOLA	Ronconi
9. MESSINA	Mannina
). MESSINA	Musolino, Allegra
1. MILANO	Corradini, Montefusco
2. MILANO	Cairoli, Cafro
3. MILANO	Ciceri
4. MILANO	Cortelezzi, Baldini
5. MODENA	Luppi, Marasca, Narni
6. MODENA	Sacchi
7. MONZA	Passerini, Rossini
B. NAPOLI	Pane,Catalano
9. NAPOLI	Ferrara, Rocco
D. NOCERA INF.	Califano
1. NOVARA	Gaidano, De Paoli
2. NUORO	Latte, Gabbas
3. ORBASSANO	Guerrasio, Guglielmelli
4. PADOVA	Semenzato, Zambello
5. PALERMO	Fabbiano, Cangialosi
6. PALERMO	Siragusa
7. PARMA	Aversa, Giuliani
B. PAVIA	Cazzola, Corso
9. PAVIA	Pavesi, Fregoni
). PERUGIA	Falini, Ballanti
1. PESARO	Visani
2. PESCARA	Di Bartolomeo, Spadano
3. RAVENNA	Lanza, Cellini
4. REGGIO CAL.	Martino, Vincelli

65.	REGGIO EM.	Merli, Gamberi
66.	RIMINI	Tosi
67.	RIONERO	Musto
68.	RIETI	Ceribelli
69.	ROMA	Foà, Petrucci
70.	ROMA	De Fabritiis, Caravita
71.	ROMA	Andriani
72.	ROMA	Bagnato, Bongarzoni
73.	ROMA	De Stefano
74.	ROMA	Mangarelli, Pisani
75.	ROMA	Pierelli, De Rosa
76.	ROMA	Venditti
77.	ROMA	Avvisati, Annibali
78.	ROMA	Recine
79.	ROMA	Tafuri, La Verde
80.	ROZZANO	Santoro, Nozza
81.	S. G. ROTONDO	Cascavilla, Falcone
82.	SASSARI	Dore, Podda
83.	SIENA	Bocchia, Gozzetti
84.	TERNI	Liberati
		occadoro,Bringhen,Gay,Larocca
86.	TORINO	Vitolo, Pregno, Benevolo
87.	TORINO	Saglio
88.	TREVISO	Gherlinzoni
	TRICASE	Pavone
	TRIESTE	Festini, De Sabbata
91.	UDINE	Fanin, Patriarca
	VENEZIA	Bassan
	VERCELLI	Ardizzone
	VERONA	Ambrosetti, Meneghini
95.	VICENZA	Rodeghiero, Elice

Acknowledgments

Division of Hematology, University of Torino

Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, Torino, Italy

Prof. Mario Boccadoro

Dr. Sara Bringhen

Dr. Alessandra Larocca

Dr. Stefania Oliva

Dr. Roberto Mina

Dr. Luca Bertamini

Dr. Francesca Bonello

Dr. Giusy Cetani

Dr. Mattia D'Agostino

Dr. Marco Salvini

Dr. Paola Omedé & Laboratory Staff

Dr. Benedetto Bruno & Transplant Unit

Nurses

Data Managing Staff

Statisticians Stefano Spada Andrea Capra

