Monoclonal antibodies, tumor targeting and immunotherapeutical
strategies with SLAM-F7 and CD38 (Bologna 2019)
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Events occurring after target binding by monoclonal antibodies
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Elotuzumab: proposed mechanisms of action in multiple
myeloma
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Two CS1 (SLAMF7) isoforms differentially regulate immune cell functions
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Mechanism of action of CD48 (SLAMF2) along with SLAM members
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McArdel SL, Therorst C, Sharpe A, Clin Immunol, 2016.

CD48 (SLAMF2) IS OVEREXPRESSED IN THE MAJORITY OF MM AND MAY
REPRESENT AN ALTERNATIVE TARGET WHEN SLAMF7 IS WEAKLY

EXPRESSED.

ASHOURR ET AL. INT.J. HEMATOL. 2019



Isatuximab



MoA triggered by Isatuximab in function of the CD38 levels expressed by normal and MM cells
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L. Moreno, ......., J. F. San Miguel and B. Paiva.
The Mechanism of Action of the anti-CD38 monoclonal antibody Isatuximab

in Multiple Myeloma.
Clin Cancer Res. 2019 May 15;25(10): 3176-3187.

Result #1

Isa induces internalization of CD38, but not
its significant release from MM cells



L. Moreno, ......., J. F. San Miguel and B. Paiva.

The Mechanism of Action of the anti-CD38 monoclonal antibody Isatuximab in Multiple
Myeloma.

Clin Cancer Res. 2019 May 15;25(10): 3176-3187.

Results # 2
a) Isa induces direct apotosis on MM with high CD38 levels.

b) Isa induces sensitization of MM with high CD38 to bortezomib +
dexamethasone

c) No apoptosis by direct transmembrane signaling in MM cells with CD38
levels similar to those of patients.

d) No significant gene deregulation on RPMI8226 upon antibody
ligation
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Activation and depletion of NK cells after Isa treatment

a) ADCC mediated by Isa leads to killing of high and low CD38 MM
cells. At the same time, Isa depletes high CD38 NK cells.

b) Transcriptome of NK was evaluated after co-culture with RPMI18226
with (and without) Isa.

c)TNFRSF9 (4-1BB, CD137) was up-modulated, also at the protein level.
d) CD16 was down-regulated during the cross-talk.

e) CD69 and CD137 are increased when NK cells are treated with Fc
blockers.

f) Isa activates NK cells by Fc-binding and CD38 trans-membrane
signaling



Effecs of Isatuximab on CD38* subsets of T regs in MM patients

8)

CD38 expression is higher on Tregs than Tcons in MM patients

CD38 surface levels and % of CD38"eh are increased by lenalidomide (len) and
pomalidomide (pom)

Isatuximab induces <Treg
>Tcons (enhanced by lenalidomide and pomalidomide)
Isatuximab induces <Foxp3 in Tregs
<IL10
restores Tcons proliferation and function

Isatuximab treatment >lysis of MM cells by CD38+ T and NK cells
Co-cultures of MM with Tcons = induction of Tregs

The induced Tregs (iTregs) express CD38, CD25, Foxp3 higher than natural Tregs
Isatuximab decreases iTregs induced by Mm and BM stromal cells

This effect is induced by inhibition of cell-cell contacts and release of GFB/IL10
CD38 levels correlate with differential inhibition by Isatuximab of Tregs from MM

Conclusion: Isatuximab preferentially blocks immunosuppressive Tregs and restore
immune effector functions.

Feng X. et al.,, .... and Anderson K. C. Clin Cancer Res, 2017



Adaptive anti-tumor immunity in response to
antibody treatment: in vivo vaccination

Hypothesis: the fitness of the immune system at baseline would be predictive for
clinical response to Isatuximab.

Results: MM patients were screened for endogeneous antibody responses against
a total of 27 myeloma-associated tumor antigens.

Antibody response

2 patients: no pre-existing antibody response and no response during treatment.
- Likely, a compromised immune system already at baseline.

2 patients: pre-existing antibody responses against several antigens. During
Isatuximab treatment, new and increasing autologous IgG antibody responses
against additional MM-associated antigens.

Target antigens identified were MAGEC2 and NY-GESO-1 (an IgG response). The
latter molecule was temporary target of IgM (new response).

Cell response:

No T cell response in the 2 non-responders after Isatuximab therapy.
CD8* T cells were identified against NY-GESO-1 and CD38 after Isatuximab therapy.

CD4* and CD8* T cell response was observed against CD38 in the second responder
patient.



Clinical effects

The 2 patients with humoral and cell responses to MM-associated
antigens showed significant responses to Isatuximab treatment. Patients
showed complete remission (CR) and disappearance of the serological
markers. The effects were durable.

The 2 non-responders showed progression of disease, after 2-12 months
of disease stabilization.

Conclusions

1) Generation of anti-CD38 and anti-MM-associated antigens antibodies
during Isatuximab treatment.

2) MM with anti-MM immune response appear to develop additional
anti-tumor responses during Isatuximab treatment.

3) Tumor-specific immune fitness might be associated with positive
clinical response.

Caveat: the results were obtained from a small clinical sample. However,
these are indications supporting the view that Isatuximab treatment
favours an adaptive anti-tumor immunity (in vivo vaccination)

Atanackovic D., et al., Leukemia, 2019.



Isatuximab-induced killing of MM cells is dependent on the expression of CD38
and of complement inhibitory receptors:
response predictive markers?

ADCC and ADCP: MM cells should express >100,000 molecules/cell.

CDC: 250,000 molecules/cell are insufficient for implementing CDC. Indeed, MM lines with
>250,000 molecules/cell may be resistant to Isa-mediated CDC. Induced over-expression of
CD38 is not sufficient to re-sensitize MM cells.

The authors investigated the role of inhibitors of the complement cascade (CD46, CD55 and
CD59 receptors) to explain these observation.

CD46
CD55 50,000 mol/cell is a threshold to suppress Isa-mediated CDC
CD59

High levels of at least one of each is sufficient for inducing resistance to Isa-mediated CDC,
even with high CD38.

Conclusion: High levels of CD38 along with low levels of CD59 (and bona fide of the other
inhibitors) are important for Isa-mediated CDC.

Z.5S0Ng ccoeerrennnne. and B. Paiva, M. Chiron and F. Adrian, Cancer Research, 2019



Summary of the effects implemented by
Isatuximab in an in vitro setting.

Isatuximab MoA
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Up-regulated genes in human myeloma upon Dara
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Down-regulated genes in human myeloma upon Dara
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Whither MV from multiple myeloma:
Molecular effects observed on NK cells (CD16*/CD567)
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cvomparatve adndlysis Or up moauidted genes (RNA
polyA) after exposure of NK cells to MV-DARA (control:

MV from untreated myeloma)
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CCL8 C-C motif chemokine ligand 8

CRTAM cytotoxic and regulatory T-cell molecule
IL2RA interleukin 2 receptor subunit alpha

XCL1 X-C motif chemokine ligand 1

SECTM1 secreted and transmembrane 1

CXCL9 C-X-C motif chemokine ligand 9

XCL2 X-C motif chemokine ligand 2

IRF8 interferon regulatory factor 8

CCL7 C-C motif chemokine ligand 7

RGS1 regulator of G-protein signaling 1

BCL2 apoptosis regulator

CCL2 C-C motif chemokine ligand 2

TNFSF9 TNF superfamily member 9

SERPING1 serpin family G member 1

CSF2 colony stimulating factor 2

LILRA3 leukocyte immunoglobulin like receptor A3
CCL3 C-C motif chemokine ligand 3

CD97 adhesion G protein-coupled receptor E5
KIR2DL1 killer cell immunoglobulin like receptor
GEM GTP binding protein

TNF tumor necrosis factor

CCL4 C-C motif chemokine ligand 4

IFNG interferon gamma

CXCL10 C-X-C motif chemokine ligand 10
TNFSF4 TNF superfamily member 4

TNFRSF4 TNF receptor superfamily member 4
TNFRSF13C TNF receptor superfamily member 13C
CCL15 C-C motif chemokine ligand 15

HLA-L major histocompatibility complex class I, L
GBP1 guanylate binding protein 1

CADM1 cell adhesion molecule 1

TNFRSF1B TNF receptor superfamily member 1B
IL4R interleukin 4 receptor

CCL4L1 C-C motif chemokine ligand 4 like 1
KIR2DL3 killer cell immunoglobulin like receptor
LYST lysosomal trafficking regulator

CCL3L3 C-C motif chemokine ligand 3 like 3
FCGR1A Fc fragment of IgG receptor 1a

CD274 Programmed death-ligand 1

IL8 interleukin 8



Comparative analysis of up modulated genes (RNA polyA)
after exposure of NK cells to MV-DARA (control: MV from
untreated mveloma)

-logyo (p-value)
6

o
N
ES
<)
—_
o

Immune response

TNFRSF9 (CD137) TNF receptor superfamily member 9
NR4A2 nuclear receptor subfamily 4 group A member 2
CRTAM cytotoxic and regulatory T-cell molecule

NR4A1 nuclear receptor subfamily 4 group A member 1
IL2RA interleukin 2 receptor subunit alpha

TNFRSF18 TNF receptor superfamily member 18

HSPB1 heat shock protein family B member 1

CCL2 C-C motif chemokine ligand 2

CSF2 colony stimulating factor 2

BCL2 apoptosis regulator

IDO1 indoleamine 2,3-dioxygenase 1

P2RX7 purinergic receptor P2X 7

BCL2L1 BCL2 like 1

BCL2L11 BCL2 like 11

NTRK1 neurotrophic receptor tyrosine kinase 1
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STAT5A signal transducer and activator of transcription 5A
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STAT1 signal transducer and activator of transcription 1
TNF tumor necrosis factor
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NFKB1 nuclear factor kappa B subunit 1

NACC1 nucleus accumbens associated 1

DHCR24 24-dehydrocholesterol reductase

RARG retinoic acid receptor, gamma

IGF2R insulin like growth factor 2 receptor

TRAF1 TNF receptor associated factor 1

CADM1 cell adhesion molecule 1

PHLDAL1 pleckstrin homology like domain family A member 1
PLAGL1 like zinc finger 1

PIM3 proto-oncogene, serine/threonine kinase

KLF10 Kruppel like factor 10

FGF2 fibroblast growth factor 2

MYC v-myc avian myelocytomatosis viral oncogene homolog
LYST lysosomal trafficking regulator

BCL6 B-cell CLL/lymphoma 6

EIF2AK3 eukaryotic translation initiation factor 2 alpha kinase 3
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D. Incarnato and F. Malavasi. (in preparation, 2019)



vomparatve adndlysis oOr aown moauiatea genes (RNA
polyA) after exposure of NK cells to MV-DARA (control:
MV from untreated myeloma)
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D. Incarnato and F. Malavasi (in preparation, 2019)



Comparative analysis of down modulated genes (RNA
polyA) after exposure of NK cells to MV-DARA (control:
MV from untreated myeloma)
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Interplay among ectoenzymes, their substrates and products in the BM niche
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A Hypothesis: NON-INHIBITING THERAPEUTIC ANTIBODIES
(e.g., Daratumumab)
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Absorbance (260 nm)

Proof-of-principle: BM plasma from MM patients
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Human Osteoclasts express ADO receptors
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BM plasma ADO levels in different MM

stages
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Internalization into dendritic cells of
MVs from myeloma membranes

RED=CD80-Alexa546
GREEN=DiO-labeled MVs

Faini A.C. and Malavasi f., 2019, in preparation



FcReceptors: friends or foes?
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Response (arcsec)

Kinetic and equilibrium parametrics of the Dara FcR recognition process
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Insoluble vs soluble Dara-mediated effects on NK
proliferation
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Distinct effects of therapeutic antibodies on tumor target and on efffectors:
a hypothesis

Therapeutic antibody

FcR"' ﬂf FC R+
effector 3 effector

: immunoreceptor tyrosine-based
activation motif

. immunoreceptor tyrosine-based
inhibitory motif

Effects on
FCR™ target Myeloma

A. C. Faini and F. Malavasi. Clinical Cancer Research, 2019
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Whither MV from multiple myeloma:
Molecular effects observed on NK cells (CD16*/CD567)
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Activating FcyRs- Inhibitory FcyRIlb-
Depletion of target cells Crosslinking of target receptor
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Immune modulation induced by Daratumumab on relapsed/ refractory MM patients
(RRMM).

Strategy: analysis of whole peripheral blood

preparations and BM samples (baseline versus on treatment) from monotherapy SIRIUS and GEN501
studies.

Analysis: by high-parameter mass cytometry.

Results:

General: Expansion of cytotoxic T lymphocyte populations and reduction of immune-suppressive cells.
Details:

1) surface CD38 was decreased on immune cells on the whole blood from SIRIUS study.

2) NK cells were significantly depleted.

3) Residual NK cells: i) >surface CD69 and CD127, ii) <CD45RA. iii) trends for increase of CD25, CD27
and CD137. iv) Granzyme B was decreased.

3) At the same time, the immune suppressive populations are depleted, while CD38 basophiles were
reduced.

After 2 months of Dara therapy:
4) whole blood samples shifted to CD8* prevalence, with high granzyme B positivity.

Conclusion: An increased cytotoxicity to MM cells, mainly obtained via CD8* T lymphocytes rich in

cytolytic granzyme B, represents an adaptative response expected to sustain the depth of the
response.

Adams HC 3°, ............ van de Donk NWCJ, Sasser AK and Casneuf T. Cytometry Am March 2019



CD38 in NAD* metabolism
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Purinome in the MM environment during metabolic reprogramming of the
bone marrow niche.
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Human bone marrow sheltering malignant plasma cells, bone and immune cells supports
the production of adenosine
with generation of a tolerant niche

regulatory myeloid derived
suppressor cells

M2 Teff cell Tumor cell Differentiation in Treg cell
- polarization depress:on lysis inhibition toierogemc DC induction

'Y -~ amp. @@ L
:+ + * L P8 . 0, & : ® AMP 20® Bone Marrow
< + ® NAD+ O 0 o0 Niche
a|l ¢ ¢ O @ —~ O
kS 4 coga . O - ADPR N CD203a
5 O ADOR
:E .Myeloma CD38
Non
immune
‘— ADOR cells

Osleulidast

A.L. Horenstein............ and F. Malavasi (Frontiers Immunol. 10: 760, 20



Interplay among ectoenzymes, tneir supstrates and proaucts In the Bivi
niche
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Absorbance (260 nm)

Proof-of-principle: BM plasma from MM patients
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De novo synthesis pathway Salvage synthesis pathway
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