Highlights from IMW 2019

Coordinatore Scientifico Michele CAVO

Lucia Pantani

Istituto di Ematologia Seràgnoli Università degli studi di Bologna

Gammapatie monoclonali di significato renale

Comitato Scientifico Mario BOCCADORO Michele CAVO Maria Teresa PETRUCCI

Disclosures

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Honoraria
Janssen							x
Celgene							x
Amgen							x
Takeda							x

Highlights from IMW 2019

19-20 novembre 2019 Bologna

Definitions

M onoclonal

G ammapathy

R enal

S ignificance

Plasma cell clone: IgG > IgA > (IgD), LC only B-cell / lymphoplasmacytic clone: IgM > IgG MIg: intact Ig, LC, LC+HC, HC only

monoclonal gammapathy

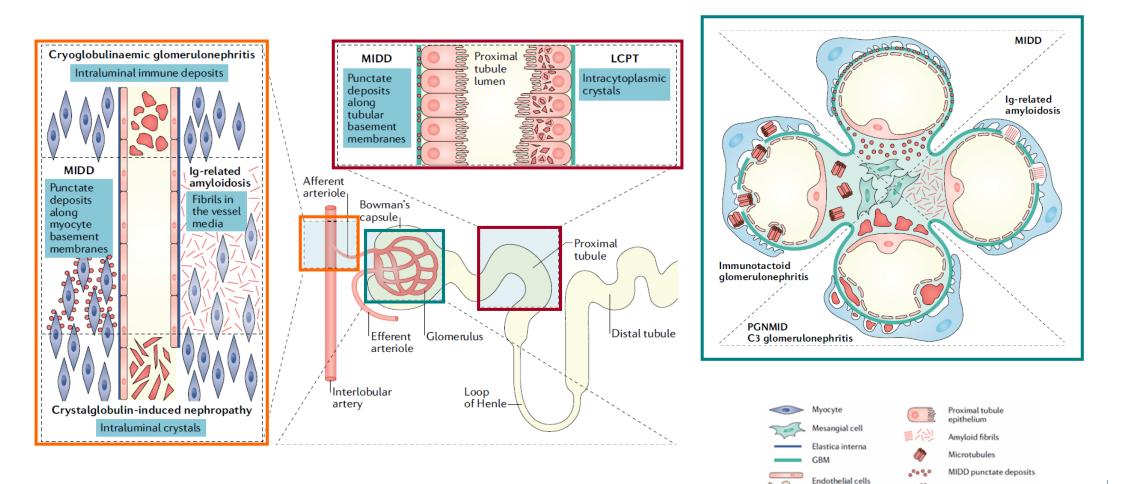
BUT no overt diagnosis of symptomatic MM / WM / CLL

associated symptoms / renal damage related to MIg or clone by any mechanism other than tumor burden

current haematological criteria for specific therapy are not met

Bridoux et al. Kidney International 2015 Leung et al. Nat Rev Nephrol 2019 Fermand et al. Blood 2013; Blood 2018

Prognostic considerations



Monoclonal gammopathy of renal significance: when MGUS is no longer undetermined or insignificant Blood. 2012;120(22):4292-4295

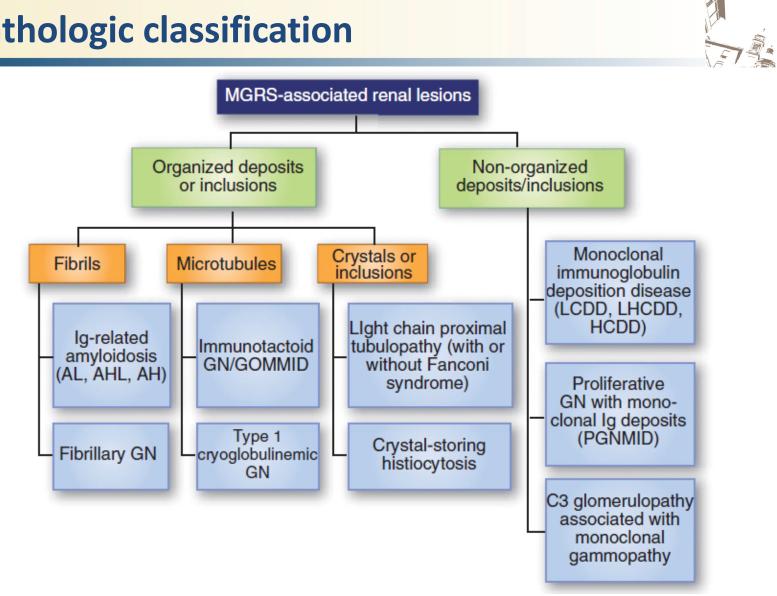
Nelson Leung,^{1,2} Frank Bridoux,³ Colin A. Hutchison,⁴ Samih H. Nasr,⁵ Paul Cockwell,⁴ Jean-Paul Fermand,⁶ Angela Dispenzieri,² Kevin W. Song,⁷ and Robert A. Kyle,² on behalf of the International Kidney and Monoclonal Gammopathy Research Group

Monoclonal gammopathy: The good, the bad and the ugly Siobhan V. Glavey^a, Nelson Leung^{b,c,*} Blood Reviews 30 (2016) 223–231

- Still poorly recognized and frequently undertreated
- Potentially severe organ damage → ESRD
- High rates of recurrence after kidney transplantation
- Efficient suppression of nephrotoxic MIg can impact renal and patient survival

07

Podocyte


Cryoglobulins

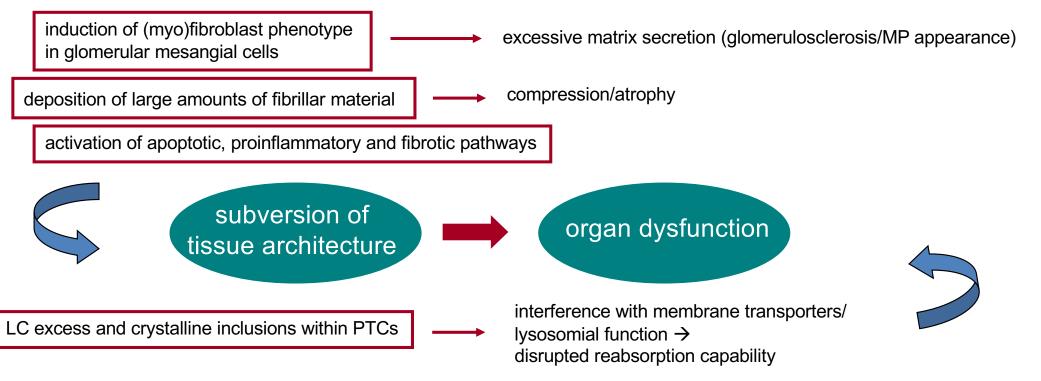
Immunoglobulin crystals

MGRS-associated renal lesions

Adapted from Leung, Nat Rev Nephrol 2019

Histopathologic classification

MGRS	Involvement		MG	Renal biopsy findings			
	renal	extrarenal		LM	IF/IHC	EM	
AL amyloidosis	Glomeruli, vessels, interstitium	Heart, liver, GI, peripheral nerve, soft tissues	λ LC (75%) k LC (25%)	Amorphous/acellular mesangial deposits, PAS/ silver neg; Congo Red pos	AL: LC restriction (mostly λ)	Randomly oriented nonbranching fibrils (8-12 nm Ø)	
Fibrillar GN	Mesangium, capillaries	/	IgG (policlonal)	Mesangial proliferation, MPGN pattern, Congo Red neg	lgG (++ lgG1), 15% monoclonal	Randomly oriented nonbranching fibrils (12-24 nm Ø)	
Immunotactoid GN	Glomeruli	/	CLL-like (50%)	Membranous or MPGN pattern	IgG with LC restriction, C3, occasional IgM	Organized parallel microtubules (> 30 nm Ø)	
Type I (type II) cryoglobulinemic GN	Glomeruli, vessels	Skin, peripheral nerve, joints	lgG/lgM	MPGN pattern, endocapillary GN, PAS+, intraluminal deposits	Granular deposits in mesangium/capillaries; IgG > IgM, k>1, C3-C4, C1q	Subendotelial and intracapillary deposit, frequently microtubular (10-90 nm Ø)	
Light chain proximal tubulopathy (LCPT) (w/o Fanconi)	Tubules, interstitium	/	K LC (>90%)	PTC vacuolation/fragmentation; intracytoplasmatic inclusion (often crystalloid)	LC (k) inclusions within tubular epithelium	Intralysosomal or free romboid- shaped crystals in proximal tubules	
Cristal storing histiocytosis	Interstitium	Cornea, joints, lymphoid tissue	K LC	Interstitial infiltration of histiocytes/macrophages with eosinophilic inclusions	LC (k) Crystalloid inclusions within histiocytes/ macrophages	Rhomboid/needle-shaped crystals and vacuoles within interstitial histiocytes/macrophages	
MIDD: Monoclonal Ig deposition disease (LCDD, LHCDD, HCDD)	Glomeruli, tubules, vessels	Heart, liver, lung	LCDD: usually k LC	Mesangial proliferation, nodular glomerulosclerosis, thickening of TBM, congo red neg	Diffuse linear deposit along GMB, TBM, arteriolar/ arterial myocytes (k LC)	Punctate powdery electron-dense deposit along inner aspect of GBM and outer TBM	
Proliferative GN with monoclonal Ig deposit (PGNMID)	Glomeruli	/	lgG (++lgG3)	Endocapillary proliferative GN; MPGN	Glomerular granular deposit of MIg with LC restriction (mesangium and capillary wall)	Nonorganized mesangial, subendothelial electron-dense deposit; less common subepithelial	
C3 glomerulopathy associated with MG	Glomeruli	/	(IgG)	Endocapillary proliferative GN; MPGN	Granular C3 deposit in mesangium and capillaries. Absence of Ig deposit. Pronase treatment to detect MIg	Mesangial, intramembranous and subendothelial electron-dense deposit	


Pathogenesis

Structural characteristics and physicochemical properties of the MIg are the main determinants of renal lesions

Direct mechanism: MIg deposition

Intact Ig molecules are entrapped in glomeruli, LC/truncated HC can potentially affect all renal compartments

Pathogenesis

Indirect mechanism: autoantibody activity of MIg

• against complement regolatory proteins (complement factor H, factor B/C3 nephritic factor)

increased half-life of C3 convertase

hyperactivation of alternative pathway of complement

dysregulation of CAP

• monoclonal IgM presenting with rheumatoid factor activity (mixed type II cryoglobulinemias)

Unknown / putative mechanism

Absorption of biologically active molecules in clonal cells or aggregated MIg (factor X absorbtion on AL amyloid fibrils \rightarrow bleeding disorders)

MGRSs may show a wide range of manifestations, depending on the underlying pathogenic mechanism and the primary site of involvement

Renal findings

- Various degrees of renal impairment up to ESRD
- Different degrees of proteinuria, which may reach nephrotic range
- Nephritic syndrome (hematuria, hypertension, edema)
- Electrolyte abnormalities
- Signs of PTCs dysfunction (glycosuria, aminoaciduria, phosphaturia, acidosis)

Clinical presentation

Extrarenal manifestations

- Amyloidosis-related
 - Heart: restrictive cardiomyopathy with heart failure and preserved ejection fraction, arrhythmias
 - Soft tissues: carpal tunnel syndrome, macroglossia, shoulder pad, and soft-tissue swelling/masses
 - Liver: hepatomegaly, *\\ colored table alkaline phosphatase, liver function test abnormalities*
 - Peripheral and/or autonomic nervous system: sensory-motor axonal PN, orthostatic hypotension
 - Gastrointestinal tract: altered motility, bleeding, malabsorption
- Cutaneous/vascular: petechiae/purpura, Raynaud's phenomenon, hyperviscosity, vasculitis
- Ocular: keratopathy, maculopathy
- Poliarthralgia
- Osteomalacia

1. When to suspect a MGRS

MGRS should be considered in every pt with renal manifestations combined with an M-protein

2. Exclude a chance association

Not every pts with MG and kidney disease has MGRS!

- high prevalence of MG in the elderly + high incidence of chronic kidney disease after age 60
 - → rule out cardiovascular/metabolic risk factors/disease
- hereditary/senile amyloidosis with MIg

3. Establish causal relationship between MG and clinical manifestation

Demonstration of a MIg deposition in affected tissue/organ that matches circulating MIg For MIg-mediated immune process: complement abnormalities, high titer of autoantibody activity Clinical evidence as "surrogate causal link": response to therapy targeting MIg secreting clone

Diagnostic workup

KIDNEY BIOPSY

- LM: morphological alteration, PAS/Congo-Red staining
- IF/IHC: Ab specific for LC and Ig isotypes, IgG subclasses, complement
- **EM**: ultrastructural characterization, composition and pattern of distribution of deposits
- Ancillary techniques:
- laser microdissection followed by liquid chromatography and mass spectrometry (amyloid typing)
- paraffin immunofluorescence after protease digestion (masked antigens, intracellular deposits or C3GN)

IDENTIFICATION OF PARAPROTEIN

- serum and urine electrophoresis
- serum and urine immunofixation
- serum light chain assay

normal FLC ratio k/λ 0.26-1.65 "renal range" FLC ratio k/λ: 0.37-3.17

Diagnostic workup

CLONAL IDENTIFICATION

- bone marrow aspirate/biopsy +/- IHC and flow cytometry
 - ightarrow to identify/quantify the underlying B cell or plasma cell clone
 - ightarrow to exclude overt MM / WM
- lymphnode biopsy: in pts with IgM or high suspition for lymphoma

IMAGING STUDIES

CT scan with or without PET; whole-body/axial MRI

- → to look for localized plasmacytoma or lymphadenopathy in low-stage/low-grade lymphoma in pts with "negative" bone marrow evaluation
- ightarrow to look for bone disease/focal lesions for pts with suspected MM

IDENTIFICATION OF EXTRARENAL INVOLVEMENT

- cardiac evaluation (echocardiogram, cardiac MRI, NT-proBNP and troponin levels)
- nerve conduction studies
- skin biopsy
- GI endoscopy...

Treatment

Aimed at:

eradication of secretory clone (although not malignant per se) to preserve/improve organ function reduce the risk of disease recurrence after transplantation

organ damage/organ involved

- , type of underlying clone
- comorbidities
- natural disease history
- * metabolism and safety profile of antineoplastic drugs in RI

Treatment

AL amyloidosis: cardiac involvement is critical, guidelines and clinical trials available

Plasmacytic clone secreting IgG/IgA or LCs only: strategy based on anti-MM agents

- bortezomib, usually in combination with dexa and cyclophosphamide (CyBorD regimen)
- HDM + ASCT, upfront or after a bortezomib-based induction
- local radiotherapy (if clone responsible for MGRS manifest as a solitary plasmacytoma)
- IMiDs in the relapse setting

B-cell clone (lymphoplasmacytic with IgM production, B cell lymphoma, CLL):

- → antiCD20 monoclonal antibody
 - Rituximab in combination with either cyclophosphamide or bendamustine
 - no clear data on new/non conventional agents
 - plasmaexchange/antiviral therapy in crioglobulinemia with rapidly progressive renal disease/HCV+

Treatment

Supportive care:

- prevention of thrombotic and infectious risk in pts with nephrotic syndrome
- treatment of hypertension and proteinuria with renin-angiotensin system inhibitors
- prevention of osteomalacia (FS) with bicarbonate, phosphate and vitamin D supplementation

Renal transplantation:

- MGRS should not be considered a controindication to renal transplantation although the risk of recurrence and graft loss is high
- must be discussed in each individual case, taking into account underlying MGRS characteristics, initial therapeutic response, presence of extrarenal manifestations, and patient's status
- clear counseling about risk of graft loss, its link with the B-cell clone and the potential need for reintroduction of chemotherapy

Take home messages

- Organ damage is indipendent from clonal mass
- Histopathologic identification and classification crucial for determining the optimal treatment
- Efficient control of underlying clone can impact renal and patient survival

Multidisciplinary approach is required: haematologists, nephrologists and (nephro)pathologists