Highlights from IMW 2019

19-20 novembre 2019 Bologna Royal Hotel Carlton

Daniele Derudas SC di Ematologia e CTMO Ospedale Oncologico di Riferimento Regionale «A. Businco» Cagliari

> Nuovi farmaci e nuovi meccanismi di azione

Coordinatore Scientifico Michele CAVO Comitato Scientifico Mario BOCCADORO Michele CAVO Maria Teresa PETRUCCI

Multimodality targeting of MM in the context of the BM microenvironment

Giada Bianchi et al. Blood 2015;126:300-310

2015 by American Society of Hematology

Highlights from IMW 2019

Storia della terapia del MM

Highlights from IMW 2019

Mortality remains high although novel agents have resulted in improved survival

There is still a need for more efficient treatments offering higher response and better outcomes

OS, overall survival.

¹ Adapted from Kumar SK, et al. Blood 2008;111:2516–20; ² Kumar SK, et al. Leukemia 2014;28:1122–8.

Highlights from IMW 2019

Highlights from IMW 2019

	Fre Tre	ontline atment	Relapsed	Unmet Need Refractory or Intolerant	
Expected survival (m)		20-50	14-16	6-10	
Sensitivity to therapy		Sensitive	Less Sensitive/Resistant	Resistant	
Treatment limitations/ comorbidities		Peripheral neuropathy (~15% at diagnosis)	>80% incidence of peripheral neuropathy Compromised marrow reserve Cytopenia	Intolerant to or ineligible for available therapy	
	I	Elderly population (个 risk for heart, lung, renal,			

liver dysfunction, diabetes)

Adapted from: Durie BGM. Multiple Myeloma. International Myeloma Foundation. 2011/2012 edition. Jagannath S. Clin Lymphoma Myeloma. 2008;8 Suppl 4:S149-S156.

Highlights from IMW 2019

OS for refractory Myeloma patients in the Daratumumab era

- ✓ Median age is 64 years (range 32-82) and 54% were female
- ✓ Patients received a median of 6 lines of therapy and median time to start Datarumumab treatment from their diagnosis was 63 months (6-255 months)
- ✓ Majority were quad- and penta-refractory (86,9% and 70,8%, respectively)
- ✓ 32,3% of patients received Daratumumab as a single agent and most patients received a combination if IMiD (DPd: 50,8% and DRd: 6,2%) or a IP(DVd: 6,9%)

Nooka et al, ASH 2018

Highlights from IMW 2019

- ✓ Most patients have cycled through common agents
- Chemotherapy based approaches while short term response, don't result in long term control
- ✓ Need new MOA or targets:
 - a. New chemotherapy
 b. XPO1
 c. New IMIDs
 d. Bcl-2/MCL-1
 e. Immune targeted agents

Highlights from IMW 2019

MELFLUFEN

Melflufen: a Lipophilic Peptide-Conjugated Alkylator Rapidly Delivers a Cytotoxic Payload Into Myeloma Cells

Peptidase-enhanced activity in multiple myeloma cells

Melflufen is 50-fold more potent than melphalan in myeloma cells in vitro due to increased intracellular alkylator activity^{4,5}

1. Hitzerd SM, et al. Amino Acids. 2014;46:793-808. 2. Moore HE, et al. Mol Cancer Ther. 2009;8:762-770. 3. Wickström M, et al. Cancer Sci. 2011;102:501-508. 4. Chauhan D, et al. Clin Cancer Res. 2013;19:3019-3031. 5. Wickström M, et al. Oncotarget. 2017;8:66641-66655. 6. Wickström M, et al. Biochem Pharmacol. 2010;79:1281-1290. 7. Gullbo J, et al. J Drug Target. 2003;11:355-363. 8. Ray A, et al. Br J Haematol. 2016;174:397-409.

Highlights from IMW 2019

Activity of Melflufen in RR MM Patients With Extramedullary Disease in the Phase 2 HORIZON Study (OP-106): Promising Results in a High-Risk Population

Paul G. Richardson, MD¹; María-Victoria Mateos, MD, PhD²; Paula Rodríguez-Otero, MD³; Maxim Norkin, MD⁴; Alessandra Larocca, MD⁵; Hani Hassoun, MD⁶; Adrián Alegre, MD⁷; Agne Paner, MD⁸; Xavier Leleu, MD, PhD⁹; Christopher Maisel, MD¹⁰; Amitabha Mazumder, MD¹¹; Johan Harmenberg, MD¹²; Catriona Byrne, RN¹²; Hanan Zubair, MSc¹²; Sara Thuresson, MSc¹²; and Joan Bladé, MD¹³

¹Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; ²Hospital Clínico Universitario de Salamanca, Salamanca, Spain; ³Clínica Universidad de Navarra, Pamplona, Spain; ⁴Baptist MD Anderson Cancer Center, Jacksonville, FL, USA; ⁵University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy; ⁶Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁷Hospital Universitario de la Princesa, Madrid, Spain; ⁸Rush University Medical Center, Chicago, IL, USA; ⁹CHU de Poitiers, Poitiers, France; ¹⁰Baylor Scott & White Charles A. Sammons Cancer Center, Dallas, TX, USA; ¹¹The Oncology Institute of Hope and Innovation, Glendale, CA, USA; ¹²Oncopeptides AB, Stockholm, Sweden; and ¹³Hospital Clínica de Barcelona - Servicio de Onco-Hematología, Barcelona, Spain

Highlights from IMW 2019

ClinicalTrials.gov Identified: NCT02963493.

CBR, clinical benefit rate; dara, daratumumab; dex, dexamethasone; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; EoT, end of treatment; IMiD, immunomodulatory agent; IV, intravenous; mAbs, monoclonal antibodies; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PI, proteasome inhibitor; pom, pomalidomide; pts, patients; RR MM, relapsed/refractory multiple myeloma; TTP, time to progression; TTR, time to response. *Pts aged >75 years received dex 20 mg.

Highlights from IMW 2019

Baseline Characteristics and Prior Therapy

Patient Characteristics (n=130)	Non-EMD	EMD
rauent Characteristics (II-150)	(n=86)	(n=44)
Age, median (range), years	64 (35-86)	64 (43-82)
Time since diagnosis, median, years	6.6 (1.6-24.2)	5.5 (0.6-12.7)
No. of prior lines of therapy, median (range)	5 (2-10)	5 (3-12)
	%	%
Gender (male / female)	53 / 47	59 / 41
ISS stage I / II / III / unknown	42 / 29 / 23 / 6	43 / 23 / 27 / 7
ECOG PS 0/1/2/unknown	27 / 58 / 13 / 2	18 / 64 / 16 / 2
High-risk cytogenetics ^a	57	52
≥2 high-risk abnormalities	25	10
Del(17p)	19	13
Double-class (IMiD+PI) exposed / refractory	100 / 90	100 / 93
Triple-class (IMiD+PI+anti-CD38) exposed / refractory	71/63	93 / 91 ^b
Anti-CD38 mAb exposed / refractory	72 / 72	93 / 93
Alkylator exposed / refractory	91 / 58	82 / 59
≥1 Prior ASCT	69	73
≥2 Prior ASCTs	13	14
Relapsed/progressed within 1 year of ASCT	17	23
Refractory in last line of therapy	95	100

group and 13 pts in the EMD Includes 2 PI-intolerant pts.

Highlights from IMW 2019

EMD and Prior Therapy

- 91% of EMD pts triple-class refractory and 73% penta-refractory
- No other significant differences seen between EMD and non-EMD pts, except anti-CD38 exposure
- EMD incidence higher with prior anti-CD38 exposure (P=0.01)
 - 41 of 103 (40%) anti-CD38 mAb exposed pts had EMD
 - 3 of 27 (11%) not anti-CD38 mAb exposed pts had EMD

Highlights from IMW 2019

EMD Characteristics

Bone-related or Soft Tissue EMD, n (%)	EMD Pts	CNS Involvement	
Pts with EMD ^a	44 (100)	5 (11)	
Soft tissue ^b	26 (59)	2 (5)	
Bone-related ^c	18 (41)	3 (7)	

CNS, central nervous system; EMD, extramedullary disease; Pt, patient. "Majority of pts had multiple lesions at baseline. Includes pts with both bone-related and soft tissue EMD. "Three pts had bone-related EMD with extension into CNS.

- Method of baseline assessment for known or suspected EMD was by investigator choice including PET/CT, MRI and physical examination
- 59% of pts had soft-tissue EMD (with or without additional bone-related EMD) and 41% had bonerelated EMD alone
- 5 pts (11%) had CNS involvement, of which 3 pts had bone-related EMD with extension into CNS
- Majority of pts (29 of 44) had multiple sites of EMD

Highlights from IMW 2019

- Similar ORR in non-EMD and EMD pts, with an ORR of 27% and 23% respectively
 - Investigator-assessed response¹
 - IRC review ongoing
- Median DOR for non-EMD pts 4.4 mos (95% Cl, 3.5-11.2)
- Median DOR for EMD pts 3.4 mos (95% CI, 1.8-15.4)

^aTwo non-EMD pts with pending response information available at data cut off 30th July 2019.

1. Rajkumar SV, et al. Blood. 2011;117:4691-4695.

Highlights from IMW 2019

HORIZON

Response in EMD Pts (n=44)

Highlights from IMW 2019

Disease Characteristics in Responding EMD Pts HORIZON

No. Prior Lines of Therapy	Refractory Status	EMD	Response
5	Penta	Lymph nodes and paramediastinal masses	VGPR
6	Penta	Skull based mass with soft tissue extension	VGPR
6	Triple	Pulmonary masses	VGPR
8	Quad	Mandibular mass with soft tissue extension	PR
5	Quad	Multiple soft tissue plasmacytoma arising from iliac bone	PR
3	Quad	Pleural masses, hepatobiliary tract, right orbital plasmacytoma, L5 mass with spinal canal extension	PR
7	Penta	Multiple masses arising from the skull and ribs with soft tissue extension	PR
5	Penta	Multiple subcutaneous plasmacytoma affecting the trunk and extremities	PR
4	Penta	Multiple pleural and spinal masses with soft tissue extension	PR
4	Penta	Masses in mandible and sternum with soft tissue extension	PR

Highlights from IMW 2019

Highlights from IMW 2019

HORIZON

Grade 3 and 4 TEAEs (≥5%) in ITT Population

	ITT (n=136)			
TEAES, TI (%)	Grade 3	Grade 4		
Any AE	38 (28)	77 (57)		
Hematologic AEs				
Thrombocytopenia	30 (22)	63 (46)		
Neutropenia	44 (32)	48 (35)		
Anemia	48 (35)	1 (1)		
White blood cell count decreased	14 (10)	10 (7)		
Leukopenia	4 (3)	5 (4)		
Febrile neutropenia	6 (4)	2 (1)		
Lymphopenia	5 (4)	2 (1)		
Non-hematologic AEs				
Pneumonia	9 (7)	2 (1)		

AC, adverse event, ITT, intention-to-treat, TEAC, treat *Grade 3 and 4 AEs occurring in ≥5% of pts.

- Safety profiles for EMD and non-EMD pts similar
- Generally well tolerated, with manageable toxicity: no alopecia, 1 grade 2 mucositis only, no peripheral neuropathy
- Low overall incidence of other non-hematologic AEs including infections; no treatment-related deaths

Highlights from IMW 2019

Conclusions and Future Directions

- HORIZON has one of the largest cohorts of RR MM pts with EMD in a prospective clinical trial: enrollment near complete (N=156), final analysis pending
- Melflufen/dex has encouraging activity in advanced RR MM with EMD (ORR 23%, CBR 30%) or without EMD (ORR 27%, CBR 45%)
- Response to melflufen/dex in EMD higher than reported for other agents¹⁻⁵
- Current median OS in responding EMD pts 18.5 mos vs. 5.1 mos in non-responders
- Incidence of EMD is higher than expected, and appears increased after prior anti-CD38 mAb therapy
- Results support continued evaluation of melflufen-based combination therapies for this population with unmet medical need
- Melflufen is being studied in 4 ongoing phase 2 and 3 trials with further trials planned

1. Usmani SZ, et al. Blood. 2016;128:37-44. 2. Celotto K, et al. Am J Hematol Oncol. 2017;13:21-23. 3. Jiménez-Segura R, et al. Blood. 2016;128:Abstract 5709. 4. Jiménez-Segura R, et al. Eur J Haematol. 2019;102:389-394. 5. Ichinohe T, et al. Exp Hematol Oncol. 2016;5:11.

Highlights from IMW 2019

IBERDOMIDE

First Clinical (Phase 1b/2a) Study of the CELMoD Iberdomide (CC-220) in Combination With Dexamethasone (DEX) in Patients With Relapsed/Refractory Multiple Myeloma (RRMM)

Sagar Lonial¹, Niels W.C.J. van de Donk², Rakesh Popat³, Jeffrey A. Zonder⁴, Monique C. Minnema⁵, Jeremy Larsen⁶, Tuong Vi Nguyen⁷, Min S. Chen⁷, Amine Bensmaine⁷, Mariana Cota⁷, Pieter Sonneveld⁸

¹Winship Cancer Institute, Emory University, Atlanta, GA, USA; ²VU University Medical Center, Amsterdam, Netherlands;
 ³NIHR UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK;
 ⁴Karmanos Cancer Institute, Detroit, MI, USA; ⁵University Medical Center Utrecht, Utrecht, Netherlands;
 ⁶Mayo Clinic, Scottsdale, AZ, USA; ⁷Celgene Corporation, Summit, NJ, USA; ⁸Erasmus Medical Center, Rotterdam, Netherlands

Highlights from IMW 2019

RATIONALE

- IMiD immunomodulatory drug-based combination regimens are a current standard of care for patients with MM^{1–3}
- Despite recent progress, MM remains incurable and new therapeutic options are needed, particularly for patients with relapsed / refractory disease^{4,5}
- Iberdomide (CC-220; IBER) is a novel CELMoD cereblon E3 ligase modulator that
 - Co-opts cereblon to enable enhanced degradation of target proteins, including lkaros and Aiolos, with 20 times higher affinity versus LEN and POM⁶
 - Enhanced direct antimyeloma and immune stimulatory activity in preclinical models⁷
 - Active in myeloma cell lines resistant to LEN and POM⁸
 - Synergizes with BORT and DARA, demonstrating enhanced apoptosis and antibodydependent cellular cytotoxicity⁹
 - Induces NK cell proliferation and may help rescue NK cell depletion by DARA⁹

Richardson PG, et al. Blood. 2010;116:679-686. 2. Plesner T, et al. Blood. 2016;128:1821-1828.
 Chari A, et al. Blood. 2017;130:974-981. 4. Sonneveld P, Broijl A. Haematologica. 2016;101:396-406.
 Chim CS, et al. Leukemia. 2018;32:252-262. 6. Matyskiela ME, et al. J Med Chem. 2018;61:535-542.
 T. Bjorklund CC, et al. Blood 2016;128:abstract 1591. 8. Bjorklund CC, et al. Unpublished data.
 Amatangelo M, et al. Blood. 2018;132:abstract 1935.

CELMoD, cereblon E3 ligase modulation drug; IMiD, immunomodulatory drug; LEN, lenalidomide; MM, multiple myeloma; POM, pomalidomide.

Highlights from IMW 2019

IBERDOMIDE MECHANISM OF ACTION

· IBER enhances in vitro immune stimulatory activity versus LEN and POM¹

BORT, bortezomib; DARA, daratumumab; DSMO, dimethylsulfoxide; EC₅₀, half maximal effective concentration; IL, interleukin; NK, natural killer; PBMC, peripheral blood mononuclear cell.

1. Bjorklund CC, et al. Unpublished data. 2. Adapted with permission from Matyskiela ME, et al. J Med Chem. 2018;61:535-542 © 2018 American Chemical Society.

Highlights from IMW 2019

19-20 novembre 2019 Bologna

000

EN

POM IBER

> 0, 00

IBERDOMIDE MM-001 PHASE 1b/2a TRIAL: STUDY DESIGN

^a DEX given at a dose of 40 mg (20 mg in patients aged > 75 years) on Days 1, 8, 15, and 22 of each 28-day cycle. ^b CFZ dosed once weekly (Cohort G1) or twice weekly (Cohort G2). CFZ, carfilzomib; DEX, dexamethasone; MTD, maximum tolerated dose; PD, progressive disease; RP2D, recommended phase 2 dose; RRMM, relapsed/refractory multiple myeloma.

Highlights from IMW 2019

DOSE AND SCHEDULE

qd, once daily.

Highlights from IMW 2019

PRIOR THERAPIES

Characteristics	Cohort B (IBER + DEX) (N = 66)
Prior therapies, median (range), n	5 (2–12)
ASCT, n (%)	52 (78.8)
LEN, n (%)	66 (100)
POM, n (%)	45 (68.2)
Proteasome inhibitor, n (%)	66 (100)
CD38 monoclonal antibody, n (%)	49 (74.2)
LEN-refractory, n (%)	50 (75.8)
POM-refractory, n (%)	37 (56.1)
IMiD agent-refractory, n (%) ^a	57 (86.4)
Proteasome inhibitor-refractory, n (%)	44 (66.7)
CD38 monoclonal antibody-refractory, n (%)	47 (71.2)

^a Includes LEN and / or POM. ASCT, autologous stem cell transplantation.

Highlights from IMW 2019

RESPONSE

Evaluable patients include patients who have received ≥ 1 dose of IBER, had measurable disease at baseline, and ≥ 1 post-baseline response assessment.

a Includes LEN and POM.

CBR, clinical benefit rate; DCR, disease control rate; MR, minimal response; ORR, overall response rate; PR, partial response; SD, stable disease; VGPR, very good partial response.

Highlights from IMW 2019

COHORT B (IBER + DEX): DLTs BY DOSE LEVEL

Dose Level, mg	Patients, n	DLTs
0.3	10	-
0.45	3	-
0.6	3	-
0.75	3	-
0.9	13	-
1.0	13	-
1.1	10	-
1.2	8	1 patient: grade 4 sepsis
1.3	3	1 patient: grade 3 pneumonia

DLT, dose-limiting toxicity.

Highlights from IMW 2019

GRADE 3–4 TEAEs IN CYCLE 1

TEAEs and Events of Interest Occurring in	Cohort B (IBER + DEX) (N = 66)		
Cycle 1, n (%)	Grade 3	Grade 4	
Anemia	10 (15.2)	0	
Neutropenia	6 (9.1)	6 (9.1)	
Febrile neutropenia	0	0	
Thrombocytopenia	2 (3.0)	3 (4.5)	
Fatigue	0	0	
Peripheral sensory neuropathy	0	0	
Diarrhea	0	0	
Constipation	0	0	
Deep vein thrombosis	0	0	
Pulmonary embolism	0	0	
Infection	7 (10.6)	1 (1.5)	
Pneumoniaª	2 (3.0)	0	

a Includes Medical Dictionary for Regulatory Activities Terminology version 21.0 or higher Preferred Terms pneumonia, influenzal pneumonia, parainfluenzae viral pneumonia, and streptococcal pneumonia.

Highlights from IMW 2019

CONCLUSIONS

- IBER is a novel CELMoD compound with enhanced tumoricidal and immune stimulatory effects in preclinical studies¹
 - Overcomes LEN and POM resistance²
- IBER + DEX showed a favorable safety and activity profile in patients with heavily pretreated RRMM
 - MTD / RP2D has not yet been reached
- ORR in patients refractory to LEN, POM, and / or CD38 antibody therapy was similar to that observed for whole cohort
- Enrollment continues in cohorts evaluating the combination of IBER + DEX with BORT, DARA, and CFZ as part of a broad development program for iberdomide

1. Bjorklund CC, et al. Blood. 2016;128:abstract 1591. 2. Bjorklund CC, et al. Unpublished data.

Highlights from IMW 2019

SELINEXOR

Selinexor: First-in-Class, Oral Selective Inhibitor of Nuclear Export (SINE)¹⁻⁴

Exportin 1 (XPO1) is the major nuclear export protein for:

- Tumor suppressor proteins (TSPs, e.g., p53, IκB, and FOXO)
- eIF4E-bound oncoprotein mRNAs (e.g., c-Myc, Bcl-xL, cyclins)
- Glucocorticoid receptor (GR)

XPO1 is overexpressed in MM:

- High XPO1 levels enable cancer cells to escape TSP-mediated cell cycle arrest and apoptosis
- XPO1 levels correlate with poor prognosis and drug resistance

Selinexor is an oral selective XPO1 inhibitor; preclinical data supports that selinexor:

- Reactivates multiple TSPs by preventing nuclear export
- Inhibits oncoprotein translation
- Reactivates GR signaling in presence of dexamethasone

²Schmidt et al., Leukemia, 2013, ²Tai et al., Leukemia, 2013, ³Argueta et al., Oncotarget, 2018 ⁴Turner et al, 2017 unpublished

Highlights from IMW 2019

Safety and Efficacy of the Combination of Selinexor, Lenalidomide and Dexamethasone (SRd) in Patients with Relapsed/Refractory Multiple Myeloma (RRMM)

Darrell White, Richard LeBlanc, Christopher Venner, Nizar J. Bahlis, Suzanne Lentzsch, Cristina Gasparetto, Christine Chen, Brea Lipe, Heather Sutherland, Sascha Tuchman, Muhamed Baljevic, Rami Kotb, Michael Sebag, Natalie Callander, William Bensinger, Kazuharu Kai, Jianjun Liu, Heidi Sheehan, Daniel Nova Estepan, Jatin Shah, Gary Schiller

Highlights from IMW 2019

Background / Rationale: Selinexor and Lenalidomide Activity in Heavily Treated MM

STORM*: Selinexor + Dexamethasone¹

Refractory to Dara, PI, and IMiD

ORR: 26.2% ORR: 25.3% (Penta-Ref) PFS: 3.7 months (Overall) MM-009: Lenalidomide + Dexamethasone²

Patients \geq 1 prior MM therapy

ORR: 61% PFS: 11.1 months

Selinexor demonstrates synergistic activity in combination with lenalidomide *in vivo*³

*Selinexor (+ dex) received accelerated approval from the FDA for patients with RRMM, with ≥4 prior therapy regimens, and whose disease is refractory to at least 2 PIs, 2 IMiDs, and an anti-CD38 MoAb

¹Chari et al., New England Journal of Medicine, 2019 ²Weber et al., New England Journal of Medicine, 2007 ³Carlson et al., ESH 2014

Highlights from IMW 2019

STOMP Study Design

Primary Objective: Determine the maximum tolerated dose (MTD) and recommended Phase 2 dose (RP2D)

Patient Populations:

- Arm SRd: selinexor + lenalidomide + dexamethasone Patients who received ≥1 prior lines of therapy for MM
- Arm SRd-NDMM: selinexor + lenalidomide + dexamethasone in newly diagnosed MM patients
- Arm SPd: selinexor + pomalidomide + dexamethasone
- Arm SVd: selinexor + bortezomib + dexamethasone
- Arm SKd: selinexor + carfilzomib + dexamethasone
- Arm SDd: selinexor + daratumumab + dexamethasone

SRd Dosing Scheme: 3 + 3 design was used for dose escalation phase

PO=per oral, BIW=twice-weekly, QW=once-weekly, QD=once daily

Highlights from IMW 2019

Patient Characteristics

Patient Characteristics	Ν
Enrolled as of August 1, 2019 (Enrollment is complete)	24
60 mg selinexor BIW + 25 mg lenalidomide QD	5
80 mg selinexor QW + 25 mg lenalidomide QD	7
60 mg selinexor QW + 25 mg lenalidomide QD (RP2D)	12
Median Age, Years (range)	67 (49 – 84)
Males : Females	13 (54%) : 11 (46%)
Median Time from Diagnosis to SRd Treatment, Years (range)	4.5 (<1 - 22)
Median Prior Regimens All Patients (range)	1 (1-8)
Proteasome Inhibitor (Treated : Refractory)	24 (100%) : 13 (65%)
Lenalidomide (Treated : Refractory : Naïve)	9 (38%) : 5 (21%) : 15 (63%)
Autologous Stem Cell Transplant	12 (50%)
Median Prior Regimens RP2D Patients (range)	4 (1-8)
Lenalidomide (Treated : Refractory : Naïve)	5 (42%) : 3 (25%) : 7 (58%)

Highlights from IMW 2019

Dose Limiting Toxicities

Selinexor Dose	Median Weeks on Treatment (range)	Dose Escalation DLT Evaluable Patients Enrolled (Number of Patients with DLT)	Dose-Limiting Toxicity (DLT)
60 mg BIW	6 (2-25)	5 (4)	G3 anorexia and weight loss, G4 thrombocytopenia, G4 thrombocytopenia and G3 fatigue, 4 missed doses
80 mg QW	13 (3-155)	6 (2)	G4 thrombocytopenia (2 cases)
60 mg QW	23 (2-122)	6 (-)	No DLTs were reported in the 60 mg QW cohort

Based on tolerability, the RP2D of SRd is selinexor 60 mg QW, lenalidomide 25 mg QD, and dexamethasone 40 mg QW

Highlights from IMW 2019

SRd Efficacy – M-Protein Effect

Highlights from IMW 2019

Selinexor-Lenalidomide-Dexamethasone: Efficacy

• The median time to response (≥PR) was 1 month

 Among lenalidomide naïve RP2D patients, the median time on treatment was 12 months

Responses were adjudicated according to the International Myeloma Working Group criteria,*four patients not evaluable for response withdrew consent prior to disease follow-up. Two unconfirmed PRs, ORR=Overall Response Rate (sCR+VGPR+PR), CBR=Clinical Benefit Rate (ORR+MR), sCR=Stringent Complete Response, VGPR=Very Good Partial Response, PR=Partial Response, MR=Minimal Response. Responses as of August 1, 2019 based on interim unaudited data.

11

Highlights from IMW 2019

Treatment-Related Adverse Events in ≥10% Patients

AE Term	60 mg BIW, 80 r	mg QW Sel + 25 mg	Len QD (N=12)	60 mg QW Se	el + 25 mg Len QD –	RP2D (N=12)	Total
Hematologic	Grade 1/2	Grade 3	Grade 4	Grade 1/2	Grade 3	Grade 4	(N=24)
Thrombocytopenia	1 (8.3)	2 (16.7)	6 (50.0)		3 (25.0)	4 (33.3)	16 (66.7)
Neutropenia		5 (41.7)	2 (16.7)		4 (33.3)	4 (33.3)	15 (62.5)
Anemia	3 (25.0)	1 (8.3)		1 (8.3)	1 (8.3)		6 (25.0)
Gastrointestinal							
Nausea	8 (66.7)	-	-	6 (50.0)	1 (8.3)		15 (62.5)
Anorexia	5 (41.7)	2 (16.7)		5 (41.7)			12 (50.0)
Vomiting	4 (33.3)			4 (33.3)	-		8 (33.3)
Constipation	5 (41.7)			1 (8.3)			6 (25.0)
Diarrhea	2 (16.7)			4 (33.3)			6 (25.0)
Asthenia	1 (8.3)			2 (16.7)	1 (8.3)	I	4 (16.7)
Altered Taste	3 (25.0)						3 (12.5)
Constitutional							
Fatigue	5 (41.7)	2 (16.7)		4 (33.3)	2 (16.7)		13 (54.2)
Weight Loss	4 (33.3)	1 (8.3)		5 (41.7)			10 (41.7)
Other							
Dehydration	1 (8.3)			2 (16.7)	1 (8.3)		4 (16.7)
Dizziness	2 (16.7)			2 (16.7)			4 (16.7)
Muscle Spasms	1 (8.3)			3 (25.0)			4 (16.7)
Vision Blurred	(1 (8.3)		3 (25.0)			4 (16.7)

• No treatment-related Grade 5 events were reported

Highlights from IMW 2019

Safety data cutoff of August 1, 2019

Conclusions – Safety & Efficacy

- Selinexor is first in class XPO1 inhibitor now approved for RRMM
- Weekly Selinexor 60 mg QW can be safely combined with full dose lenalidomide 25 mg QD, and dexamethasone 40 mg QW
- Side Effect profile is consistent with no new signal
 - Most Common G3/4 AEs thrombocytopenia and neutropenia
 - Low-grade Gastrointestinal Side Effects common and expected, and can be managed with appropriate supportive care and/or dose modifications
- Combination is highly active with ORR 92% in lenalidomide-naïve patients
- Combination is being evaluated in NDMM

All oral combination of selinexor / lenalidomide / dexamethasone appears to be highly active, well tolerated and warrants further investigation

Highlights from IMW 2019

Figure 1.

Overview of pro- and antiapoptotic molecules. A, cell death signals trigger BID and BIM to activate BAX and BAK, which in turn initiate MOMP and lead to apoptosis. B, antiapoptotic molecules, including BCL-2, antagonize both activator and effector molecules and block the apoptotic cascade. C, cell death signals also activate sensitizer molecules, which antagonize antiapoptotic molecules and release the block on apoptosis. This physiologic role is pharmacologically recapitulated by BH3-mimetic drugs such as venetoclax.

Venetoclax: Mechanism of Action

2 Venetoclax binds to and inhibits overexpressed BCL-2. Venetoclax BH3 only BH3 only BAX BAX BAX BCL-2 BCL-2 BCL-2

Kumar S, et al. ASCO 2015. Abstract 8576.

Highlights from IMW 2019

Figure 2.

Apoptotic priming and venetoclax (VCX) method of action. A, in an apoptotically primed cell, BCL-2 or other antiapoptotic molecules sequester BIM (or BID) and prevent interaction with effector molecules such as BAK or BAX. B, binding of VCX to BCL-2 displaces BIM, allowing it to interact with BAX (or BAK), which then oligomerizes and allows efflux of cytochrome C from the mitochondrion. C, a cell with a low degree of apoptotic priming has relatively little BIM or BID. In this case, treatment with VCX (D) has little effect in and of itself, though this might not preclude synergy with additional chemotherapy.

Highlights from IMW 2019

A model for Venetoclax resistance

lymphoid malignancies

Highlights from IMW 2019

Background of combination therapy with Venetoclax in MM

✓ The modest or marginal efficacy of Venetoclax as a single agent observed in three xenograft models in which BCL-2, BCL-X_L, and MCL-1 were variably expressed is likely due to the coexpression of either BCL-X_L and/or MCL-1 and therefore they focused on combination regimens with therapeutic agents that may inhibit their activity;

✓ **Bortezomib** induces caspase-dependent degradation of **MCL-1** via upregulation of **NOXA**, a BH3-only protein that selectively neutralizes **MCL-1** prosurvival activity in HMCLs: the inhibition of **BCL-2** by venetoclax and downmodulation of **MCL-1** by bortezomib is sufficient to induce synthetic lethality in vivo;

✓ The data suggest that the combination of Venetoclax with bortezomib is most likely to be efficacious in multiple myeloma patients that coexpress BCL-2 and MCL-1 but not BCL-X_L.

Punnoose E.A.; Mol Cancer Ther; 15(5) May 2016

Highlights from IMW 2019

Background of combination therapy with Venetoclax in MM

Companion Dispositics and Cancer Biomarkers Expression Profile of BCL-2, BCL-X_L, and MCL-1 Predicts Pharmacological Response to the BCL-2 Selective Antagonist Venetoclax in Multiple Myeloma Models <u>a</u> Elizabeth A. Punnose¹, Joel D. Leverson², Franklin Peale³, Erwin R. Boghaert⁴, Lisa D. Baimont², Nguyen Tan², Amy Young⁴, Michael Mitten¹, Ellen Ingalla⁴, Walter C. Jarbonne¹, Anatol Oleksijew¹, Peng Yue², Jason Oeh⁴,

Leslie Lee⁶, Sophie Maiga⁷, Wayne J. Fairbrother⁸, Martine Amiot⁷,

Andrew J. Souers⁴, and Deepak Sampath

ancer

✓ The data indicate that, in addition to **MCL-1**, **BCL-X**_L is heterogeneously expressed in HMCLs and patient samples. The expression profile of **BCL-X**_L relative to **BCL-2** and **MCL-1** may be an important predictor of response to venetoclax sensitivity as a monotherapy and in combination with bortezomib.

✓ To determine the latter, the authors developed robust IHC assays for evaluating **BCL-2**, **BCL-X**_L, and **MCL-1** expression, and cutoffs for evaluating these potential predictive biomarkers in multiple myeloma patient samples.

Highlights from IMW 2019

A Phase 3 Study of Venetoclax or Placebo in Combination with Bortezomib and Dexamethasone in Patients with Relapsed/Refractory Multiple Myeloma

Shaji K. Kumar¹, Simon J. Harrison², Michele Cavo³, Javier de la Rubia⁴, Rakesh Popat⁵, Cristina Gasparetto⁶, Vania Hungria⁷, Hans Salwender⁸, Kenshi Suzuki⁹, Inho Kim¹⁰, Elizabeth Punnoose¹¹, Wan-Jen Hong¹¹, Kevin J. Freise¹², Anjla Sood¹², Muhammad Jalaluddin¹², Jeremy A. Ross¹², James E. Ward¹², Paulo C. Maciag¹², Philippe Moreau¹³

¹Mayo Clinic, Rochester, MN, USA; ²Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia; ³Seragnoli Institute of Hematology, Bologna University School of Medicine, Bologna, Italy; ⁴Hematology Service Hospital Dr Peset and School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain; ⁵Department of Hematology, University College London Hospitals, London, United Kingdom; ⁶Duke University School of Medicine, Durham, NC, USA; ⁷Clinica Sao Germano, Sao Paulo, Brazil; ⁸Asklepios Tumorzentrum Hamburg, AK Altona and AK St. Georg, Hamburg, Germany; ⁹Japanese Red Cross Medical Center, Tokyo, Japan; ¹⁰Seoul National University, Seoul, South Korea; ¹¹Genentech, Inc., South San Francisco, CA, USA; ¹²AbbVie, Inc., North Chicago, IL, USA; ¹³Department of Hematology, University Hospital, Nantes, France

Highlights from IMW 2019

BELLINI Study Design

Cycles 1 – 8: 21-day, Bortezomib 1.3 mg/m² Days 1, 4, 8, 11 and dexamethasone 20 mg Days 1, 2, 4, 5, 8, 9, 11, 12 Cycles 9+: 35-day, Bortezomib 1.3 mg/m² Days 1, 8, 15, 22 and dexamethasone 20 mg Days 1, 2, 8, 9, 15, 16, 22, 23

Stratification factors	 Bortezomib sensitive vs naïve Prior lines of therapy: 1 vs 2–3
Non-ranked secondary endpoints	PFS in BCL-2 ^{high} (IHC), DOR, TTP, MRD negativity rate, other PROs (GHS, fatigue)
Key subgroup analyses	t(11;14), high/standard-risk cytogenetics, and BCL2 expression (gene expression)

DOR, duration of response; GHS, global health status; IHC, immunohistochemistry; MRD, minimal residual disease; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PI, proteasome inhibitor; PRO, patient reported outcome; QD, daily; QOL, quality of life; RRMM, relapsed/refractory multiple myeloma; TTP, time to progression; VGPR, very good partial response.

Highlights from IMW 2019

19-20 novembre 2019 Bologna

5

Demographics and Baseline Characteristics

	Ven+Bd (N=194)	Pbo+Bd (N=97)
Median age, years (range) ≥ 65 years, n (%)	66 (36, 87) 108 (56)	65 (44, 83) 52 (54)
Multiple myeloma ISS, n (%) Stage 1 Stage 2 Stage 3	81 (42) 69 (36) 39 (20)	48 (50) 32 (33) 13 (14)
ECOG performance score, n (%) 0 1 or 2	101 (52) 92 (48)	47 (49) 49 (51)
No. of prior lines of therapy, n (%) 1 2 or 3	91 (47) 103 (53)	44 (45) 53 (55)
Prior stem cell transplant, n (%)	116 (59)	57 (59)
Prior exposure to PI, n (%)	135 (70)	68 (70)
Prior exposure to IMiD, $n\left(\%\right)$	131 (68)	65 (67)
Prior exposure to PI + IMiD, n (%)	78 (40)	42 (44)

ł	Cytogenetics, n (%)* High-risk [†] Standard-risk [‡] Unknown [§]	31 (17) 141 (78) 9 (5)	18 (19 72 (77 4 (4)
	t(11;14) status, n (%)* Positive Negative Unknown [§]	20 (11) 152 (84) 9 (5)	15 (16 74 (79 5 (5)
	BCL-2 expression (IHC), n (%)* High Low	93 (78) 26 (22)	47 (81 11 (19
	ELC serum free light chain: IHC immunoh	istochomistry	

FLC, serum free light chain; IHC, immunohistochemistry.

* Percentage calculated by excluding patients with missing data

† t(4;14) or t(14;16) or del(17p)

[‡] No high-risk cytogenetics

§ Sample was tested but results were inconclusive

Type of measurable disease, n (%)

IgG

IgA

FLC / Other

ECOG, Eastern Cooperative Oncology Group; IMiD, immunomodulatory drug; ISS, International Staging System; PI, proteasome inhibitor.

Highlights from IMW 2019

19-20 novembre 2019 Bologna

Ven+Bd

(N=194)

115 (59)

40 (21)

39 (20)

Pbo+Bd

(N=97)

47 (49)

25 (26)

25 (26)

Patient Disposition Clinical Data Cut-off: 26 Nov 2018

	Ven+Bd (N=194)	Pbo+Bd (N=97)
Randomized, n (%) Treated	194 (100) 193 (99.5)	97 (100) 96 (99)
Analysis population, n (%) Intent-to-treat (ITT) analysis set Safety analysis set	194 (100) 193 (99.5)	97 (100) 96 (99)
Discontinued Ven/Pbo, n (%)	121 (62)	75 (77)
Primary reason for Ven/Pbo discontinuation, n (%) Progressive disease Adverse event Withdrew consent Physician decision Death	55 (28) 31 (16) 15 (8) 10 (5) 6 (3)	56 (58) 8 (8) 4 (4) 5 (5) 0
Median exposure, months (range)	9.9 (0.1, 24.7)	10.5 (0.1, 25.4)
Median follow-up time for overall survival, months (range)	19.0 (0.2, 24.8)	18.3 (0.0, 26.5)

Highlights from IMW 2019

Primary Endpoint Analysis: Progression-Free Survival All Patients (ITT), 26 Nov 2018

Overall response, ≥VGPR, ≥CR and MRD negativity rates were significantly higher with Ven+Bd

MRD assessment was performed by next-generation sequencing on bone marrow aspirate at time of CR/sCR

Highlights from IMW 2019

A higher risk of death was observed in the Ven+Bd arm compared to Pbo+Bd at interim OS analysis

Highlights from IMW 2019

Summary of Cause of Death

Safety Population

Most Common Adverse Events

(Only patients who received treatment

0

Highlights from IMW 2019

PFS Analysis in Key Subaroups 26 Nov 2018 Progression-Free Survival in Patients with t(11;14) or

HR

0.708 (

Exp, exposure; Expr, expression; IHC, immunohistochemistry; IMiD, immunomodulat ISS, International Staging System; PI, proteasome inhibitor; QT, quartile; Tx, therapy

Progression-Free Survival in Patients with t(11; BCL2^{high} Expression

1

PFS: t(11;14)	Ven+Bd	Pbo+Bd
Median, months	Not reached	9.5
HR (95% CI)	0.110 (0.022, 0.560)	
P-value	0.002	

PFS: <i>BCL2^{high}</i> (Upper quartile)	Ven+Bd	Pbo+Bd
Median, months	22.4	10.2
HR (95% CI)	0.341 (0.146, 0.560)	
P-value	0.011	

26 Nov 2018

Highlights from IMW 2019

No. at Risk 43

Overall Survival in Patients with t(11;14) or BCL2^{high}

Highlights from IMW 2019

Summary

- The addition of Ven to Bd significantly improved PFS, ORR, ≥VGPR, and MRD negativity rates in patients with RRMM
- An increase in deaths was observed with Ven+Bd
 - Treatment-emergent deaths mainly occurred early on during treatment, commonly due to infection and in the context of PD
- Patients with t(11;14) or BCL2^{high} had consistent clinical benefit when treated with Ven+Bd, and the benefit-risk profile appears to be favorable in these MM subsets
- Patients who achieved MRD negativity (10⁻⁵) status had better outcome (PFS and OS)
- Future directions will be to focus on the t(11;14) and BCL2^{high} subgroups for development in MM studies with venetoclax, as well as additional risk mitigation measures

Zhang et al., Blood 2002

Gong et al., Blood, 2016

Derene et al., Blood 2002

Nearly all MM is Mcl-1 primed.

Some are co-dependent on Bcl-2 or Bcl-x

"Free" Mcl-1 is a sink for released Bim.

EMORY WINSHIP CANCER INSTITUTE A Cancer Center Designated by the National Cancer Institute

Morales et al., Blood, 2008 Morales et al., Blood, 2011 Mannava et al., Blood, 2012 Matulis et al., Leukemia, 2016 Gupta et al., Blood, 2017

Alejo Morales Shannon Matulis Vikas Gupta Metin Kurtoglu Misha Nikiforov

Highlights from IMW 2019

MCL1 is important for survival and frequently amplified in multiple myeloma patients

Highlights from IMW 2019

Myeloid cell factor-1 is a critical survival factor for multiple myeloma

Bin Zhang, Ivana Gojo, and Robert G. Fenton

BLOOD, 15 MARCH 2002 · VOLUME 99, NUMBER 6

Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl- x_L is an essential survival protein of human myeloma cells

Sophie Derenne, Brett Monia, Nicholas M. Dean, Jennifer K. Taylor, Marie-Josée Rapp, Jean-Luc Harousseau, Régis Bataille, and Martine Amiot

BLOOD, 1 JULY 2002 · VOLUME 100, NUMBER 1

Leukemia (2005) 19, 1248–1252 © 2005 Nature Publishing Group All rights reserved 0887-6924/05 \$30.00 www.nature.com/leu

Mcl-1 is overexpressed in multiple myeloma and associated with relapse and shorter survival

S Wuillème-Toumi¹, N Robillard¹, P Gomez², P Moreau³, S Le Gouill³, H Avet-Loiseau¹, J-L Harousseau³, M Amiot² and R Bataille²

¹Central Laboratory of Hematology, University Hospital of Nantes, France; ²INSERM UMR 601, Nantes, France; and ³Department of Clinical Hematology, University Hospital of Nantes, France

Highlights from IMW 2019

AMG 176, a Selective MCL1 Inhibitor, Is Effective in Hematologic Cancer Models Alone and in Combination with Established Therapies 🕸 🚨

Sean Caenepeel^{1,2}, Sean P. Brown^{2,3}, Brian Belmontes^{1,2}, Gordon Moody^{1,2}, Kathleen S. Keegan^{4,5}, Danny Chui^{2,6}, Douglas A. Whittington^{7,8}, Xin Huang^{7,8}, Leszek Poppe^{2,9}, Alan C. Cheng^{10,11}, Mario Cardozo^{10,11}, Jonathan Houze^{8,12}, Yunxiao Li^{11,13}, Brian Lucas^{11,13}, Nick A. Paras^{11,13}, Xianghong Wang^{11,13}, Joshua P. Taygerly^{11,13}, Marc Vimolratana^{11,13}, Manuel Zancanella^{11,13}, Liusheng Zhu^{11,13}, Elaina Cajulis^{1,2}, Tao Osgood^{1,2}, Jan Sun^{1,2}, Leah Damon^{1,4}, Regina K. Egan^{1,4}, Patricia Greninger¹⁴, Joseph D. McClanaghan¹⁴, Jianan Gong^{15,16}, Donia Moujalled¹⁷, Giovanna Pomilio¹⁷, Pedro Beltran^{1,2}, Cyril H. Benes¹⁴, Andrew W. Roberts^{15,16,18,19}, David C. Huang^{15,16}, Andrew Wei¹⁷, Jude Canon^{1,2}, Angela Coxon^{1,2}, and Paul E. Hughes^{1,2}

Figure 1. Optimization of chemical matter to AMG 176. A, X-ray structure-based optimization of high-throughput screening hit to clinical candidate AMG 176. X-ray structure suggested spirocyclic fusion (circled). B, X-ray crystal structure of MCL1 bound to BIM (20). C, X-ray structure of MCL1 bound to AM-8621 reveals cryptic binding pocket (PDB code 60QB). D, Quantum mechanical-derived conformational ensemble of 8 within 3 kcal/mol depicted as Boltzmann distribution. Binding conformations hown in green. Broken bars represent multiple conformations. FCM, polarizable continuum model. E, Quantum mechanical-derived conformations. F, Pharmacokinetic properties of 9, 10, and 11. Species refers to the species of animal in which the pharmacokinetic data were acquired.

CANCER DISCOVERY DECEMBER 2018

www.aacrjournals.org

Highlights from IMW 2019

OAB-080

A Phase 1, First-in-Human Study of AMG 176, a Selective MCL-1 Inhibitor, in Patients

With Relapsed or Refractory Multiple Myeloma

Authors:

<u>Andrew Spencer</u>¹, Aaron Seth Rosenberg², Andrzej Jakubowiak³, Noopur Raje⁴, Manik Chatterjee⁵, Suzanne Trudel⁶, Nizar J. Bahlis⁷, David S. Siegel⁸, Stefan Wilop⁹, Simon J. Harrison¹⁰, Murthy NagaKrishna¹¹, Shyeilla Dhuria¹², Antreas Hindoyan¹³, Zach McIver¹³, Haby Henary¹³, Phuong Khanh Morrow¹³, Andrew Roberts¹⁴ **Primary endpoints:** safety, tolerability, and PK of AMG 176 **Secondary endpoints:** pharmacodynamic evaluation of MCL-1 inactivation and multiple myeloma response assessment.

Results: At the data cutoff date (March 15, 2019), **26** RRMM patients had received AMG 176 (median age **63.5** years). Patients had a median of 5 prior lines of therapy, and 20 patients (**77%**) received \geq 5 prior therapy lines. Patients received a median (range) of **2** (1–8) cycles of study treatment. Most patients discontinued treatment due to progressive disease (n = 22 [85%])

Highlights from IMW 2019

Best Tumor Response

· Best tumor response detected to date: partial response in 3 patients; stable disease in 8 patients

Cohort	n (%)	Treatment Duration, wk
Partial response		
50 mg/m ² QD2	1 (25)	4.3
360 mg/m ² QD2	1 (20)	7.7 (ongoing on-study)
240 mg/m ² QW	1 (33)	18.3 (ongoing on-study)
Stable disease		
50 mg/m ² QD2	1 (25)	14.1
60 mg/m ² QD2	1 (33)	7.4
120 mg/m ² QD2	2 (67)	10.1–10.4
360 mg/m ² QD2	2 (40)	8.1–9.3
240 mg/m ² QW	1 (33)	18.1 (ongoing on-study)
360 mg/m ² QW	1 (33)	7.1

Responses were assessed according to International Myeloma Working Group criteria Response data were captured in database through 8/9/2019

Highlights from IMW 2019

Summary of Adverse Events

- Two fatal AEs were observed (both in QD2 dose cohorts): tumor lysis syndrome (treatment related, 240 mg/m²) and hepatic failure (due to disease progression)
- Two DLTs were observed (both in QD2 dose cohorts): tumor lysis syndrome (240 mg/m²) and febrile neutropenia (360 mg/m²); MTD has not yet been determined
- The majority of patients discontinued study drug because of disease progression (31/44 patients)

* Includes patients with neutropenia, decreased white blood cell count, decreased neutrophil count, or febrile neutropenia

Highlights from IMW 2019

Pharmacodynamics of AMG 176

- BAX activation and CC3 were detected in MCL1-dependent circulating monocytes 1 hour after the end of infusion at both step and target dose levels
- Reduction of peripheral blood monocyte levels was observed 1–2 days postdose, with recovery of counts before the next weekly administration

Results shown for patients who received QD2 dosing; lead-in dose of 120 mg/m² implemented in week 1 (Days 1 and 2), followed by target dose in subsequent weeks. CC3 = cleaved caspase 3

Highlights from IMW 2019

Conclusions

- Initial results from this first-in-human study suggest that AMG 176 has acceptable tolerability in patients with RRMM at the doses evaluated, with early evidence of response in a highly refractory patient population
- Toxicities observed to date were predominantly hematologic or gastrointestinal; based on available data, safety profiles were comparable between once- and twice-weekly regimens
- Biomarker analyses provided evidence of pharmacodynamic activity for AMG 176
- MTD has not been determined, and investigation of the safety and efficacy of AMG 176 is ongoing

Conclusions

- ✓ New targets and agents are important options for refractory MM
- ✓ Understanding how to dose and how to schedule new agents is a critical question
- ✓ New targets may help to overcome resistence to previous agents
- ✓ Short and long term outcomes are linked to access

Grazie per l'attenzione

Highlights from IMW 2019