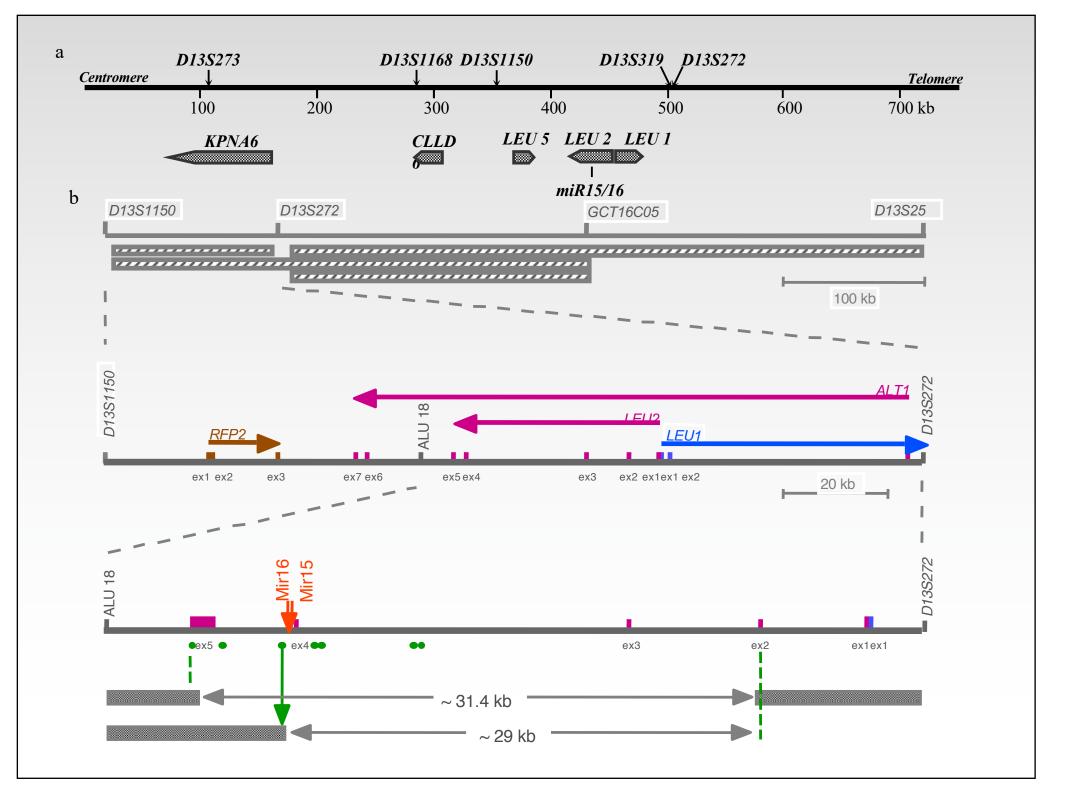
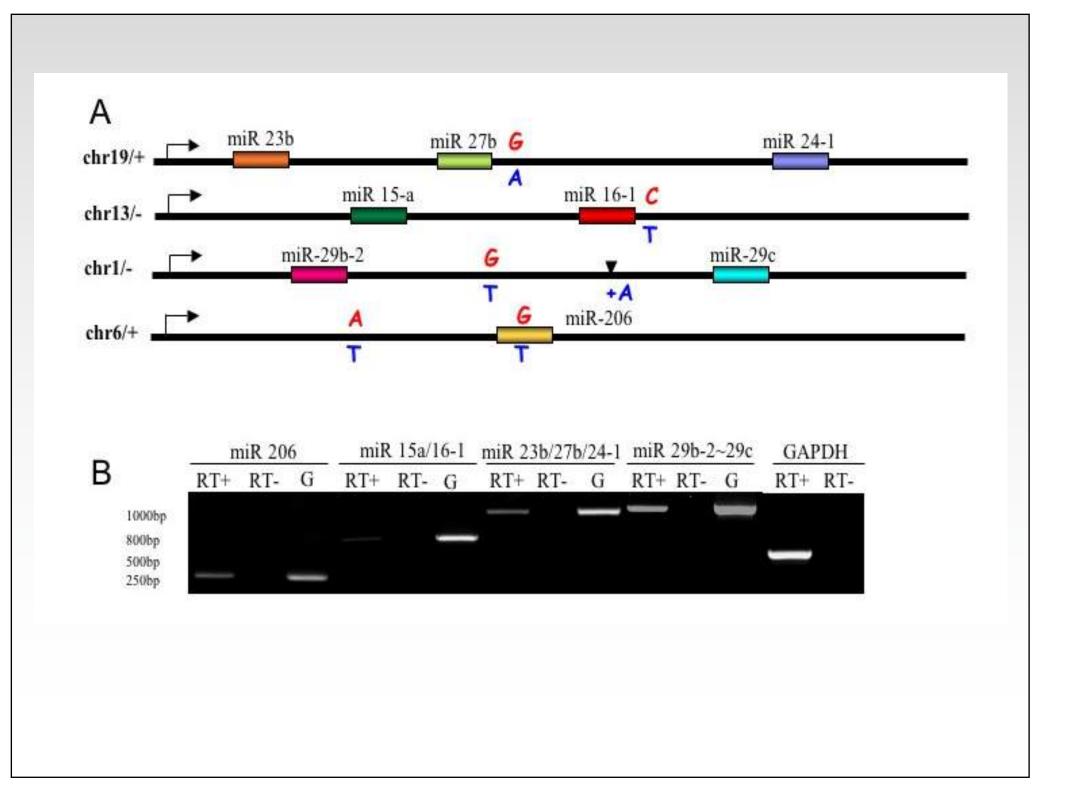
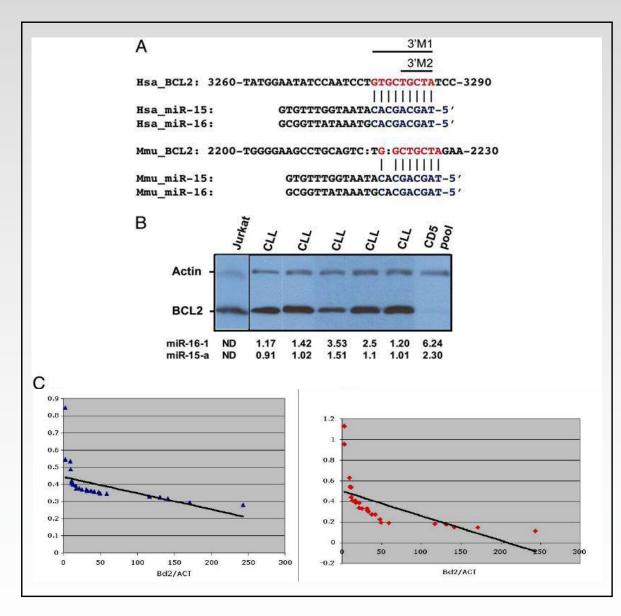

"The role of microRNA in CLL pathogenesis"


Carlo M. Croce, M.D.

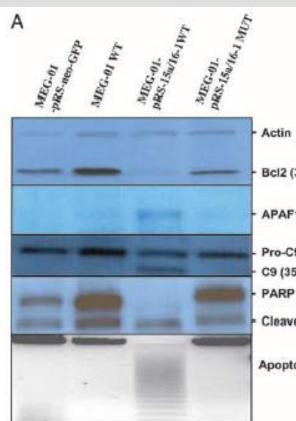
The Ohio State University Distinguished University Professor The John W. Wolfe Chair in Human Cancer Genetics Director, Institute of Genetics Director, Human Cancer Genetics Program

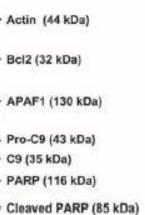
Occurrence of the most frequent and recurrent chromosomal abnormalities in human CLL

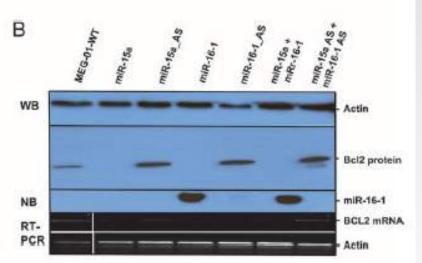


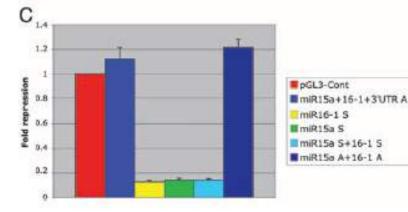


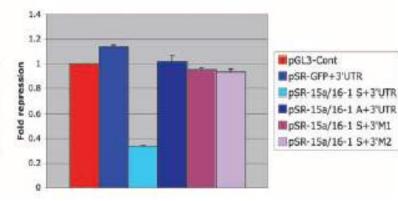
Genetic variations in the genomic sequences of miRNAs in CLL patients *.							
miRNA	Location **	CLL	Normals	miRNACHIP expression	Observation		
miR-16-1	Germline pri-miRNA (CtoT)+7bp in 3'	2/75	0/160	Reduced to 15% and 40% of normal, respectively	Normal allele deleted in CLL cells in both patients (FISH, LOH); For one patient: Previous breast cancer; Mother died with CLL; sister died with breast ca;		
miR-27b	Germline pri-miRNA (GtoA)+50bp in 3'	1/75	0/160	Normal	Mother throat and lung cancer at 58. Father lung cancer at 57.		
miR-29b-2	pri-miRNA (GtoT)+212 in 3'	1/75	0/160	Reduced to 75%	Sister breast cancer at 88 (still living). Brother "some type of blood cancer" at 70.		
miR-29b-2	pri-miRNAs ins (+A)+107 in 3'	3/75	0/160	Reduced to 80%	For two patients: Fam history of unspecified cancer		
miR-187	pri-miRNA (TtoC)+73 in	1/75	0/160	NA	Unknown		
miR-206	pre-miRNA 49(GtoT)	2/75	0/160	Reduced to 25%	Prostate cancer; mother esophogeal cancer. Brother prostate cancer sister breast cancer		
miR-206	Somatic pri-miRNA (AtoT)-116 in 5'	1/75	0/160	Reduced to 25% (data only for one pt)	Aunt some type of leukemia (dead)		
miR-29c	pri-miRNA (GtoA)31 in 5'	2/75	1/160	NA	Paternal grandmother CLL; sister breast ca. (one pt).		
miR-122a	pre-miRNA 53(CtoT)	1/75	2/160	Reduced to 33%	Paternal uncle colon cancer.		
miR-187	pre-miRNA 34(GtoA)	1/75	1/160	NA	Grandfather polycythemia vera. Father a history of cancer but not lymphoma.		


Note: * - For each patient/normal control more than 12kb of genomic DNAs was sequenced and, in total, we screened by direct sequencing ~627kb of tumor DNA and about 700kb of normal DNA. The position of the mutations are reported in respect with the precursor miRNA molecule. The list of 42 microRNAs analyzed includes 15 members of the specific signature or members of the same clusters, *miR-15a*, *miR-16-1*, *miR-23a*, *miR-23b*, *miR-24-1*, *miR-24-2*, *miR-27a*, *miR-27b*, *miR-29b-2*, *miR-146*, *miR-155*, *miR-221*, *miR-222*, *miR-223* and 27 other microRNAs (randomly selected): *let-7a2*, *let-7b*, *miR-17-3p*, *miR-17-5p*, *miR-18*, *miR-19b-1*, *miR-20*, *miR-21*, *miR-30b*, *miR-30c-1*, *miR-30e*, *miR-32*, *miR-100*, *miR-105-1*, *miR-108*, *miR-122*, *miR-125b-1*, *miR-142-5p*, *miR-142-3p*, *miR-181a*, *miR-187*, *miR-206*, *miR-246*.


** - When normal correspondent DNA from bucal mucosa was available, the alteration was identified as germline when present or somatic when absent, respectively. FISH = fluorescence *in situ* hybridization; LOH = loss of heterozygosity; NA = not available




Bcl2 protein expression is inversely correlated with *miR-15a* and *miR-16-1* miRNAs expression in CLL patients. (*A*) The unique site of complementarity miR::mRNA is conserved in human and mouse and is the same for all four human m protein are inversely correlated with *miR-15a* and *miR-16-1* expression. Five different CLL cases are presented, and the normal cells were pools of CD5⁺ B lymphocytes. The T cell leukemia Jurkat was used as control for Bcl2 protein expression. For normalization we used β -actin. The numbers represent normalized expression on miRNACHIP. ND, not determined. (*C*) The inverse correlation in the full set of 26 samples of CLL between miR-15a / miR-16-1 and Bcl2 protein expressions. The normalized Bcl2 expression is on abscissa vs. *miR-15a* (*Left*) and *miR-16-1* (*Right*) levels by miRNA chip on ordinates. ACT, β -actin.



Apoptotic DNA ladder

All rights

Inc.

medicine

ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets

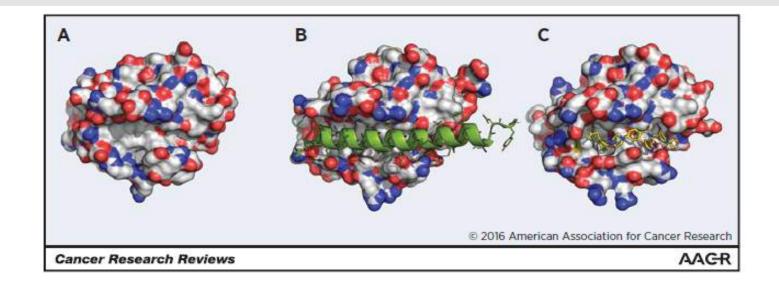
Andrew J Souers¹, Joel D Leverson¹, Erwin R Boghaert¹, Scott L Ackler¹, Nathaniel D Catron¹, Jun Chen¹, Brian D Dayton¹, Hong Ding¹, Sari H Enschede¹, Wayne J Fairbrother², David C S Huang^{3,4}, Sarah G Hymowitz², Sha Jin¹, Seong Lin Khaw^{3,4}, Peter J Kovar¹, Lloyd T Lam¹, Jackie Lee², Heather L Maecker², Kennan C Marsh¹, Kylie D Mason³⁻⁵, Michael J Mitten¹, Paul M Nimmer¹, Anatol Oleksijew¹, Chang H Park¹, Cheol-Min Park^{1,7}, Darren C Phillips¹, Andrew W Roberts³⁻⁵, Deepak Sampath², John F Seymour^{4,6}, Morey L Smith¹, Gerard M Sullivan¹, Stephen K Tahir¹, Chris Tse¹, Michael D Wendt¹, Yu Xiao¹, John C Xue¹, Haichao Zhang¹, Rod A Humerickhouse¹, Saul H Rosenberg¹ & Steven W Elmore¹

Proteins in the B cell CLL/lymphoma 2 (BCL-2) family are key regulators of the apoptotic process. This family comprises proapoptotic and prosurvival proteins, and shifting the balance toward the latter is an established mechanism whereby cancer cells evade apoptosis. The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the development of navitoclax, a selective inhibitor of both BCL-2 and BCL-2-like 1 (BCL-XL), which has shown clinical efficacy in some BCL-2-dependent hematological cancers. However, concomitant on-target thrombocytopenia caused by BCL-X₁ inhibition limits the efficacy achievable with this agent. Here we report the re-engineering of navitoclax to create a highly potent, orally bioavailable and BCL-2-selective inhibitor, ABT-199. This compound inhibits the growth of BCL-2-dependent tumors in vivo and spares human platelets. A single dose of ABT-199 in three patients with refractory chronic lymphocytic leukemia resulted in tumor lysis within 24 h. These data indicate that selective pharmacological inhibition of BCL-2 shows promise for the treatment of BCL-2-dependent hematological cancers.

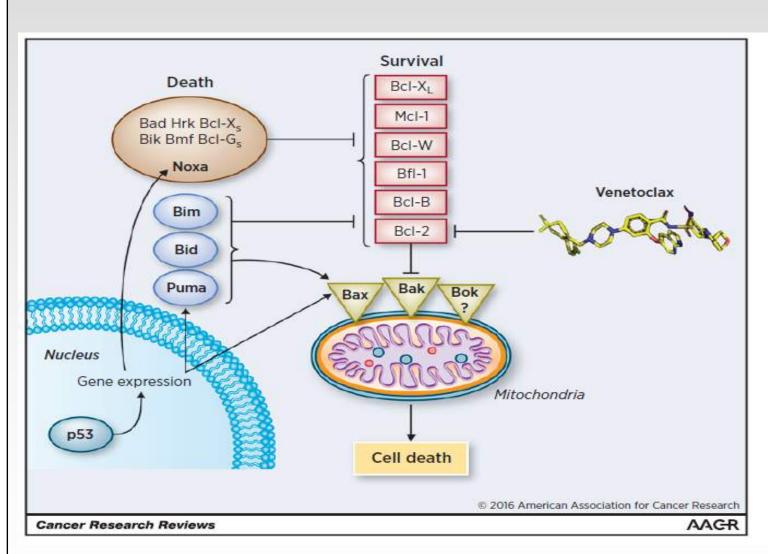

Apoptosis, or programmed cell death, is a conserved and regulated of multiple solid-tumor and hematological malignancies^{5,9,10}. We process that is the primary mechanism for the removal of aged, dam- have previously established that BCL-XL is also the primary survival aged and unnecessary cells. The ability to block apoptotic signaling factor in platelets^{11,12}. Genetic ablation, hypomorphic mutation is a key hallmark of cancer and is thus important for oncogenesis, or pharmacologic inhibition of BCL-X1 results in reduced platelet tumor maintenance and chemoresistance¹. Dynamic binding inter- half-life and dose-dependent thrombocytopenia in vivo¹². actions between prodeath (for example, BCL-2-associated X protein The association of prosurvival BCL-2 family members with tumor (BAX), BCL-2 antagonist/killer 1 (BAK), BCL-2-associated agonist initiation, disease progression and drug resistance makes them comof cell death (BAD), BCL-2-like 11 (BIM), NOXA and BCL-2 binding pelling targets for antitumor therapy². Despite the fact that direct component 3 (PUMA)) and prosurvival (BCL-2, BCL-X1, BCL-2- antagonism of proteins in the BCL-2 family requires disruption of like 2 (BCL-W), myeloid cell leukemia sequence 1 (MCL-1) and protein-protein interactions, the use of structure-based drug design BCL-2-related protein A1 (BFL-1)) proteins in the BCL-2 family control commitment to programmed cell death. Altering the balance reported navitoclax (ABT-263), an orally bioavailable small molecule among these opposing factions provides one means by which cancer with a high affinity for both BCL-2 and BCL-X₁ that is currently cells undermine normal apoptosis and gain a survival advantage^{2,3}.

from the breakpoint of a t(14;18) translocation present in human

has recently rendered these proteins tractable targets¹³. We previously being evaluated in phase 2 clinical trials¹⁴⁻¹⁸. Both the antitumor BCL-2, the first identified apoptotic regulator, was originally cloned efficacy and hematologic toxicities of navitoclax are dictated by its inhibition profile of prosurvival proteins in the BCL-2 family. Early B cell lymphomas^{2,4–6}. This protein has since been shown to have a signs of clinical antitumor activity have been observed in lymphoid dominant role in the survival of multiple lymphoid malignancies^{7,8}. malignancies thought to be dependent on BCL-2 for survival^{16,17}. BCL-X, was subsequently identified as a related prosurvival pro- As predicted by preclinical data, inhibition of BCL-X, by navitoclax tein and is associated with drug resistance and disease progression induces a rapid, concentration-dependent decrease in the number


¹AbbVie Inc., North Chicago, Illinois, USA. ²Genentech, Inc., South San Francisco, California, USA. ³The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. ⁴Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia. ⁵Department of Clinical Hematology and Bone Marrow Transplantation, Royal Melbourne Hospital, Parkville, Victoria, Australia. ⁶Department of Hematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. ⁷Present address: Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore. Correspondence should be addressed to A.J.S. (andrew.souers@abbvie.com)

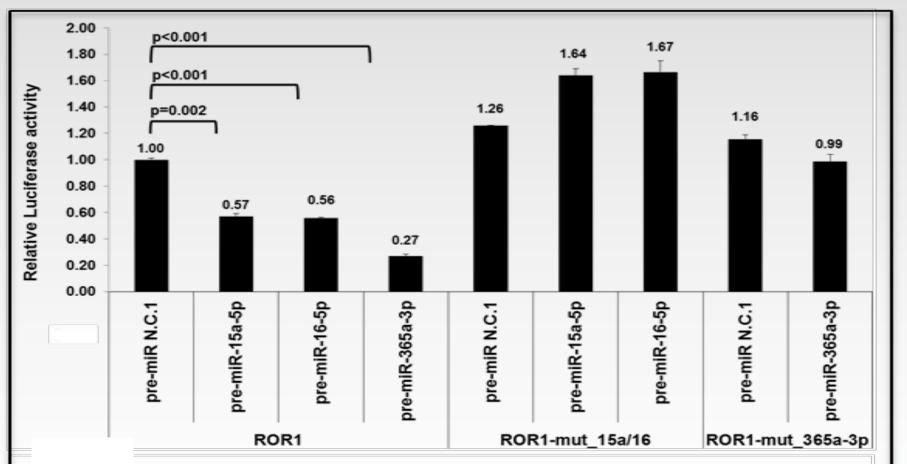
Received 17 July 2012; accepted 29 November 2012; published online 6 January 2013; doi:10.1038/nm.3048


Figure 1.

Genetic lesions accounting for dysregulation of BCL-2 gene expression in malignancies. A, the t(14;18) and the t(22;18) reciprocal chromosome translocations (B) are depicted. The translocations juxtapose the BCL-2 gene to enhancer elements of the Ig loci causing deregulation of expression of BCL-2. C, BCL-2 gene amplification schemes. Top, chromosome 18g-derived sequences are depicted with translocation to chromosome 1g32, which was further translocated to chromosomes 19 and 16. FISH using a chromosome 18-specific probe shows BCL-2 amplification, three labels (large arrows) in addition to normal chromosomes (small arrows). Bottom, BCL-2 gene amplification without chromosome rearrangements (D) The 13g14 genomic region is deleted in most CLLs. The genes encoding miR-15a and miR-16-1 lie within a 30-kb deleted region between exons 2 and 5 of the DLEU2 gene. The deletion of miR-15a and miR-16-1 locus leads to BcI-2 mRNA overexpression.

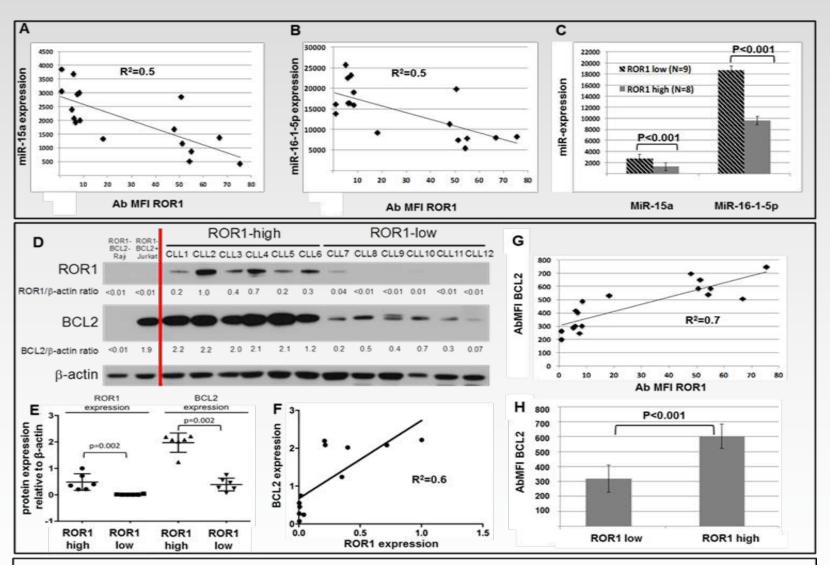
Figure 2.

Three-dimensional structure of antiapoptotic Bcl-2 family members. The 3D structure of the human Bcl-XL protein is depicted with an empty groove (**A**; PDB accession code: 1MAZ) and in complex with the BH3 peptide from Bim (**B**; PDB accession code: 1PQ1). The human Bcl-2 protein is represented in complex with a modeled structure of venetoclax based on the crystal structure of (4-(4-{[4-(4-chlorophenyl])-5,6-dihydro-2H-pyran-3-yl]methyl}piperazin-1-yl)-N-{[3-nitro-4-(tetrahydro-2H-pyran-4-ylamino)phenyl]sulfonyl}benzamide), a close analog (**C**; PDB accession code: 4MAN). The Connolly surface of the proteins is colored by mapped atom type (carbon, white; nitrogen, blue; oxygen, red; sulfur, yellow).

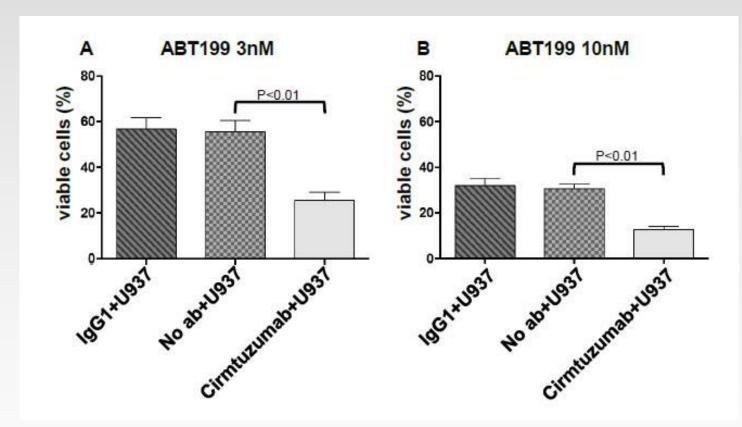

Figure 3.

Interactions among Bcl-2 family proteins. The categories of the Bcl-2 family are represented, including: (i) anti-apoptotic proteins, Bcl-2, Bcl-XL, Mcl-1, Bcl-W, Bfl-1, and Bcl-B (red); (ii) the multi-domain proapoptotic, Bax, Bak, and possibly Bok (yellow), which permeabilize the outer mitochondrial membrane; (iii) BH3-only proteins that operate as both agonists of proapoptotic Bax/Bak and antagonists of anti-apoptotic Bcl-2 members (pink); and (iv) BH3containing proapoptotic members that operate as antagonists of the antiapoptotic proteins (orange). Tumor suppressor p53 plays important roles in responses to chemotherapy and stimulates transcription of specific proapoptotic members of the family (BAX, PUMA, BID, NOXA). Senetoclax is a selective antagonist of Bcl-2.

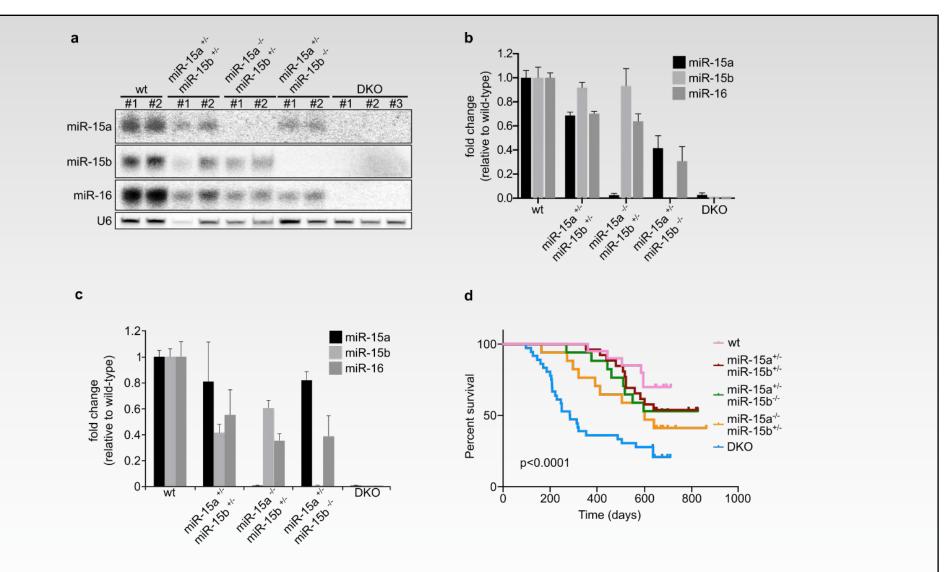
1984	14 ; 18 breakpoint cloned
1985-1986	Bcl-2 cDNA cloned ; sequenced
1988	Apoptosis suppression
1989	Bcl-2 poor progress in NHL
1990	Bcl-2 localized to mitochondria
1992	Chemoresistance
1993	Bax dimerizes with Bcl-2
1993	Bcl-2 over expressed in CLL
1993	ASO reverses chemoresistance
1994	Mitochondria required
1996	BH3 mediates dimerization
1996	Bcl-X 3D structure
1997	Bcl-2 ASO (Ph3 CLL)
1997	Bcl-XL + BH3 3D structure
1997	Bcl-2 gene amplified (DLBCL)
1999	SAR by NMR
2001	Bcl-2 3D structure
2002, 2005	MiR15-16 deletion (CLL)
2005	ABT 737 development
2007	Bcl-XL required for platelets
2007	Obatoclax discovered
2008	Navitoclax discovered
2009	Obatoclax Ph 1
2011	Navitoclax Ph 1
2013	Venetoclax discovered
2016	Venetoclax impressive activity in R/R CLI
2016	FDA approval

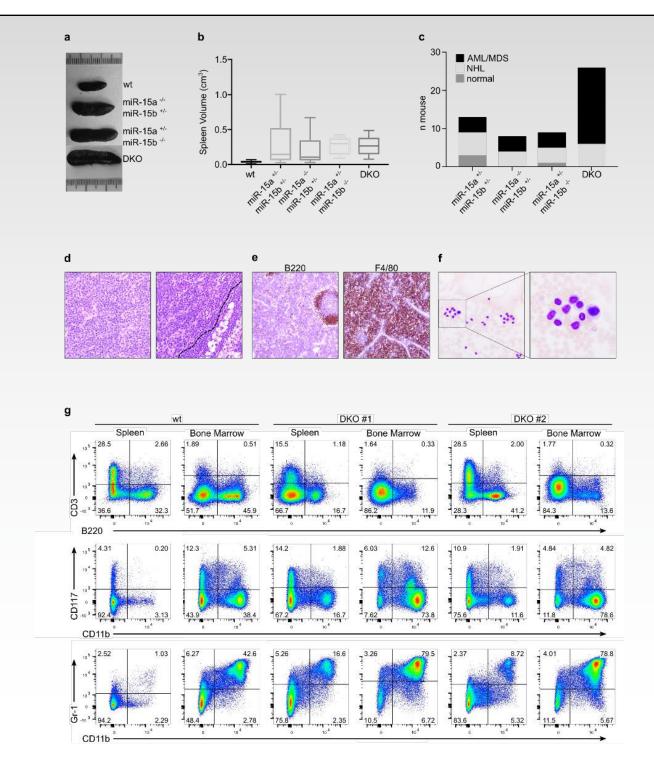

Gene Name	ROR1 low	ROR1 high	LINEAR FC	P value
hsa-miR-199a-5p	62.5	22.1	2.8	0.012
hsa-miR-451a	1653.0	610.4	2.7	0.006
hsa-miR-151a-3p	71.6	29.6	2.4	0.001
hsa-miR-151a-5p	131.6	55.1	2.4	0.001
hsa-miR-484	33.8	14.6	2.3	0.024
hsa-miR-132-3p	34.0	16.0	2.1	0.030
hsa-miR-199a-3p+hsa-miR-199b-3p	231.8	116.6	2.0	0.044
hsa-miR-15a-5p	2600.6	1327.4	2.0	0.006
hsa-miR-365a-3p+hsa-miR-365b-3p	105.9	59.7	1.8	0.043
hsa-miR-363-3p	183.1	107.1	1.7	0.005
hsa-miR-16-5p	18347.2	10848.8	1.7	0.003
hsa-miR-222-3p	1308.6	841.8	1.6	0.004
hsa-miR-337-3p	36.0	56.2	-1.6	0.028
hsa-miR-29a-3p	2011.4	3258.2	-1.6	0.002
hsa-miR-664a-3p	213.0	405.2	-1.9	<0.001
hsa-miR-148a-3p	411.8	1051.9	-2.6	0.009
hsa-miR-155-5p	1829.5	5064.8	-2.8	0.001

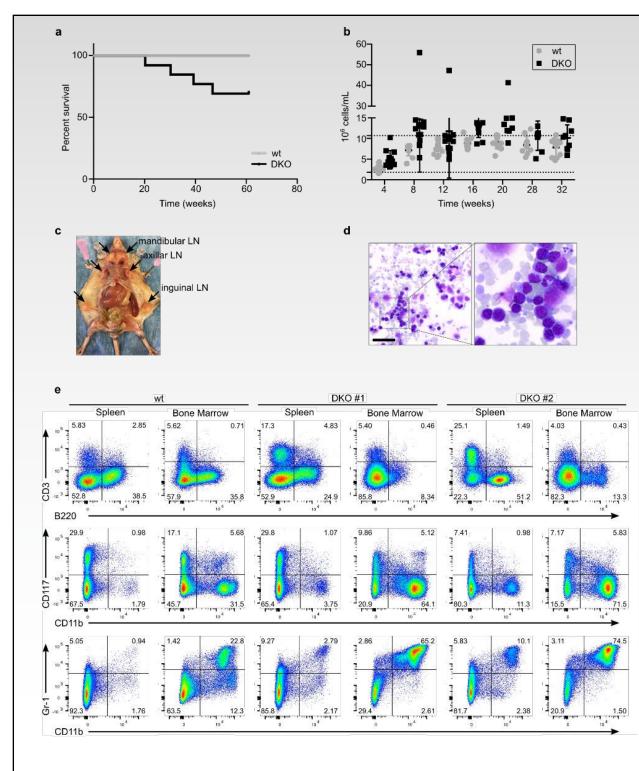
Tab. 1. Nanostring results

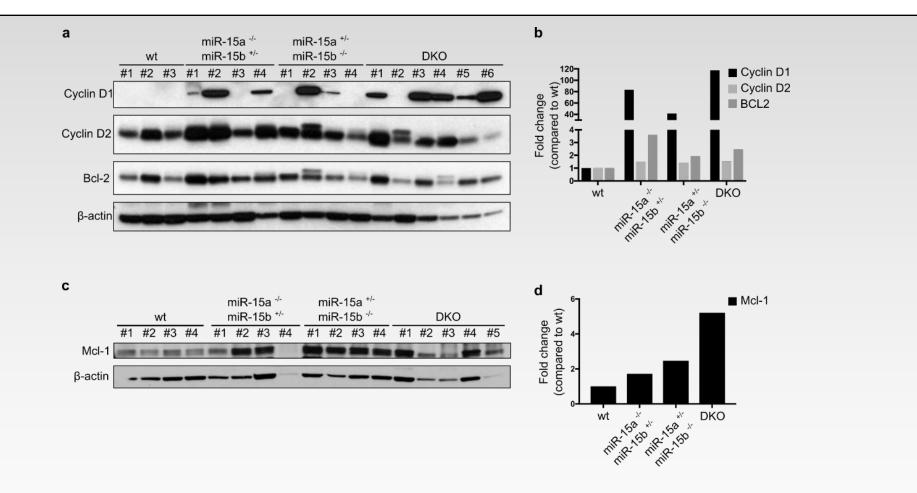


MiR15/16 targets ROR1 expression.

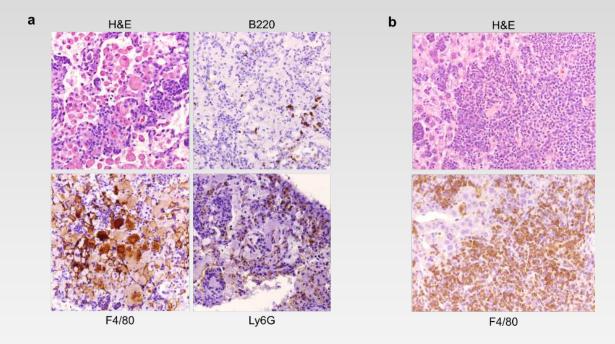

Transfection experiments were performed in HEK-293 cells using constructs indicated. First four lines show results using WT construct. Lines from 5 to 9 show results using constructs with mutant target sites.

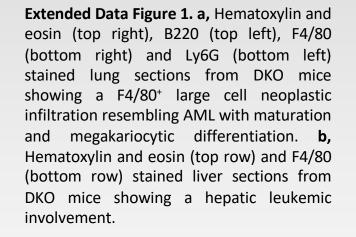

Fig. 4. Expression of miR15/16 ROR1 and BCL2 in CLL. A and B. Reverse correlation of miR15a and miR16-1-5p with ROR1 expression in CLL. C. Graphic representation of data in A and B. D. Correlation between BCL2 and ROR1 expression CLL. Jurkat cell were used as a positive control for BCL2 and Raji cells were used as negative control for BCL2. E. Densitometry analysis of data in D. The Mann Whitney U test was used to calculate p values. F. Correlation between BCL2 and ROR1 expression in CLL samples used in D. G. Correlation between BCL2 and ROR1 expression in CLL samples from the entire cohort A. The Absolute Median Fluorescence Intensity of intracellular BCL2 (AbMFI) is plotted on the Y axis and the AbMFI of surface ROR1 is charted on the X axis. H Graphic representation of data in G.


CLL cell viability with U937 effector cells. Bars indicate the average percentage of viable CLL cells normalized with respect to average percentage of viable untreated CLL cells. CLL cell viability is assessed after 16h treatment with 3 nM (**A**) or 10 nM (**B**) Venetoclax either alone or in combination with 20 mg/ml Cirmtuzumab or human IgG1 antibody. U937=human monocyte cell line, No Ab=no antibody control, Cirmtuzumab= anti human *ROR1* antibody, IgG1= anti human IgG1 antibody. Data are shown as mean ± s.e.m.


Deletion of miR-15/16 clusters in mice is associated to a shortened lifespan. a, Northern blot analysis of miR-15a, miR-15b and miR-16 in spleen from DKO mice compared to spleen from wild-type, heterozygous and single KO mice. Non-coding small nuclear RNA U6 was used as a loading control. **b**, Relative quantification of miR-15a, miR-15b and miR-16 expression respect to U6 loading control from Northern blot assay. **c**, qRT-PCR analysis of spleens from DKO mice compared to spleen from wild-type, heterozygous and single KO mice. Small nucleolar RNAs snoR-292 and snoR-135 were used for normalization. **d**, Survival curve of wild-type, heterozygous, single KO and DKO mice. Mice were followed for up to 24 months and events corresponded to mice that died to illness or those identified as moribund and then sacrificed (p value < 0.0001).

miR-15/16 DKO mice develop both myeloproliferative and lymphoproliferative diseases. a, Spleens from wild-type, single KO and DKO mice. b, Quantification of spleen volume (cm³) of wild-type, single KO and DKO mice. T-test was used for statistical analysis. n.s indicates "not significant". *, P ≤0.05; **, *P* ≤0.001. **c**, Number of mice for each genotypes with myeloproliferative disorder and AML (AML/MDS) or with B-lymphoid pathologies (NHL) up to 24 monthold. d, Hematoxylin and eosin stain showing small-to-medium а neoplastic cell population destroying the spleen (left) and lymph node (right) normal architecture. e, B220 and F4/80 stained spleen sections from DKO mice confirmed the neoplastic expansion of a B220⁻ and F4/80⁺ cell lineage. f, Wright-Giemsa stained blood smear from DKO mouse showing clusters of blasts. g, Representative flow cvtometrv analysis of spleen and bone marrow of DKO and wild-type mice. CD3, B220, CD117, Cd11b and Gr-1 antibodies were used.


The transplant of miR-15/16 cluster DKO splenocytes results into the development of myeloproliferative disorders in recipient mice. a, Survival curve of wild-type and DKO recipient mice. Mice were followed for up to 32 weeks and events corresponded to mice that died to illness or those identified as sick and then sacrificed (P 0.05). b, White blood cells count using Hemavet instrument of wild-type and DKO mice. c, Representative of dissected DKO recipient mouse. Enlarged spleen and lymph nodes are highlighted. d, Wright-Giemsa stained blood smear from DKO recipient mouse showing clusters of blasts. e, Representative flow cytometry analysis of spleen and bone marrow of DKO and wild-type recipient mice. CD3, B220, CD117, Cd11b and Gr-1 antibodies were used.

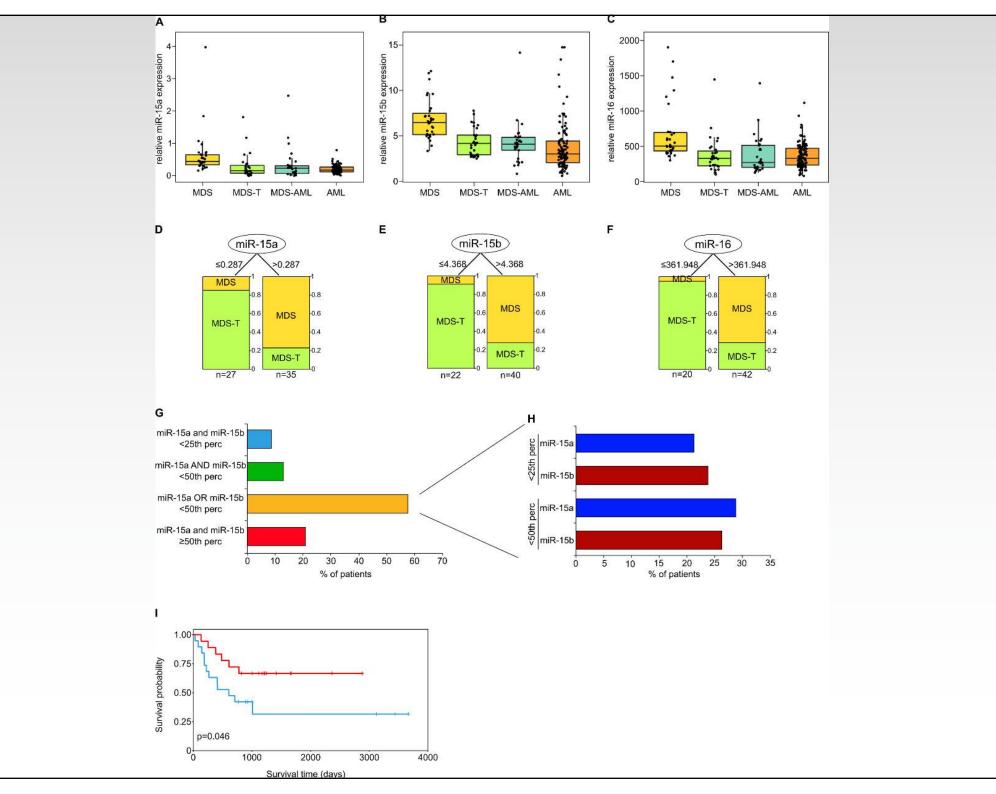

Validation of predicted targets of miR-15/16 cluster. a, Immunoblotting for Cyclin D1, Cyclin D2 and Bcl-2 performed on splenic cells lysates derived from wild-type and DKO mice. b-actin was used as a normalizer in order to show equal protein loading. **b**, Relative quantification of Cyclin D1, Cyclin D2 and Bcl-2 expression respect to b-actin loading control in splenic cells from DKO and wild-type mice. **c**, Immunoblotting for Mcl-1 performed on splenic cells lysates derived from wild-type and DKO mice. b-actin was used as a normalizer. **d**, Relative quantification of Mcl-1 expression respect to b-actin b-actin loading control for wild-type and DKO mice. b-actin was used as a normalizer. **d**, Relative quantification of Mcl-1 expression respect to b-actin loading control.

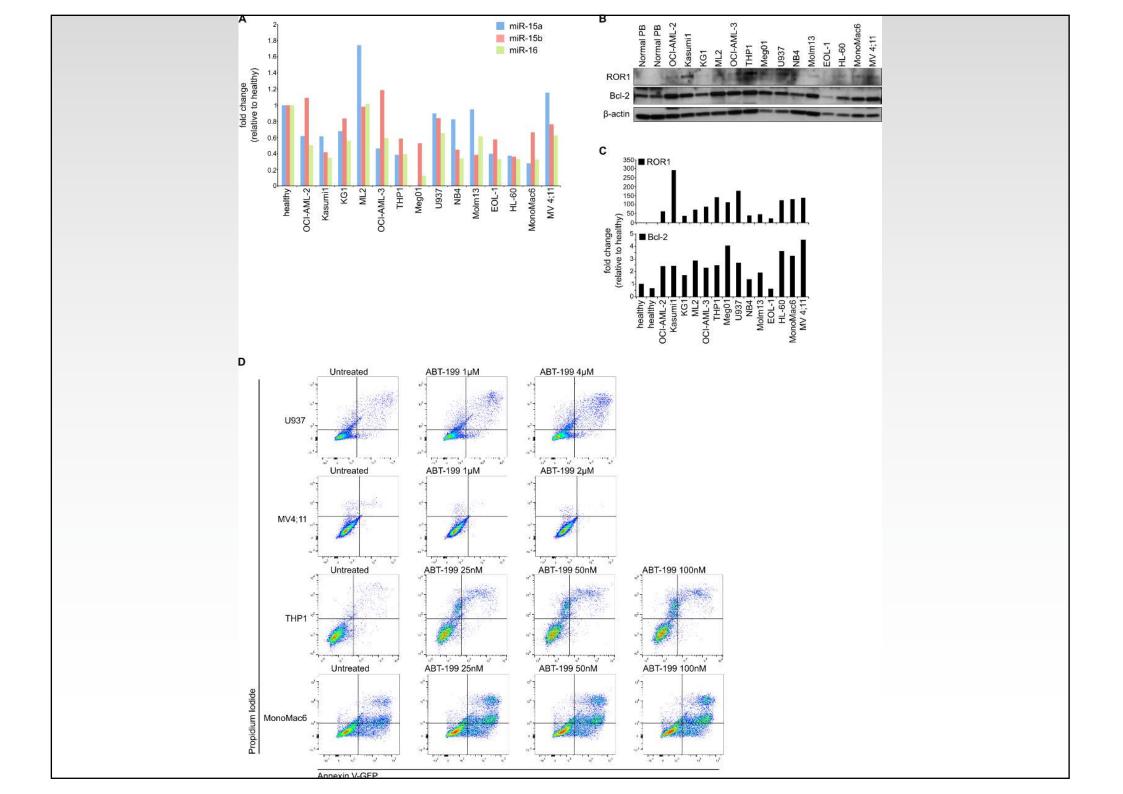
mmu-miR-15 a (chr14: 61632027-61632110)	5' UAGCAGCACAUAAUGGUUUGUG 3'
mmu-miR-15b (chr3: 69009772-69009835)	5' UAGCAGCACAUCAUGGUUUACA 3'
mmu-miR-16-1 (chr14: 61631880-61631972)	5' UAGCAGCACGUAAAUAUUGGCG 3'
mmu-miR-16-2 (chr3: 69009902-69009996)	5' UAGCAGCACGUAAAUAUUGGCG 3'

Table 2. Alignment of the mature sequences of the miR-15/16 family members. MiR-16-1 and miR-16-2 are identical.

Extended Data Figure 1

100% CD45.2 90% CD45.1 80% 70% 60% 50% 40% 30% 20% 10% 0% DKO DKO DKO WT DKO DKO WT WT WT WT 4 weeks 8 weeks 12 weeks 16 weeks 20 weeks


Extended Data Figure 2. Flow cytometry analysis of peripheral blood after transplantation using CD45.1 APC (donor cells) and CD45.2 PE (recipient/leukemic cells) antibodies at indicated time point.


Extended Data Figure 2

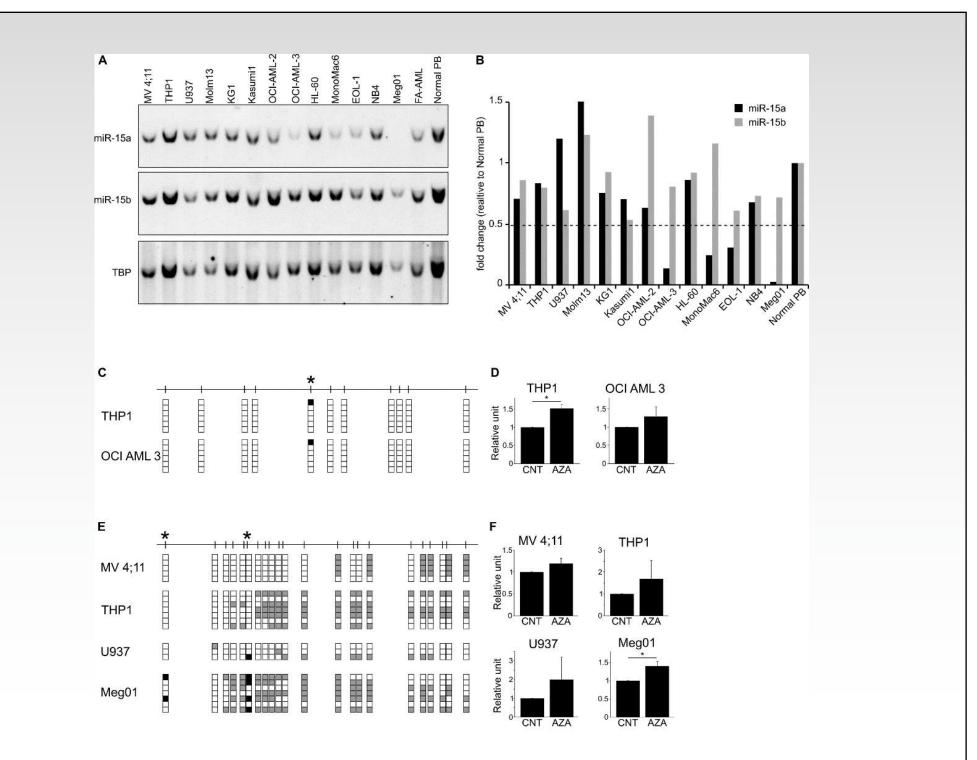

Characteristic	Value
Age at study entry – yr	57.67 ±17.15
Male sex – no. (%)	35 (50)
Initial white-cell count (Mean) (10^9/L)	76.35 ±84.15
Initial blasts count (Mean) (10^9/L)	52.73 ±69.94
Diagnosis – no. (%)	70 (100)
AML NPM1 mutated – no. (%)	23 (33)
AML with monocytic differentiation AND NPM1 mutated – no. (%)	1 (1)
AML with monocytic differentiation – no. (%)	3 (4)
AML with inv(16) – no. (%)	3 (4)
AML with $inv(3) - no.$ (%)	2 (3)
AML with maturation – no. (%)	1 (1)
AML with minimal differentiation – no. (%)	1 (1)
AML with myelodysplastic related changes – no. (%)	13 (19)
AML with t(8;21) – no. (%)	1 (1)
AML with t(9;11) – no. (%)	1 (1)
AML without maturation – no. (%)	1 (1)
AML, NOS – no. (%)	12 (17)
Other subtype – no. (%)	8 (11)

Table 3. Characteristics of theAML patients included in the study

	Sample ID Gender Age of Dx	Diagnosis	Initial WBC (10^9/L)	Initial blast (10^9/L)	Cytogenetics	Molecular	Pt status
1	4306 Female 54	AML, NOS	47	39.25	46,XX [20]	NPM1 neg, FLT3-ITD neg	Alive
2	7625 Male 34	AML with t(8;21)	33.8	16.9	6,XY,t(8,21)(q22;q22),del(9)(q13q22)[9]/46,XY[1]	RUNX1/RUNX1T1 pos, KITneg	Alive
3	150375 Male 65	AML with NPM1 mutation	20	4.54	46,XY[10]	NPM1 pos, FLT3-ITD pos, FLT3-TKD neg	Deceased
4	150381 Female 59	AML with NPM1 mutation	31.9	3.51	46,XX [20]	NPM1 pos, FLT3-ITD neg, FLT3-TKD neg	Alive
5	150549 Female 56	AML	66.4	61.09	46,XX [20]	NPM1 neg, FLT3-ITD neg, FLT3-TKD neg	Deceased
6	150625 Female 32	AML with inv(3)	61.1	36	45,XX,inv(3)(q21q26.2),-7[11]/46,XX[1]	not done	Deceased
7	150718 Male 57	AML NPM1 mutated	152	136.8	46,XY[20]	NPM1 pos, FLT3-ITD pos, FLT3-TKD neg	Deceased
8	150749 Male 62	AML with myelodysplastic related changes	83.5	24.88	46,XY,del(5)(q22q31)[20]	not done	Deceased
9	150935 Male 21	AML with inv(16)(p13;q22)	92.3	71.99	46,XY,inv(16)(p13.1q22)[5]/46,XY[5]	CBFB-MYH11 pos, KIT neg	Alive
10	151011 Male 77	AML, NOS	5.3	1.08	47,XY,+8[18]/46,XY[2]	not done	Deceased
11	151044 Male 69	AML with NPM1 mutation	182.7	171.19	7,XY,+8[3]/46,XY[17]	NPM1 pos, FLT3-ITD pos, FLT3-TKD neg	Deceased
12	151050 Female 79	AML with NPM1 mutation	72.9	63.42	46,XX [20]	NPM1 pos, FLT3-ITD neg, FLT3-TKD pos	Deceased
13	151077 Male 77	AML with myelodysplastic related changes	167	147.29	46,XY,-7,+mar[5]/46,XY[2]	not done	Deceased
14	151149 Male 69	AML, NOS	71.9	68.02	46,XY[20]	NPM1 neg, FLT3-ITD pos, FLT3-TKD neg	Deceased
15	151156 Male 78	AML with inv(3)(q21q26.2)	21.7	13.15	4/~45,X,-Y,del(2)(p1?4),inv(3)(q21q26.2),del(5)(q13q33),-7,-13,add(15)(q24),add(17)(p11.2),add(17)(p13),del(20)(q11.2),-21,add(21)(p11.2),-22,+2~4mar[cp10]	not done	Deceased
16	151311 Female 77	AML with monocytic differentiation	165	115.5	46,XX,del(5)(q13q31)[6]/47,idem,+11[14]	NPM1 pos, FLT3-ITD pos, FLT3-TKD neg	Deceased
17	151341 Female 78	Therapy-related AML	61.3	34.02	46,xx(20)	NPM1 neg, FLT3-ITD neg, FLT3-TKD neg	Deceased
18	151344 Male 66	AML with myelodysplastic related changes	37.1	13	46,XY,ad(5)(p13),der(10)t(10;11)(p11.2;q13),del(11)(q23),del(12)(p11.2p13)[10]	NPM1 neg, FLT3-ITD neg, FLT3-TKD neg	Deceased
19	151566 Female 42	AML with mutated NPM1	112.5	95.06	46,xx[20]	NPM1 pos, FLT3-ITD neg, FLT3-TKD pos	Deceased
20	151598 Female 51	AML with mutated NPM1	21.6	12.7	46,XX [20]	NPM1 pos, FLT3-ITD neg, FLT3-TKD neg	Alive
20	160028 Female 22	AML, NOS	32.5	6.1	40,x1[20] 46,X2[6]	NPM1 pos, FLT3-ITD neg, FLT3-TKD neg	Alive
21	160053 Female 37	AML, NPM1 mutated	326	305	40,A1[0] Unsuccessful	NPM1 neg, FLT3-ITD neg, FLT3-TKD neg	Alive
22	1600000 Permane 000	AML with monocytic differentiation	123.5	80.77	46,XY[20]	NPM1 pos, FLT3-ITD neg, FLT3-TKD neg NPM1 neg, FLT3-ITD pos, FLT3-TKD neg	Deceased
23	160114 Male 70	AML with inv (16)	70.9	36.09	[45,XY[20] INV (16) AND inv(16)(p13.1q22)	CBFB-MYH11 pos, KIT neg	Alive
24	160142 Female 65	AML with myelodysplastic related changes	36.7	23.67	INV [16] AND INV[16](p13.1q22) 45,X,-Y,-9,add(17)(p11.1),+mar1[4]/45,X,-Y,-9,-17,+20,+mar1[2]/45,X,-Y,+1,der(1;17)(q10;q10)[2]/46,XY[4]	not done	Deceased
25			11.1	1.23		NPM1 pos, FLT3-ITD pos, FLT3-TKD neg	
		AML with mutated NPM1	24.1		46,XY[20] 46,XY,-10,der(16)t(10;16)(q22;p13.3),+mar[7]/46,XY,del(7)(q22),t(10;16)(q22;p13.3)[3]		Deceased
27	Note in	Therapy-related AML		2.82		not done	Deceased
28	160601 Male 75	AML with mutated NPM1	22.6	6.74	46,XY[20]	NPM1 pos, FLT3-ITD pos	Alive
29	160757 Female 61	AML with NPM1 mutation	118.4	111.41	46,XX [20]	NPM1 pos, FLT3-ITD neg	Alive
30	160846 Male 28	AML with mutated NPM1	107.5	81.38	unsuccessful	NPM1 pos, FLT3-ITD neg, FLT3-TKD pos	Alive
31	160906 Female 63	AML with myelodysplastic related changes	142.3	125.76	46,XX,del(9)(q13q22)[11]	NPM1 neg, FLT3-ITD pos, FLT3-TKD neg	Deceased
32	160950 Female 68	AML with myelodysplastic related changes	1	0.05	46,XX [20]	NPM1 neg, FLT3 TKD neg, FLT3 ITD neg, PML/RARA neg	Deceased
33	161072 Male 46	AML with inv(16)(p13.1q22)	51.7	30.5	47,XY,+8,inv(16)(p13.1q22)[8]/48,s1,+22[2]	KIT pos, CBFB-MYH11 pos	Alive
34	161102 Female 62	AML	44	5.28	46,XX,del(5)(q13q31)[5]/46,XX[2]	not done	Alive
35	161153 Female 68	AML with myelodysplastic related changes	328.7	65.74	46,XX [20]	NPM1 neg, FLT3-ITD pos	Deceased
36	161172 Male 34	AML without maturation	135.4	120.64	46,XY,del(3)(q12q25)[9]/46,XY[1]	NPM1 neg, FLT3-ITD neg	Alive
37	161200 Male 62	AML with NPM1 mutation	117.1	60.89	46,XY[20]	NPM1 pos, FLT3-ITD neg	Deceased
38	161210 Female 69	AML with maturation	60.4	41.5	46,XX,t(7;9)(q32;q12)[2]/47,XX,+19[2]/46,XX[16]	not done	Alive
39	161216 Female 83	AML with NPM1 mutation	26.1	17.2	46,XX,der(4)t(3;4)(q12;q35)[7]/46,XX,dup(3)(q12q29)[2]	NPM1 pos, FLT3-ITD neg	Deceased
40	161240 Female 50	AML	22.1	6.85	46,XX[20]	not done	Deceased
41	161254 Female 66	AML with myelodysplastic related changes	12.6	9.72	44~50,XX,-5,del(5)(q13q33),-7,-10,+11,add(12)(p11.2),+14,+15,add(19)(q13.4),	not done	Deceased
42	161282 Male 38	AML, NOS	18.1	14.34	46,XY,del(9)(q13q22)[2]/46,XY[18]	NPM1 neg, FLT3-ITD neg	Alive
43	161305 Male 47	AML, NOS	133.5	123.09	48,XY,t(6;11)(q27;q23),+21,+21[20]	NPM1 neg, FLT3-ITD neg	Deceased
44	161380 Female 66	AML with NPM1 mutation	377.8	361.56	unsuccessful	NPM1 pos, FLT3-ITD pos	Alive
45	161406 Male 66	AML, NOS	11.4	6.84	46,XY[20]	NPM1 neg, FLT3-ITD neg	Deceased
46	161407 Female 67	AML with mutated NPM1	34.2	23.74	46,XX [20]	NPM1 pos, FLT3-ITD neg	Deceased
47	161421 Female 59	AML with NPM1 mutation	316	205.4	unsuccessful	NPM1 pos, FLT3-ITD pos	Alive
48	161498 Female 57	AML	29.3	21.01	46,XX [20]	NPM1 neg, FLT3-ITD neg, CBFB-MYH11 neg	Alive
49	161528 Female 49	AML, NOS	14.5	9.28	46,XX,t(11;19)(q23;p13.1)[13]/46,XX[7]	PML/RARA neg	Alive
50	161660 Female 74	AML with mutated NPM1	40.5	29.69	46,xx[20]	NPM1 pos, FLT3-ITD neg	Deceased
51	161673 Female 77	AML with myelodysplastic related changes	5.7	0.51	46,XX[18]	NPM1 neg, FLT3-ITD neg	Deceased
52	161734 Male 48	AML with mutated NPM1	59.5	53.85	17,7X,+13[6]/46,XY[4]	NPM1 pos, FLT3-ITD neg	Alive
53	161769 Male 68	AML with minimal differentiation	26.9	16.01	unsuccessful	NPM1 neg, FLT3-ITD neg	Deceased
54	161780 Male 19	AML, NOS	40.1	36.49	46,XY;(10;11)[p1?2;q23][10]	not done	Deceased
55	161820 Male 30	AML with t(9;11)(p22;q23)	179	27.39	7,XY,+X,(9,11)(D2;q2310)	not done	Deceased
56	161868 Male 63	AML with mutated NPM1	85.2	55.64	4,xr(2)	NPM1 pos, FLT3-ITD pos	Deceased
57	161905 Male 67	AML with myelodysplastic related changes	16.9	13.99	(40,7)[20] (43,XY,de[5])(211.2q35),add(7)(q36),add(13)(p11.2),-15,-17,-18,der(20)t(15;20)(q11.2;q13.1),	not done	Deceased
58	162002 Female 70	AML with myelodysplastic related changes	28.1	16.59	46,xx[20]	NPM1 neg, FLT3-ITD pos	Deceased
59	162089 Male 38	AML, NOS	136.4	113.21	(4,5,X),e(i9)(q13q22)[7]/47,idem,+8[2]/46,XY[1]	not done	Deceased
60	162102 Female 54	AML with monocytic differentiation	12.3	10.7	(4),XX;(ii(7)(q1.1)[10]	not done	Alive
61	162102 Perilate 34	AML with mutated NPM1	40.8	22.8	45,X-Y9[/45,X]11	NPM1 pos, FLT3-ITD neg, CBFB-MYH11 neg	Alive
62	162131 Female 64	AML with myelodysplastic related changes	57.4	10.45	+3,,,'12,/'9,,,'12,/'9,,,'12,' (45,X)(2)	NPM1 pos, FLT3-ITD pos	Alive
62	162131 Perhate 64	AML, NOS	24.3	18.95	40,A22U Unsuccessful	NPM1 neg, FLT3-ITD pos	Deceased
64	162218 Male 70	AML, NOS	17.1	7.25	unsutcessuu 48,XX+13,+13(9)/46,XX[2]	NPM1 neg, FLT3-ITD pos NPM1 neg, FLT3-ITD neg	Deceased
65	162229 Female 59	AML with NPM1 mutation	34.4	22.02		NPM1 neg, FLT3-ITD neg	Alive
65	162235 Female 59 162252 Female 25	AML with NPM1 mutation AML with NPM1 mutation	34.4	43.2	46,XX[20] 46,XX[20]	NPM1 pos, FLT3-ITD neg NPM1 pos, FLT3-ITD neg	Alive
67 68	162292 Female 70 162335 Male 68	Therapy-related AML	105.6 30	73.92	46,XX,del(1)(p22p32),t(8;21)(q22;q22)[9]/46,XX[2]	KIT neg,RUNX1/RUNX1T1 pos	Deceased
68		AML with monocytic differentiation	30	0.0	46,XY[20]	NPM1 neg, FLT3-ITD neg	Alive
				5.6	45,X,-Y[20]	RUNX1/RUNX1T1 pos, KIT pos	Alive
69 70	162372 Male 23 166054 Male 73	AML with myelodysplastic related changes	18.8		7,7X,+11[10]/47,XY,+8[2]	NPM1 neg, FLT3-ITD neg	Deceased

