

IOR Un istituto affiliato all'USI

Richter syndrome biology (icreased rate of Richer syndrome under NA?)

Davide Rossi, M.D., Ph.D.

Hematology IOSI - Oncology Institute of Southern Switzerland IOR - Institute of Oncology Research USI – Universita' della Svizzera Italiana Bellinzona - Switzerland

Conflict of interest	I O S
Research Support:	Gilead, Abbvie, Janssen, Cellestia, Xeneticbio
Employee	No
Consultant	No
Major Stockholder	No
Speakers Bureau	No
Honoraria	Gilead, Abbvie, Janssen, Roche, AstraZeneca, Loxo
Scientific Advisory Board	Gilead, Abbvie, Janssen, AstraZeneca, MSD, Loxo

1. Classification

et al, Blood 2000; 95:1023-31 Tsimberidou et al, Cancer 2006; 107: 1294-302 Rossi D, et al, Clin Cancer Res 2009; 115: 4415-22, Xiao et al, Hum Pathol 2016;55:108-16

Clonally related vs unrelated DLCL variant of Richter syndrome 50/63 (80%) **Clonally related RS** V4-39 D6 J4 13/63 (20%) CLL **Clonally unrelated RS** V4-39 D6 J4 V4-34 D2-2 J3 Rossi et al, Blood 2011

Clonally unrelated Richter syndrome are de novo DLBCL with better outcome

2. Incidence/risk factors

Risk of Richter transformation according to NOTCH1

Agenda

3. Genetics in the CIT era

The genetic profile of Richter sydrome (RS) differs from that of *de novo* DLBCL

Apoptosis and cell cycle pathway mutations in Richter syndrome

Döhner H, et al. New Engl J Med 2000;343:1910–6; Rasi S, et al. Haematologica 2012;97:153–4; Zainuddin N, et al. Leuk Res 2011;35:272–4; Zenz T, et al J Clin Oncol 2010;28:4473–9; Rossi D, et al. Blood 2011;117:3391–401; Stilgenbauer S, et al. Blood 2014;123:3247–54; Fabbri G, et al. J Exp Med 2013;210:2273-88

MYC abnormalities in Richter syndrome

NOTCH1 mutations in Richter syndrome

Subset 8 configuration of BCR associates with Richter syndrome

BCR from subset 8 CLL display extreme antigen polyreactivity

Rossi D, et al, Clin Cancer Res 2009; 15: 4415-22 Chu, et al, Blood 2011; 117:2227-36 Rossi D, et al, Blood 2013; 121: 4902-5 Gounari M, et al, Blood 2015; 125: 3580-7

Proliferation and apoptosis are the master cellular programs deregulated in Richter syndrome Subset 8 **NOTCH** signaling BCR mutations ~30% ~9% IOTCH1 G2 cvcle MYC **G1** alterations ~40% **CDKN2A** c-MYC NOTCH1 TARGET GENES **TP53** CDKN2A deletions ~30% TP53 abnormalities ~60% **Apoptosis** Rapidly progressive kinetics Chemorefractoriness

Adapted from Rossi D, et al. Semin Oncol 2016; 43:311–319.

Clonal evolution models

Unique lesions in Phase 2 •

- Unique lesions in Phase 1 ٠
- Unique lesions in Phase 2

•

Most RS arise through a linear pattern of clonal evolution

Clonal evolution models applied to transformed lymphomas

Fabbri G, et al, J Exp Med 2011; 208:1389-401; Rossi D, et al. Blood 2012; 119: 521-9

4. Genetics in the NA era

	Total pt	CLLPD	RT
Maddocks ⁶	20	11	9
Burger ¹⁸	5	5	0
Ahn ⁴³	12	9	3
Current study	9	3	6
Total	46	28	18
CLL Simple prog	ression on IBR	CLL Richter tr	ansformation or
CLL Simple prog	ression on IBR	CLL Richter tr	ansformation or
CLL Simple prog	ression on IBR	CLL Richter tr	ansformation or
CLL Simple prog	ression on IBR	CLL Richter tr	ansformation or BTK 6 (32)
CLL Simple prog	ression on IBR BTK 20 (71%)	CLL Richter tr	ansformation or BTK* 6 (324

BTK: Bruton's tyrosine kinase; CLLPD: chronic lymphocytic leukaemia progressive disease; PLCG2: phospholipase C gamma 2

Kadri S, et al. Blood Adv 2017; 1:715–727.

Identified genetic aberrations and patterns of clonal evolution during venetoclax treatment

Agenda

5. Biological routes

• pAKT epression in RS

- DLBCL development in EµTCL1:CD19-Cre^{AKT-C}
- PD-L1 expression in RS but not in de novo DLBCL or CLL lymph nodes

Al-Maarri M, *et al.* EHA 2016;S118 Nickel N, *et al.* ASH 2016:2031 Wang *et al*, ASCO 2018; 7524 Behdad et al, Br J Haematol 2018 He et al, Am J Surg Pathol 2018 Agenda

6. Implications for treatment

	Patients	Regimen	ORR	CR
Hillmen, 2016	29	Acalabrutinib	38%	14%
Younes, 2018	29	Nivolumab + Ibrutinib	60%	5%
Tsang, 2016	4	Ibrutinib	75%	25%
Ding, 2016	9	Pembrolizumab	44%	11%
Jain, 2016	3	Nivolumab + Ibrutinib	50%	-
Davids, 2017	7	Venetoclax	43%	0%

Study MOLTO

A Multi-Center, Open Label, Uncontrolled, Phase II Clinical Trial Evaluating the Safety and Efficacy of Venetoclax in Combination with Atorolimumab and Obinutuzumab in Richter Transformation of CLL

Sponsor: Grande Ospedale Metropolitano Niguarda - Milano, Italy

IOR Un istituto affiliato all'USI

Experimental Hematology Ferdinando Bonfiglio Alessio Bruscaggin Adalgisa Condoluci Francesca Guidetti Martin Faderl Gabriela Forestieri Valeria Spina Lodovico Terzi di Bergamo

Lymphoma & Genomics Francesco Bertoni

Franco Cavalli

SOCIETY

Clinical Lymphoid tumors Investigation Program Bernhard Gerber Alden Moccia Anastasios Stathis Georg Stüssi Michele Ghielmini Luca Ceriani

Emanuele Zucca

Luisella Bonomini Ayda Lüönd Emanuele Zucca Franco Cavalli

ENSINE Swiss National Science Foundation krebsforschung schweiz recherche suisse contre le cancer ricerca svizzera contro II cancro swiss cancer research LEUKEMIA & LYMPHOMA

FONDATION NELIA ET AMADEO BARLETTA

Individualiser Personalizing le traitement cancer du cancer treatment

European Research Council Scientific Council