Ibrutinib

Monday November 4, 2019 14:30 – 14:50 Royal Hotel Carlton Bologna

Jan A. Burger MD Anderson Cancer Center Houston, Texas, USA

PCYC-1102/1103 Phase 2 Study Design

Phase 2 (PCYC-1102)

N = 132

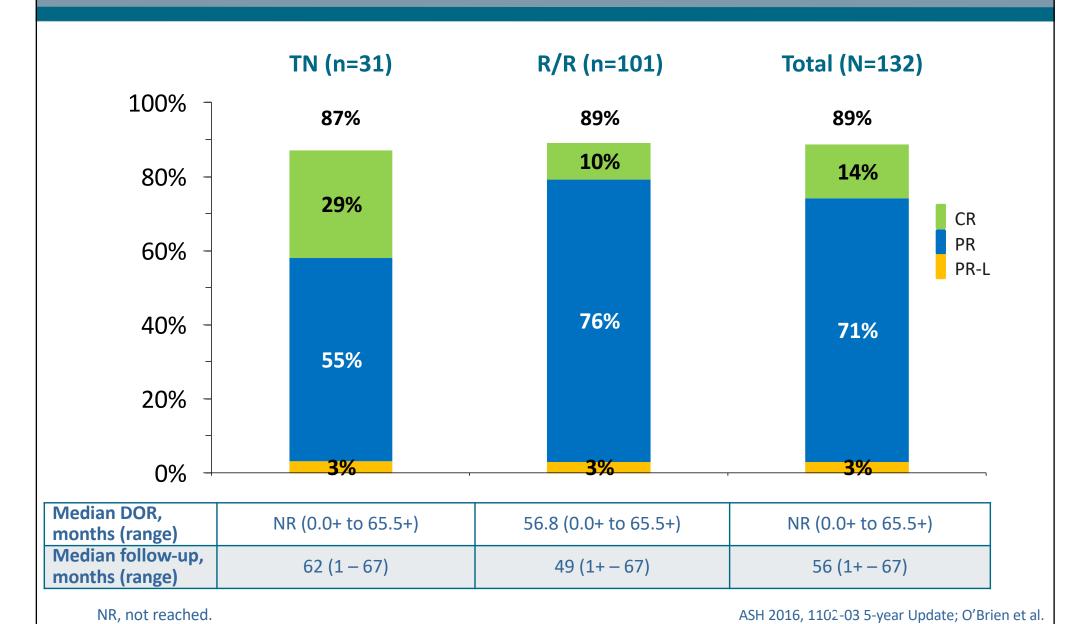
Patients with CLL/SLL
treated with
oral, once-daily ibrutinib
(420 or 840 mg/day)

Treatment Naïve (TN)
≥65 years
n=31

≥SD

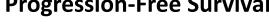
Relapsed/Refractory*
(R/R)

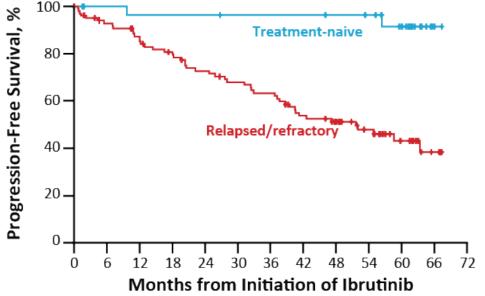
Extension Study (PCYC-1103)

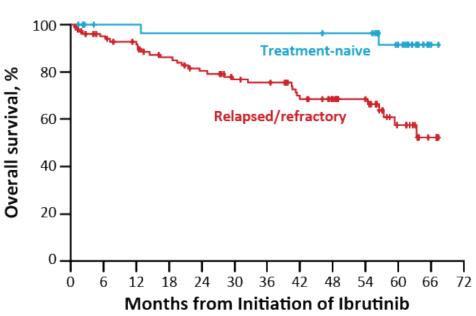

Long-Term Follow-Up

*R/R includes patients with high-risk CLL/SLL, defined as progression of disease <24 months after initiation of a chemoimmunotherapy regimen or failure to respond

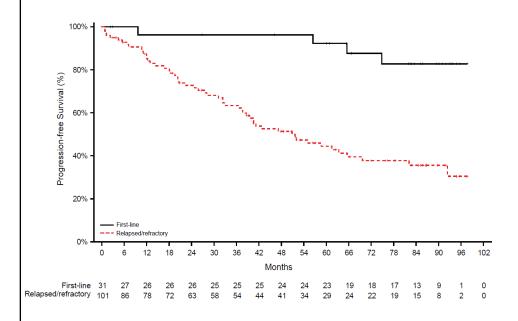
n=101


ASH 2016, 1102-03 5-year Update; O'Brien et al.


Best Response

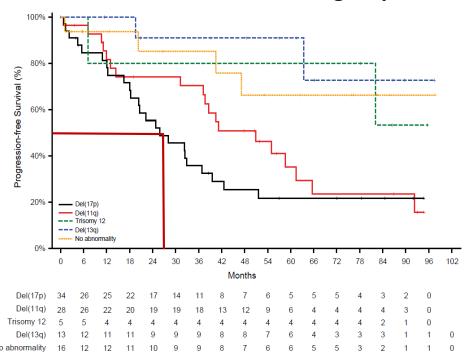

Survival Outcomes: Overall Population

Overall Survival


	Median PFS	5-year PFS
TN (n=31)	NR	92%
R/R (n=101)	52 mo	43%

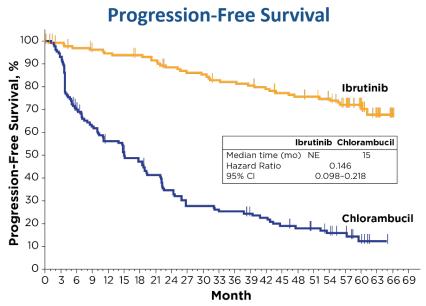
	Median OS	5-year OS
TN (n=31)	NR	92%
R/R (n=101)	NR	57%

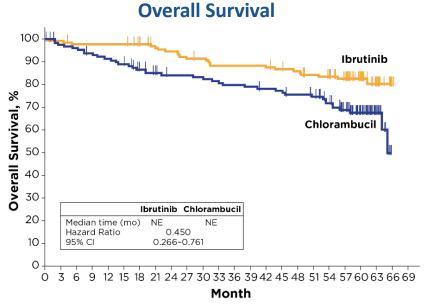
NR, not reached.


7-Year Experience With Ibrutinib Monotherapy Survival Outcomes (PCYC 1102/1103)

Progression-Free Survival: TN vs RR

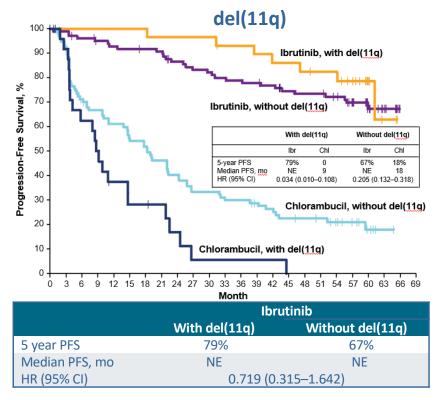
	Median PFS	7-year PFS
TN (n=31)	NR	83%
R/R (n=101)	52 mo	36%

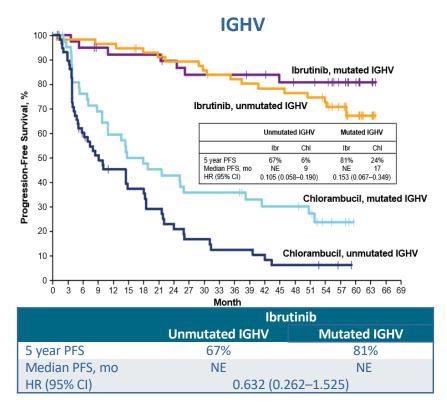

PFS in RR CLL: FISH subgroups


	Median PFS	7-year PFS
Del17p (n=34)	26	22%
Del 11q (n=28)	51	23%
Trisomy 12 (n=5)	NR	53%
Del 13q (n=13)	NR	73%
No abnormality	NR	66%

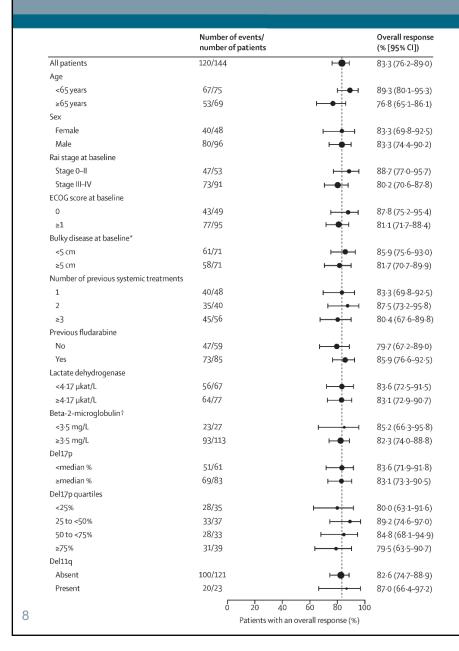
Byrd et al. 2019, submitted

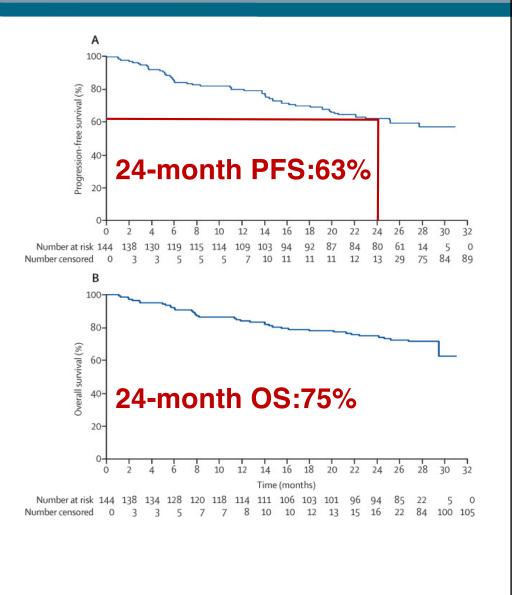
Ibrutinib PFS and OS Benefit vs Chlorambucil in First-Line CLL/SLL Continues in Long-Term Follow-Up

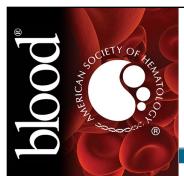



- At 5 years, 70% of ibrutinib-treated patients and 12% of chlorambucil-treated patients were estimated to be progression-free and alive (HR [95% CI]: 0.146 [0.098–0.218])
 - 21 patients in the ibrutinib arm progressed at any point during follow-up, including patients who had previously discontinued ibrutinib
- 8/21 patients progressed while actively on ibrutinib

Improved OS for ibrutinib vs chlorambucil: 5-year estimates, 83% vs 68%; HR (95% CI): 0.450 (0.266–0.761)


Ibrutinib PFS Benefit vs Chlorambucil for Patients With del(11q) or Unmutated IGHV




 Ibrutinib PFS benefit was maintained across all baseline characteristics evaluated, including patients with high-risk genomics (unmutated IGHV, del(11q), and/or TP53 mutation); PFS: HR 0.08 (95% CI: 0.05–0.15); OS: HR 0.37 (95% CI: 0.18–0.74)

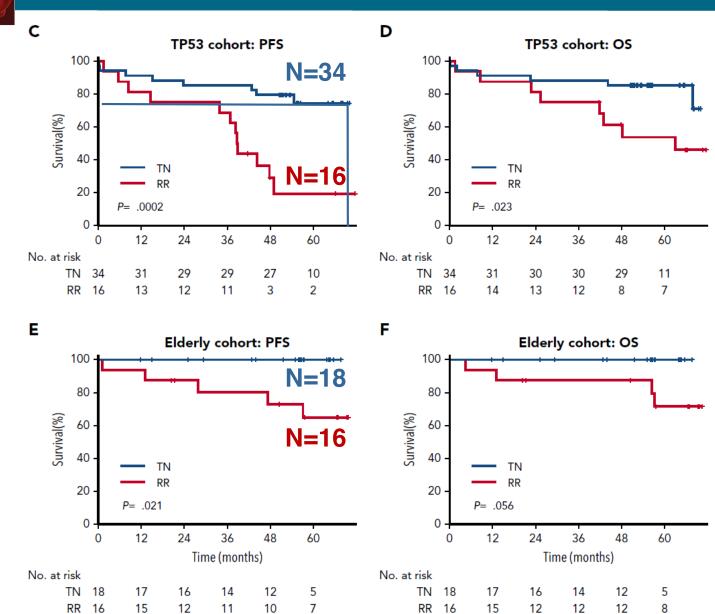
Ibrutinib in RR CLL with del17p

O'Brien et al. Lancet Oncol 17: 1409-1418, 2016

Depth and durability of response to ibrutinib in CLL: 5-year follow-up of a phase 2 study

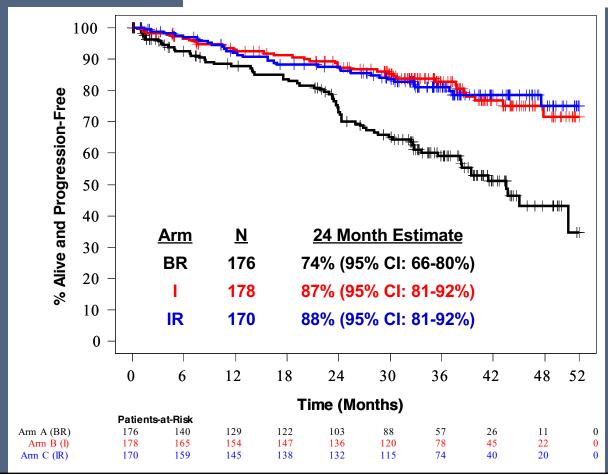
Inhye E. Ahn,¹ Mohammed Z. H. Farooqui,¹ Xin Tian,² Janet Valdez,¹ Clare Sun,¹ Susan Soto,¹ Jennifer Lotter,¹ Stephanie Housel,¹,³ Maryalice Stetler-Stevenson,⁴ Constance M. Yuan,⁴ Irina Maric,⁵ Katherine R. Calvo,⁵ Pia Nieman,¹ Thomas E. Hughes,⁶ Nakhle S. Saba,¹,² Gerald E. Marti,¹ Stefania Pittaluga,⁴ Sarah E. M. Herman,¹ Carsten U. Niemann,¹,8 Lone B. Pedersen,⁶ Christian H. Geisler,⁶ Richard Childs,¹ Georg Aue,¹ and Adrian Wiestner¹

Table 1. Baseline characteristics


	All (n = 86)	TP53 cohort (n = 51)	Elderly cohort (n = 35)
Age, median (range), y ≥65, N (%)	66 (33-85) 55 (64.0)	62 (33-82) 21 (41.2)	69 (63*-85) 34 (97.1)*
Sex, N (%) Female Male	36 (41.9) 50 (58.1)	20 (39.2) 31 (60.8)	16 (45.7) 19 (54.3)
Prior treatment status, N (%) Treatment-naïve Relapsed/refractory†	53 (61.6) 33 (38.4)	35 (68.6) 16 (31.4)	18 (51.4) 17 (48.6)
Rai stage, N (%) / / V	28 (32.6) 58 (67.4)	19 (37.3) 32 (62.7)	9 (25.7) 26 (74.3)
Bulky adenopathy (≥5 cm), N (%)‡	31 (36.0)	19 (37.3)	12 (34.3)
Splenomegaly, N (% evaluable)§	74 (88.1)	44 (88.0)	30 (88.2)
IGHV unmutated, N (%)	57 (66.3)	34 (66.7)	23 (65.7)
TP53 aberration, N (%) Deletion 17p TP53 mutation	54 (62.8) 50 (58.1) 4 (4.7)	51 (100) 47 (92.2) 4 (7.8)	0 (0) 3 (8.6)¶ 0 (0)
β2-microglobulin Median (range), mg/dL >4 mg/dL, N (%)	4-0 (1.7-12.9) 44 (51.2)	3.9 (1.7-12.3) 24 (47.1)	4.4 (1.9-12.9) 20 (57.2)

10

Depth and durability of response to ibrutinib in CLL: 5-year follow-up of a phase 2 study


Inhye E. Ahn,¹ Mohammed Z. H. Farooqui,¹ Xin Tian,² Janet Valdez,¹ Clare Sun,¹ Susan Soto,¹ Jennifer Lotter,¹ Stephanie Housel,¹,³ Maryalice Stetler-Stevenson,⁴ Constance M. Yuan,⁴ Irina Maric,⁵ Katherine R. Calvo,⁵ Pia Nieman,¹ Thomas E. Hughes,⁶ Nakhle S. Saba,¹,² Gerald E. Marti,¹ Stefania Pittaluga,⁴ Sarah E. M. Herman,¹ Carsten U. Niemann,¹,² Lone B. Pedersen,⁶ Christian H. Geisler,⁶ Richard Childs,¹ Georg Aue,¹ and Adrian Wiestner¹

ORIGINAL ARTICLE

Ibrutinib Regimens versus Chemoimmunotherapy in Older Patients with Untreated CLL

J.A. Woyach, A.S. Ruppert, N.A. Heerema, W. Zhao, A.M. Booth, W. Ding, N.L. Bartlett, D.M. Brander, P.M. Barr, K.A. Rogers, S.A. Parikh, S. Coutre, A. Hurria,* J.R. Brown, G. Lozanski, J.S. Blachly, H.G. Ozer, B. Major-Elechi, B. Fruth, S. Nattam, R.A. Larson, H. Erba, M. Litzow, C. Owen, C. Kuzma, J.S. Abramson, R.F. Little, S.E. Smith, R.M. Stone, S.J. Mandrekar, and J.C. Byrd

Pairwise Comparisons

I vs BR:

Hazard Ratio 0.39

95% CI: 0.26-0.58

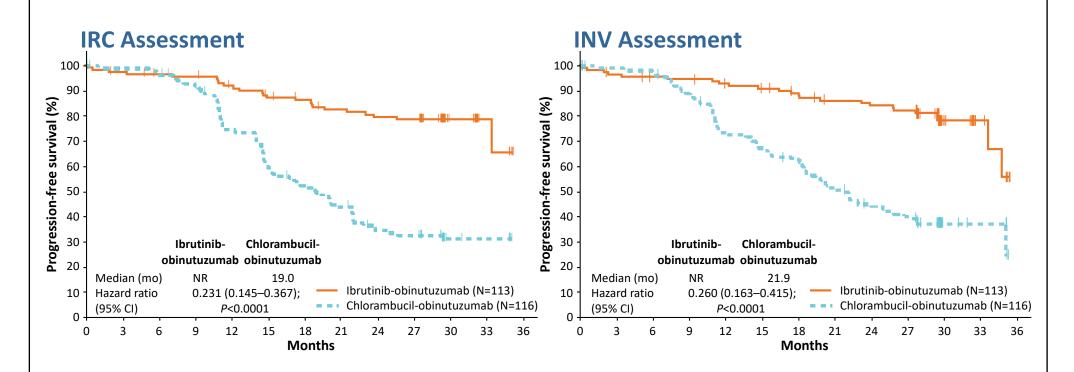
(1-sided P-value < 0.001)

IR vs BR:

Hazard Ratio 0.38

95% CI: 0.25-0.59

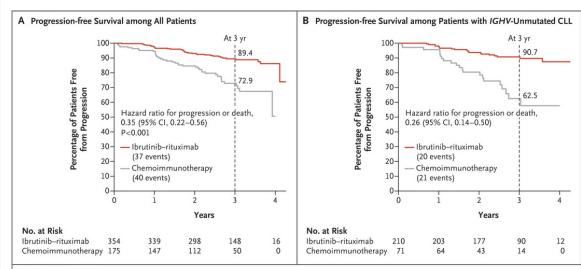
(1-sided P-value < 0.001)

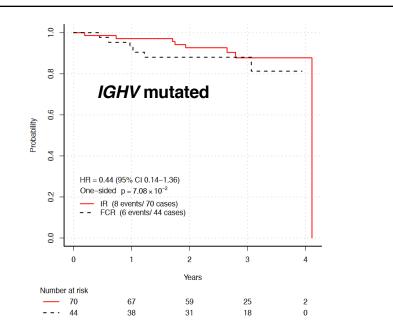

IR vs I:

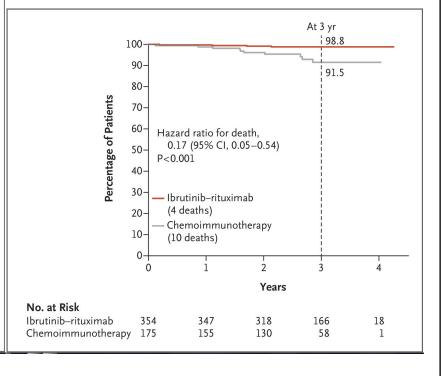
Hazard Ratio 1.00

95% CI: 0.62-1.62

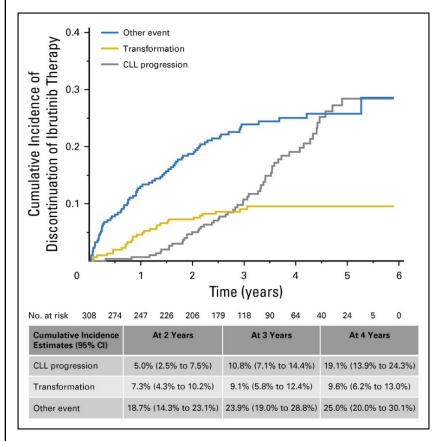
(1-sided P-value 0.49)

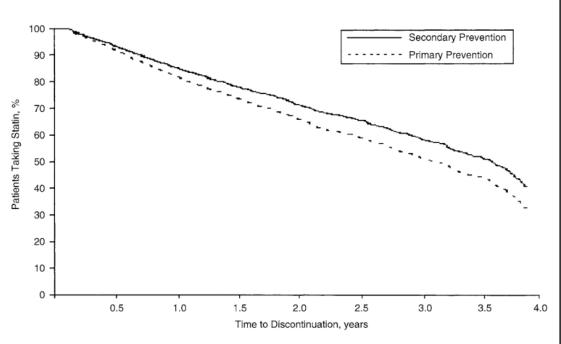

Superior Progression-Free Survival with Ibrutinib-Obinutuzumab


- Median follow-up, 31.3 months (range, 0.2–36.9)
- Estimated PFS at 30 months: 79% with ibrutinib-obinutuzumab vs. 31% with chlorambucil-obinutuzumab
- Even after excluding patients with del(17p): 74% reduction in risk of progression or death with ibrutinib-obinutuzumab


INV, investigator; NR, not reached.

Moreno et al; ASH2018, Abstract 691


	No. of	No. of	
Subgroup	Patients	Events	Hazard Ratio (95% CI)
All patients	529	77	0.35 (0.22–
Eligible patients	498	72	0.32 (0.20-
Sex			
Female	173	19	0.30 (0.12–
Male	356	58	0.40 (0.23–
Age			
<60 yr	314	51	0.32 (0.18–
≥60 yr	215	26	0.44 (0.20–
ECOG performance-status score			
0	335	46	0.26 (0.14–
1 or 2	194	31	0.61 (0.29–
Rai stage			
0 to II	301	41	0.35 (0.18–
III or IV	228	36	0.38 (0.19–
Beta ₂ microglobulin level			
Elevated	265	48	0.26 (0.14–
Normal	259	29	0.56 (0.26–
Splenomegaly			
No	311	39	0.36 (0.19–
Yes	218	38	0.32 (0.17–
Lymphadenopathy			
No	159	16	0.44 (0.14–
Yes	370	61	0.35 (0.21–
Dohner classification			Ī
Chromosome 11q22.3 deletion	117	22	0.24 (0.10–
Trisomy 12	97	10	0.73 (0.19–
Normal	106	18	0.78 (0.29–
Chromosome 13q deletion	179	19	0.22 (0.08–
IGHV mutation			
Yes	114	14	0.44 (0.14–
No	281	41	0.26 (0.14–
			0.12 0.25 0.50 1.00 2.00 4.00
			Ibrutinib-Rituximab Better Chemoimmunotherapy Better



Shanafelt et al; NEJM 381(5):432-443, 08-2019

IBRUTINIB DISCONTINUATION AND RESISTANCE: OSU DATA

Woyach JA, JCO 2017

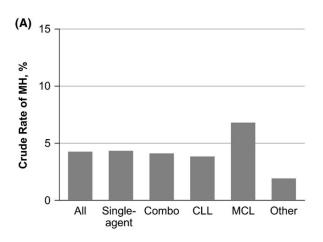
FIGURE 1. Survival curves for discontinuation of statin therapy by prevention category. Adjusted for all available covariates. The median time to discontinuation was 3.7 years for secondary prevention and 3.4 years for primary prevention.

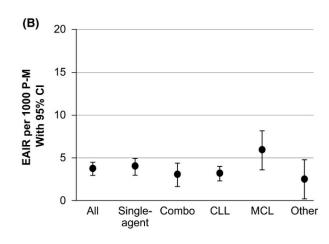
Ellis, J.J. et al. J GEN INTERN MED (2004) 19: 638

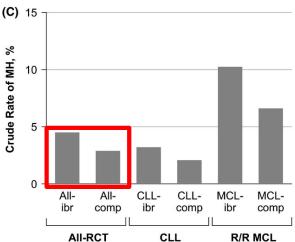
Toxicities and outcomes of 621 ibrutinib-treated CLL patients in the US: a real-world analysis

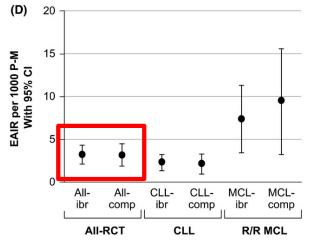
- At a median follow-up of 17 months (range 1-60 months),
 42% of patients discontinued ibrutinib
- Median time to ibrutinib discontinuation was 7 months (range, 0.1–41)

Table 2. Reasons for Ibrutinib Discontinuation

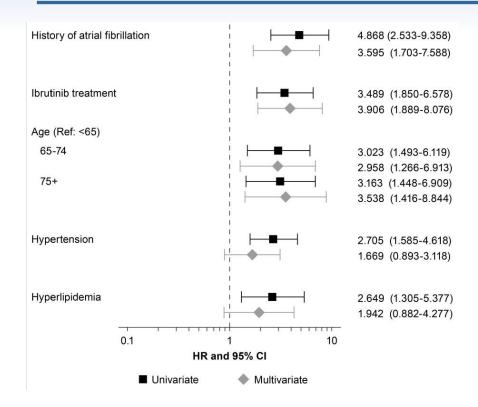

Reason for ibrutinib discontinuation	Ibrutinib in front-line n=19	Ibrutinib in relapse
		n=231
Toxicity	63.1% (n=12)	50.2% (n=116)
CLL progression	15.8% (n=3)	20.9% (n=49)
Other/unrelated death	5.3% (n=1)	12.1% (n=28)
Physician or patient preference	10.5% (n=2)	6.7% (n=15)
RT DLBCL	5.3% (n=1)	4.6% (n=10)
Stem cell transplantation/CAR T-cell	0	3.3% (n=8)
Financial concerns	0	0.8% (n=2)
Secondary malignancy	0	0.8% (n=2)
RT Hodgkin Lymphoma	0	0.4% (n=1)


Table 2 Abbreviations: CLL (Chronic Lymphocytic Leukemia); RT DLBCL (Richter's Transformation Diffuse Large B Cell Lymphoma); CAR T-cell (Chimeric Antigen Receptor T-cell); RT (Richter's Transformation)


Bleeding in ibrutinib-treated patients: pooled data from 1768 patients


Crude rate of major hemorrhage

Exposure-adjusted incidence rates (EAIR)


- Low-grade bleeding in 36% of patients
- Major hemorrhage
 (MH) in 4.1% of patients
- 1% of patients discontinue ibrutinib because of MH
- Moderate associations between anticoagulant/antiplatelet (AC/AP) use and risk of MH in ibrutiniband comparator-treated patients

<u>Mechanism:</u> Ibrutinib inhibits platelet aggregation due to inhibition of BTK and TEC in glycoprotein VI collagen-activated pathway

Atrial fibrillation in ibrutinib-treated patients: pooled data from 1505 patients

Atrial fibrillation in ibrutinib-treated patients: risk factors and management

Risk factors associated with *de novo* AF (Shanafelt risk score)

- Older age
- Male gender
- Valvular heart disease
- Arterial hypertension

		Ibrutinib (n=49)		Comparator (n=12)		
'	n (%)	Median duration while on study (range), weeks	n (%)	Median duration while on study (range), weeks		
Beta blockers or alpha blockers	41 (83.7)	54.4 (0.1-194.4)	9 (75.0)	57.9 (0.4-114.4)		
Diuretics	23 (46.9)	39.9 (0.1-148.6)	8 (66.7)	3.1 (0.3-21.6)		
ACE inhibitors	19 (38.8)	56.7 (4.6-143.0)	5 (41.7)	6.3 (0.6-104.0)		
Calcium channel blockers	16 (32.7)	28.7 (0.1-80.3)	3 (25.0)	6.0 (0.1-10.4)		
Antiarrhythmic	25 (51.0)	9.1 (0.1-66.1)	7 (58.3)	20.9 (0.1-77.1)		
Digoxin	13 (26.5)	1.3 (0.1-19.7)	1 (8.3)	0.1 (0.1-0.1)		
Lipid-lowering medications, statins, and antidiabetics	22 (44.9)	59.5 (0.1-114.3)	5 (41.7)	10.0 (4.1-152.1)		
Antiplatelets						
Aspirin	23 (46.9)	50.3 (2.1-103.9)	4 (33.3)	4.4 (2.0-61.0)		
Antiplatelets other than aspirin	10 (20.4)	18.1 (0.1-74.9)	0	0		
Anticoagulants						
Low-molecular- weight heparin	25 (51.0)	4.3 (0.1-50.4)	7 (58.3)	2.4 (0.9-45.1)		
Novel oral anticoagulants	12 (24.5)	40.9 (2.3-99.1)	1 (8.3)	87.3 (87.3-87.3)		
Vitamin K antagonists	7 (14.3)	13.0 (0.3-55.0)	2 (16.7)	4.1 (2.1-6.0)		
Other	8 (16.3)	0.4 (0.1-76.1)	1 (8.3)	67.6 (67.6-67.6)		

ACE, angiotensin-converting-enzyme; AF, atrial fibrillation.

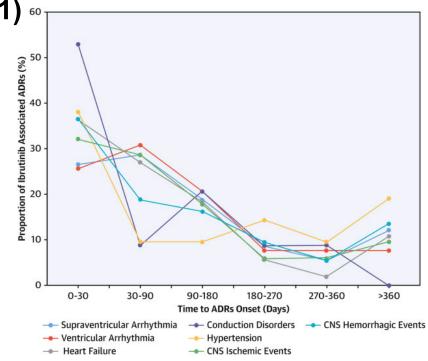
Brown JR Haematologica 102: 1796, 2017

Cardiovascular Toxicities Associated With Ibrutinib

- Data based on VigiBase (International pharmaco-vigilance database) and disproportionality analysis using reporting odds ratios (ROR)
- 13,572 Ibrutinib individual case safety report (ICSR)
- Study identified 303 ibrutinib-associated cardiovascular deaths

Supraventricular arrhythmias (ROR: 23.1) ∞

• Heart failure (ROR: 3.5; 95%)


Ventricular arrhythmias (ROR: 4.7)

Conduction disorders (ROR: 3.5)

CNS hemorrhagic events (ROR: 3.7)

CNS ischemic events (ROR: 2.2)

Hypertension (ROR: 1.7)

Ibrutinib studies with reported sudden deaths/cardiac arrests

Ctudios*	Studies* No. of Patients	Median time on therapy (months)	Age (y)		No. of sudden deaths/cardiac	Incidence per 100 000
Studies			Median	Range	arrests in ibrutinib arm	patient-years (95% CI)
OSU experience: NCT01105247, NCT01217749, NCT01589302, NCT01578707 (RESONATE)	308	20	65	26-91	1	194.8 (4.9-1085.4)
NCT01722487 (RESONATE-2)	135	17.4	73	65-89	2	1021.7 (123.7-3690.8)
MDACC experience: NCT01105247, NCT01520519, NCT01752426, NCT01578707 (RESONATE)	127	13	61	36-83	2	1453.7 (176.1-5252.1)
NCT01500733 (Phase 2 NHLBI)	51	24†	62	33-82	1	980.4 (24.8-5462.4)
Swedish Compassionate Use	95	10.2†	69	42-86	1	1238.4 (31.4-6899.9)
NCT01611090 (HELIOS)	287	14.7	64	31-86	3	853.3 (176.0-2493.7)

The weighted average of the incidence rates was **788 events per 100 000 person-years**. In comparison, rates of sudden cardiac death for 65-year-olds are in the range of **200 to 400 events** per 100 000 person-years

Ibrutinib and fungal infections

- In CNS lymphoma, 39% of patients treated with ibrutinib plus steroids developed aspergillosis
- Potential mechanism: inhibitory BTK-related effects on macrophages, suppressing phagocytosis of aspergillus
- In CLL or MCL, incidence of Aspergilloses much lower than in CNS lymphoma
- Predominant sites of infection: lungs, CNS
- Early onset fungal infection after start of ibrutinib therapy characteristic
- anti-fungal prophylaxis is not warranted for the general population of ibrutinib-treated patients,
- Particular attention and close follow-up, especially during the first months of therapy, recommended for patients with high-risk, such as concomitant corticosteroid use, higher number of prior therapies, diabetes, or liver disease

NCCN Guidelines for CLL frontline therapy (non-del17p)

SUGGESTED TREATMENT REGIMENS^{a,b,c,d} CLL/SLL without del(17p)/*TP53* mutation (alphabetical by category)

	FIRST-LINE THERAPY				
	Preferred regimens	Other recommended regimens			
Frail patient with significant comorbidity (not able to tolerate purine analogs) <u>OR</u> Patients age ≥65 y and younger patients with significant comorbidities	 Ibrutinib^e (category 1) Venetoclax^{e,f} + obinutuzumab 	 Bendamustine (70 mg/m² in cycle 1 with escalation to 90 mg/m² if tolerated) + anti-CD20 monoclonal antibody^{d,g} (Not recommended for frail patients) Chlorambucil + anti-CD20 monoclonal antibody^{g,h} High-dose methylprednisolone (HDMP) + rituximab (category 2B) Ibrutinib^e + obinutuzumab (category 2B) Obinutuzumab (category 2B) Chlorambucil (category 3) Rituximab (category 3) 			
Patients age <65 y without significant comorbidities	Preferred regimens • Ibrutinib ^e (category 1)	Other recommended regimens • Bendamustine + anti-CD20 monoclonal antibody ^{d,g,i} • FCR (fludarabine, ^j cyclophosphamide, rituximab) ^{i,k,l} • FR (fludarabine, ^j rituximab) ^{k,m} • HDMP + rituximab (category 2B) • Ibrutinib ^e + rituximab (category 2B) • Venetoclax ^{e,f} + obinutuzumab (category 2B) • PCR (pentostatin, cyclophosphamide, rituximab) (category 3)			

NCCN Guidelines for CLL frontline therapy Version 5.2019 (del17p)

SUGGESTED TREATMENT REGIMENS^{a,b,c,d} CLL/SLL with del(17p)/*TP53* mutation (alphabetical by category)

FIRST-LINE THERAPY

Preferred regimens

- Ibrutinib^e
- Venetoclax^{e,f} + obinutuzumab

Other recommended regimens

- Alemtuzumab^q ± rituximab
- HDMP + rituximab
- Obinutuzumab

Summary

- Ibrutinib has replaced CIT for many CLL patients
- Long-term therapy and toxicities remain a challenge
- Resistance mostly an issue in highrisk patients (del17p, multiple prior therapies)
- Limited duration therapy may help to reduce the risk for toxicities and resistance

Thank-you!

Dept. of Leukemia, MDACC Questions? jaburger@mdanderson.org