

Drivers of treatment patterns in patients stopping Ibrutinib, idelalisib or venetoclax

ANTHONY MATO, MD MSCE

MEMORIAL SLOAN KETTERING CANCER CENTER

Anthony Mato - Disclosures

- Research
 - TG Therapeutics
 - Pharmacyclics
 - Abbvie
 - Johnson and Johnson
 - Acerta / AZ
 - Regeneron
 - DTRM BioPharma
 - Sunesis
 - Loxo

- Advisory / Consultancy
 - TG Therapeutics
 - Pharmacyclics
 - Abbvie
 - Johnson and Johnson
 - Acerta / AZ
 - DTRM BioPharma
 - Sunesis
 - Celgene
 - Verastem

2013-2019: a period of exciting transformation

- Several novel agents have been approved since 2013.
- Ibrutinib +/- Obin approved for all settings (relapsed, refractory, front-line).
- Idelalisib + rituximab approved for relapsed disease.
- **Duvelisib** approved in r/r setting (2 prior therapies)
- Venetoclax +/- CD20 approved in the front line and r/r settings.

New challenges have emerged as (1) none of these strategies are curative (2) AEs are significant drivers of discontinuation (3) limited understanding of molecular (BTK / BCL2) resistance (4) what factors to consider in selecting therapies in previously exposed to novel agents Understanding treatment patterns following first novel agents has not been well-studied

- Few prospective studies comparing novel agents to clinically relevant controls and to one another
- Follow-up once subjects are censored is lacking.
- Data on sequencing novel agents / chemotherapy have been extrapolated from retrospective cohort studies and observational registries conducted in the real world setting with noted limitations.
- Outcomes rarely stratified by reason for discontinuation of prior novel agent – but this matters!

Goal: To discuss "drivers" of treatment patterns in patients who discontinue ibrutinib, idelalisib and venetoclax stratified by line of therapy and reason for discontinuation.

Outline

- Discuss discontinuation rates of novel agents in front line and relapse
- Discuss discontinuation **patterns** of novel agents including ibrutinib, idelalisib and venetoclax
- Discuss why **reason for discontinuation** is an important driver of treatment patterns following ibrutinib, idelalisib and venetoclax
- Propose a sequencing algorithm that takes into account novel agent history and reason for discontinuation

What is driving the discontinuation of current novel agents?

Ibrutinib, Idelalisib, Venetoclax

4 major reasons...AE, CLL progression, RT, completion of planned therapy (in the case of Ven)

Ibrutinib and Idelalisib

ORIGINAL ARTICLE Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia J.A. Burger, A. Tedeschi, P.M. Barr, T. Robak, C. Owen, P. Ghia, O. Bairey, P. Hillmen, N.L. Bartlett, J. Li, D. Simpson, S. Grosicki, S. Devereux, H. McCarthy, S. Coutre, H. Quach, G. Gaidano, Z. Maslyak, D.A. Stevens, A. Janssens, F. Offner, J. Mayer, M. O'Dwyer, A. Hellmann, A. Schuh, T. Siddigi, A. Polliack, C.S. Tam, D. Suri, M. Cheng, F. Clow, L. Styles, D.F. James, and T.J. Kipps, for the RESONATE-2 Investigators* A Overall Survival A Progression-free Survival According to Independent Assessment Ibrutinit 100-100 Ibrutinib Patients with Progression-free Survival (%) 90 90 80 80 70-70 Patients Who Survived (%) 60-60 50-Chlorambucil 50 40-30-40-Chlorambucil Ibrutinib 20-Median (mo) 18.9 NR 30 10-Hazard ratio, 0.16 (95% CI, 0.09-0.28); P<0.001 20-0. 0 3 6 9 12 15 18 21 24 27 10-Hazard ratio, 0.16 (95% CI, 0.05-0.56) P=0.001 by log-rank test Months 12 15 18 21 24 27 No. at Risk Months Ibrutinib No. at Risk 136 133 130 126 122 98 66 21 2 0 136 134 131 0 Ibrutinib 131 131 129 74 62 32 24 133 121 95 85 10 0 Chlorambucil 74 49 34 0 0 133 113 Chlorambucil 127 125 121 118

Discontinuation rate = 12.5%, most common reason AEs

Chronic lymphocytic leukemia

Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study

Jan A. Burger¹ · Paul M. Barr² · Tadeusz Robak³ · Carolyn Owen⁴ · Paolo Ghia ⁵ · Alessandra Tedeschi⁶ · Osnat Bairey⁷ · Peter Hillmen⁸ · Steven E. Coutre⁹ · Stephen Devereux¹⁰ · Sebastian Grosicki¹¹ · Helen McCarthy¹² · David Simpson¹³ · Fritz Offner¹⁴ · Carol Moreno¹⁵ · Sandra Dai¹⁶ · Indu Lal¹⁶ · James P. Dean¹⁶ · Thomas J. Kipps¹⁷

Table 2 Duration of treatment with first-line ibrutinib

	Ibrutinib $n = 136$	
Median (range) duration of ibrutinib treatment, months ^a	57.1 (0.7–66.0)	
Treatment duration, n (%)		
>3 years	99 (73)	
>4 years	88 (65)	
>5 years	37 (27)	
Continuing ibrutinib on study, n (%)	79 (58)	
Continuing on commercial ibrutinib, n (%)	0 (0)	
Discontinued ibrutinib, n (%)	56 (41)	
Adverse event	^{29 (21)} 529	
Progressive disease	8 (6)	
Death	8 (6)	
Withdrawal by patient	7 (5)	
Investigator decision	4 (3)	

Outcomes following ibrutinib discontinuation

Outcomes following discontinuation of first-line ibrutinib treatment are shown in Supplementary Table 2. Median OS following discontinuation was not reached (range, 0-64+months) in patients who discontinued ibrutinib because of AEs (n = 29). Only eight patients discontinued ibrutinib because of PD (including two patients due to Richter's transformation); of these patients, 50% are still alive or had exited study with no known death at the data cut. The median OS following ibrutinib discontinuation due to PD was 20 months (range, 1+ to 28 months). Median PFS for patients who were in CR/CRi at ibrutinib discontinuation

was 56 months (95% CI: 44, NE) compared with 33 months (95% CI: 26, 46) for patients who were not CR/CRi at ibrutinib discontinuation (HR [95% CI]: 0.390 [0.118, 1.285]).

Of patients with available follow-up data after ibrutinib discontinuation, 14 patients received subsequent therapy for CLL, including standard chemoimmunotherapy (FCR, BR, or GC) (n=8), chemotherapy (n=3), and novel agents (n=3). Of nine patients with best overall response to subsequent therapy reported, seven responded, one had stable disease, and one had PD. Eleven of the 14 patients remained alive at last follow-up, two patients withdrew consent, and one patient died.

42% discontinuation rate at 5 years, most common reason AE, limited data on next therapies

RESEARCH ARTICLE 🔂 Full Access

Outcomes of front-line ibrutinib treated CLL patients excluded from landmark clinical trial

Anthony R. Mato 🕱, Lindsey E. Roeker, John N. Allan, John M. Pagel ... See all authors 🗸

RWE: Discontinuation rate and reasons for discontinuation in the front line setting

TABLE 2 Ibrutinib dosing and dose adjustments

years del(17p13) present RESONATE-2 published data
7.2% 0%
16.3% Not reported
41.9% Not reported
12 days Not reported

TABLE 4 Reasons for discontinuation (% patients who discontinued)

	All patients	Age < 65 years	del(17p13) present	RESONATE-2 published data
Discontinuation rate	24% (94 events/391 total)	23% (36 events/159 total)	33% (35 events/110 total)	12.5% (17 events/135 total)
Median time to discontinuation	6.5 months	11.5 months	6.25 months	Not reported
Reasons for discontinuation As (%) of all discontinuation events				
Toxicity / AEs	59.5%	55.5%	40%	64.7% (11/17)
CLL progression	12.8%	16.6%	14.2%	11.8% (2/17)
Transformation	9.6%	11.1%	25.7%	0%
Patient preference	7.4%	2.8%	2.9%	5.9% (1/17)
Death not secondary to CLL or AE	3.2%	2.8%	0%	17.6% (3/17)
Other	3.2%	2.8%	5.7%	0%
Allo-SCT	2.1%	5.6%	5.7%	0%
CAR-T	1.1%	2.8%	2.9%	0%
Cost	1.1%	0%	2.9%	0%
Second malignancy	0%	0%	0%	0%

Long-term safety of single-agent ibrutinib in patients with chronic lymphocytic leukemia in 3 pivotal studies

Steven E. Coutre,¹ John C. Byrd,² Peter Hillmen,³ Jacqueline C. Barrientos,⁴ Paul M. Barr,⁵ Stephen Devereux,⁶ Tadeusz Robak,⁷ Thomas J. Kipps,⁸ Anna Schuh,⁹ Carol Moreno,¹⁰ Richard R. Furman,¹¹ Jan A. Burger,¹² Michael O'Dwyer,¹³ Paolo Ghia,¹⁴ Rudolph Valentino,¹⁵ Stephen Chang,¹⁵ James P. Dean,¹⁵ Danelle F. James,¹⁵ and Susan M. O'Brien¹⁶

	Ibrutinib (N = 330)
Freatment exposure	
Exposure, median (range), mo	29.0 (0.2-42.9)
Duration of treatment, mo	
≤6	32 (10)
>6 to 12	18 (5)
>12 to 24	34 (10)
>24 to 36	193 (58)
>36	53 (16)
reatment discontinuation	124 (38)
PD	52 (16)
AE	37 (11)
Death	18 (5)
Physician decision	9 (3)
Withdrawal by patient	8 (2)

Table 2. Treatment exposure and reasons for discontinuation in integrated safety analysis

Unless otherwise noted, all data are n (%).

CLINICAL TRIALS AND OBSERVATIONS

Outcomes of CLL patients treated with sequential kinase inhibitor therapy: a real world experience

S blood

Anthony R. Mato,^{1,*} Chadi Nabhan,^{2,*} Paul M. Barr,³ Chaitra S. Ujjani,⁴ Brian T. Hill,⁵ Nicole Lamanna,⁶ Alan P. Skarbnik,⁷ Christina Howlett,⁷ Jeffrey J. Pu,⁸ Alison R. Sehgal,⁹ Lauren E. Strelec,¹ Alexandra Vandegrift,¹ Danielle M. Fitzpatrick,¹ Clive S. Zent,³ Tatyana Feldman,⁷ Andre Goy,⁷ David F. Claxton,⁸ Spencer Henick Bachow,⁶ Gurbakhash Kaur,¹⁰ Jakub Svoboda,¹ Sunita Dwivedy Nasta,¹ David Porter,¹ Daniel J. Landsburg,¹ Stephen J. Schuster,¹ Bruce D. Cheson,⁴ Pavel Kiselev,¹¹ and Andrew M. Evens¹⁰

Ibrutinib/idelalisib dosing information

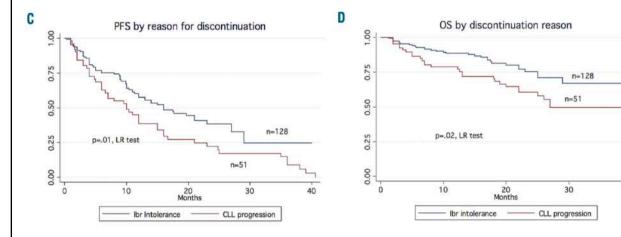

Number (patients)	143	35
Median time from CLL diagnosis to KI start	84 mo	81 mo
Median time on KI	5 mo (0.25-41)	5.5 mo (0.5-38)
Median starting dose	420 mg daily	150 mg bid
Proportion requiring dose modification	18% (n = 141)	35% (n = 34)
Proportion requiring dose interruption	43% (n = 96)	64% (n = 33)
KI administered as monotherapy	85%	20%

Table 3. Most common reasons for KI discontinuation in patients who have discontinued ibrutinib or idelalisib

	Ibrutinib % (n)	Idelalisib % (n)	
Toxicity	51 (73)	52 (18)	95%
CLL progression	28 (40)	31 (11)	discontinuati
RT	8 (11)	6 (2)	rate = idelalis
Cellular therapies (chimeric antigen receptor	2 (3)	0 (0)	
T cells or allogeneic stem cell transplantation)			
Unrelated death/Other	11 (16)	11 (4)	

Toxicities and outcomes of 616 ibrutinib-treated patients in the United States: a real-world analysis

Anthony R. Mato,¹ Chadhi Nabhan,² Meghan C. Thompson,¹ Nicole Lamanna,³ Danielle M. Brander,⁴ Brian Hill,⁵ Christina Howlett,^{6,7} Alan Skarbnik,⁷ Bruce D. Cheson,⁸ Clive Zent,⁹ Jeffrey Pu,¹⁰ Pavel Kiselev,¹¹ Andre Goy,⁷ David Claxton,¹⁰ Krista Isaac,¹² Kaitlin H. Kennard,¹ Colleen Timlin,¹ Daniel Landsburg,¹ Allison Winter,⁵ Sunita D. Nasta,¹ Spencer H. Bachow,³ Stephen J. Schuster,¹ Colleen Dorsey,¹ Jakub Svoboda,¹ Paul Barr¹³* and Chaitra S. Ujjani⁸*

Median times to ibrutinib discontinuation stratified by toxicity			
Bleeding	8 months		
Diarrhea	7.5 months		
Atrial fibrillation	7 months		
Infection	6 months		
Arthralgia	5 months		
Pneumonitis	4.5 months		
Rash	3.5 months		

40

Table 2. Reasons for Ibrutinib discontinuation.

Reason for ibrutinib discontinuation	Ibrutinib in front-line (n=19)	Ibrutinib in relapse (n=231)
Toxicity	63.1% (n=12)	50.2% (n=116)
CLL progression	15.8% (n=3)	20.9% (n=49)
Other/unrelated death	5.3% (n=1)	12.1% (n=28)
Physician's or patient's preference	10.5% (n=2)	6.7% (n=15)
RT DLBCL	5.3% (n=1)	4.6% (n=10)
Stem cell transplantation/CAR T-cel	11 0	3.3% (n=8)
Financial concerns	0	0.8% (n=2)
Secondary malignancy	0	0.8% (n=2)
RT Hodgkin lymphoma	0	0.4% (n=1)

CLL: chronic lymphocytic leukemia; RT DLBCL: Richter transformation to diffuse large B-cell lymphoma; CAR Tcell: chimeric antigen receptor Tcell); RT: Richter transformation. Across clinical trials and in clinical practice **intolerance** is most common reason for discontinuation of a KI followed by CLL progression and transformation (del17p)

Hypothesis: (1) reason for discontinuation and (1) prior exposures should drive clinical decisions in terms of next therapy

Venetoclax

Comprehensive Safety Analysis of Venetoclax Monotherapy for Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia

Matthew S. Davids¹, Michael Hallek², William Wierda³, Andrew W. Roberts⁴, Stephan Stilgenbauer⁵, Jeffrey A. Jones⁶, John F. Gerecitano⁷, Su Young Kim⁸, Jalaja Potluri⁸, Todd Busman⁸, Andrea Best⁸, Maria E. Verdugo⁸, Elisa Cerri⁸, Monali Desai⁸, Peter Hillmen⁹, and John F. Seymour¹⁰

Thirty-five (10%) patients discontinued venetoclax due to AEs (Supplementary Table S5). Twenty-nine patients died while on

Table 3. Cytopenias reported during venetoclax monotherapy or up to 30 days

 posttreatment

		Subgroups of interest		
	All patients	del(17p) CLL	Prior BCR	
Event, n (%)	<i>N</i> = 350	<i>n</i> = 211 ^a	<i>n</i> = 148 ^a	
Neutropenia	141 (40)	83 (39)	54 (37)	
Grade 3/4	128 (37)	76 (36)	47 (32)	
SAE	6 (1.7)	5 (2)	2 (1.4)	
Leading to dose reduction	17 (5)	13 (6)	4 (3)	
Leading to dose interruption	14 (4)	10 (5)	4 (3)	
Leading to discontinuation	1 (0.3)	0	0	
Anemia ^b	109 (31)	62 (29)	57 (39)	
Grade 3/4	60 (17)	33 (16)	33 (22)	
SAE	5 (1.4)	3 (1)	1 (0.7)	
Leading to dose reduction	1 (0.3)	0	1 (0.7)	
Leading to dose interruption	1 (0.3)	0	0	
Leading to discontinuation	0	0	0	
Thrombocytopenia	74 (21)	46 (22)	34 (23)	
Grade 3/4	49 (14)	30 (14)	23 (16)	
SAE	6 (1.7)	5 (2)	2 (1.4)	
Leading to dose reduction	3 (0.9)	2 (0.9)	0	
Leading to dose interruption	8 (2)	5 (2)	3 (2)	
Leading to discontinuation	2 (0.6)	2 (0.9)	0	

Summary of clinical studies: Outside completion of planned therapy (Murano, CLL14), progression of disease (#1) followed by adverse event (mainly hematologic, ~ 10% of pts) are the main reasons for venetoclax discontinuation

Clinical Cancer Research

Real-world outcomes and management strategies for venetoclax-treated chronic lymphocytic leukemia patients in the United States

Anthony R. Mato,¹ Meghan Thompson,² John N. Allan,³ Danielle M. Brander,⁴ John M. Pagel,⁵ Chaitra S. Ujjani,⁶ Brian T. Hill,⁷ Nicole Lamanna,⁸ Frederick Lansigan,⁹ Ryan Jacobs,¹⁰ Mazyar Shadman,¹¹Alan P. Skarbnik,¹² Jeffrey J. Pu,¹³ Paul M. Barr,¹⁴ Alison R. Sehgal,¹⁵ Bruce D. Cheson,⁶ Clive S. Zent,¹⁴ Hande H. Tuncer,¹⁶ Stephen J. Schuster,² Peter V. Pickens,¹⁷ Nirav N. Shah,¹⁶ Andre Goy,¹² Allison M. Winter,⁷ Christine Garcia,¹⁵ Kaitlin Kennard,² Krista Isaac,¹⁹ Colleen Dorsey,² Lisa M. Gashonia,² Arun K. Singavi,¹⁸ Lindsey E. Roeker,¹ Andrew Zelenetz,¹ Annalynn Williams,¹⁴ Christina Howlett,¹² Hanna Weissbrot,⁸ Naveed Ali,¹⁷ Sirin Khajavian,¹¹¹ Andrea Sitlinger,⁴ Eve Tranchito,⁷ Joanna Rhodes,² Joshua Felsenfeld,³ Neil Bailey,⁸ Bhavisha Patel,²⁰ Timothy F. Burns,⁹ Melissa Yacur,¹³ Mansi Malhotra,¹⁶ Jakub Svoboda,² Richard R. Furman³ and Chadi Nabhan²¹

Venetoclax discontinuations and treatment selection following venetoclax

Venetoclax was discontinued in 41 patients (29%). Progression of disease was the most common reason for discontinuation (53.8%, n=21) followed by toxicity (20.5%, n=9), two-thirds of which were hematologic. Other reasons for discontinuation included death not related to progressive disease (10.25%, n=4), second cancer (5.1%, n=2), physician/patient preference (2.5%, n=1), Richter's transformation (2.5%, n=1), and planned alternate therapy including CD19 directed chimeric antigen receptor T cells (CAR-T, 2.5%, n=1) and transplantation (2.5%, n=1).

Table 4. First treatment following venetoclax discontinuation and treatment outcomes.

Treatment	Number treated with agent (Percentage of 24 patients who received subsequent line of therapy)	Patient level responses (n)
Ibrutinib-based	5 (20.8%)	PR (1), SD (2), PD (2)
Idelalisib-based	2 (8.3%)	CR (1), No response assessment (1)
Rituximab monotherapy	3 (12.5%)	PR (2), PD (1)
CAR-T	2 (8.3%)	No response assessment (2)
Anthracycline-based (R-CHOP/R-EPOCH)	3 (12.5%)	PD (2), no response assessment (1)
Allogeneic SCT	3 (12.5%)	CR (2), no response assessment (1)
Other	6 (25%)	PR (1), SD (1), PD (2), no response assessment (2)

29% discontinuation rate, POD #1 (21/41), AE #2 (9/41, mostly heme)

UK CLL Forum venetoclax data: OS post stopping VEN¹

Median survival time after stopping is 1.3 months. 100 lity (%) 75 75 50 foxicity/Frailty/Othe 50 25 清 25 ð 18 Time since stopping Venetoclax (months) 18 Number at risk Time since stopping Venetoclax (months) Disease* 22 0 2 2 0 0 Number at risk Toxicity/Frailty/Other 0 40 Allo SCT

Reason for Alive stopping Dead PD 3 9 Allo SCT 7 2 Toxicity 2 4 Refractory 0 1 Disease **Richter's** 0 9 Toxicity then 0 1 **Richter's** Frailty 0 1 Other 0 1

40 patients have stopped Venetoclax for reasons other than death, of these, twenty-eight have since died.

40/105 have discontinued ven in this series – 38%, most common reason is POD OS survival outcomes did not differ based on DC reason

Eyre, BJH 2019

Across clinical trials and in clinical practice disease progression is most common reasons for discontinuation of venetoclax followed by intolerance (mostly heme toxicity)

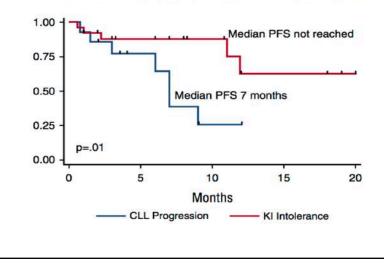
Hypothesis: Prior exposure to a KI and ven discontinuation reasons should drive clinical decisions in terms of next therapy post venetoclax

Kinase inhibitor as first novel agent

Regular Article

S blood

CLINICAL TRIALS AND OBSERVATIONS


Outcomes of CLL patients treated with sequential kinase inhibitor therapy: a real world experience

Anthony R. Mato,^{1,*} Chadi Nabhan,^{2,*} Paul M. Barr,³ Chaitra S. Ujjani,⁴ Brian T. Hill,⁵ Nicole Lamanna,⁶ Alan P. Skarbnik,⁷ Christina Howlett,⁷ Jeffrey J. Pu,⁸ Alison R. Sehgal,⁹ Lauren E. Strelec,¹ Alexandra Vandegrift,¹ Danielle M. Fitzpatrick,¹ Clive S. Zent,³ Tatyana Feldman,⁷ Andre Goy,⁷ David F. Claxton,⁸ Spencer Henick Bachow,⁶ Gurbakhash Kaur,¹⁰ Jakub Svoboda,¹ Sunita Dwivedy Nasta,¹ David Porter,¹ Daniel J. Landsburg,¹ Stephen J. Schuster,¹ Bruce D. Cheson,⁴ Pavel Kiselev,¹¹ and Andrew M. Evens¹⁰

Table 2. Responses to subsequent therapy following KI discontinuation

	Alternate KI combined	lbr → Idela	ldela → Ibr	BCL2-I	CIT	Mo anti-CD20
Number	38	16	22	13	12	11
ORR	50%	28%	64%	76%	25%	36%
CR	0%	0%	0%	7%	17%	9%
PR	50%	28%	64%	69%	8%	27%
SD	30%	45%	23%	16%	33%	45%
PD	20%	27%	13%	8%	42%	19%

- Alternate KI is effective in the setting of intolerance but not effective in the setting of POD / suspected resistance.
- Venetoclax is active in either situation.
- No clear role for CIT and CD20 abs

ORIGINAL ARTICLE

Optimal sequencing of ibrutinib, idelalisib, and venetoclax in chronic lymphocytic leukemia: results from a multicenter study of 683 patients

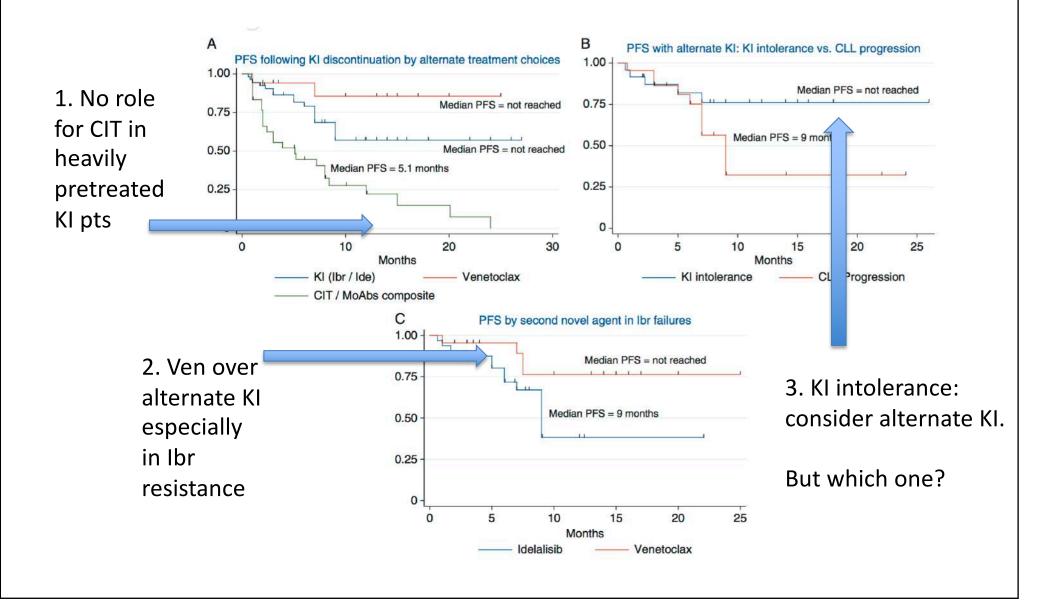

A. R. Mato^{1*}, B. T. Hill², N. Lamanna³, P. M. Barr⁴, C. S. Ujjani⁵, D. M. Brander⁶, C. Howlett^{7,8}, A. P. Skarbnik⁹, B. D. Cheson⁵, C. S. Zent⁴, J. J. Pu¹⁰, P. Kiselev¹¹, K. Foon¹¹, J. Lenhart¹¹, S. Henick Bachow³, A. M. Winter², A.-L. Cruz¹², D. F. Claxton¹⁰, A. Goy⁹, C. Daniel¹, K. Isaac¹, K. H. Kennard¹, C. Timlin¹, M. Fanning¹, L. Gashonia¹, M. Yacur¹⁰, J. Svoboda¹, S. J. Schuster¹ & C. Nabhan¹³

Table 2. Reasons for discontinuation first KI				
	Ibrutinib ($n = 258$ discontinuation events)	Idelalisib ($n = 58$ discontinuation events)		
Toxicity	51.2% (n = 132)	44.8% (n = 26)		
Progression	20.5% (n = 53)	27.6% (n = 16)		
Other/death not secondary to progression	11% (n = 28)	6.9% (<i>n</i> = 4)		
MD/patient preference	6.2% (<i>n</i> = 16)	17.2% (<i>n</i> = 10)		
Richter's transformation	5.0% (<i>n</i> = 13)	3.5% (n = 2)		
Stem cell transplant/CAR T cells	3.9% (<i>n</i> = 10)	0%		
Secondary malignancy	1.1% (<i>n</i> = 3)	0%		
Cost	1.1% (n = 3)	0%		

	$\textbf{Ibrutinib} \rightarrow \textbf{idelalisib}$	$\textbf{Idelalisib} \rightarrow \textbf{ibrutinib}$	Kinase inhibitor \rightarrow venetoclas
ORR (%)	46	75	74
CR (%)	0	5	32
PR/PR with lymphocytosis (%)	46	70	42
Stable disease (%)	39	15	16
Progressive disease (%)	15	10	10

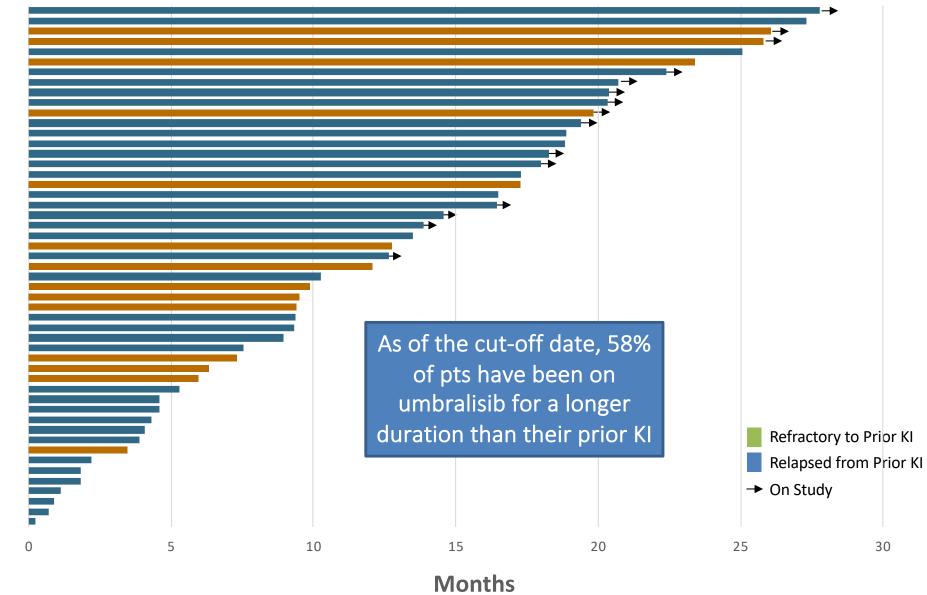
ESVO GOOD SCIENCE BETTER MEDICINE BEST PRACTICE

Sequencing following lbr / Ide discontinuation

Prospective data

Ibr / Ide \rightarrow Alternate KI Ibr / Ide \rightarrow Venetoclax

SESSION 3 – CLL G Free Access

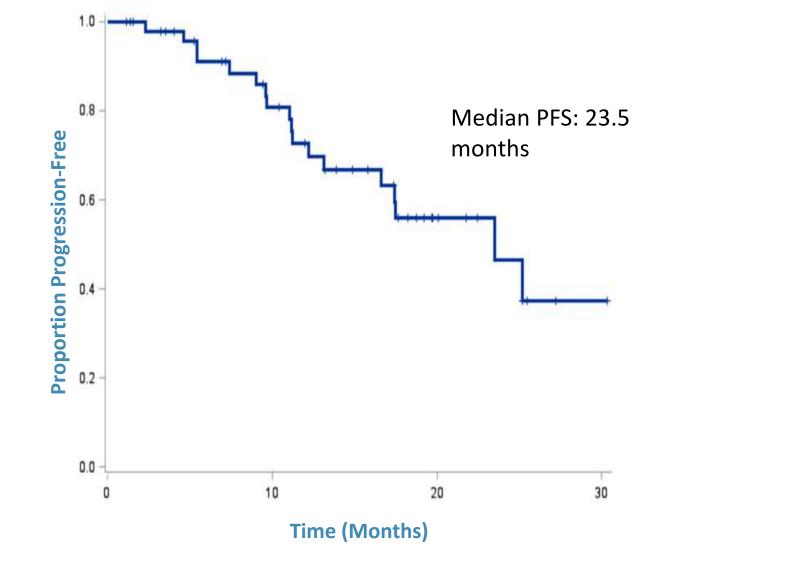

A PHASE 2 STUDY TO ASSESS THE SAFETY AND EFFICACY OF UMBRALISIB IN PATIENTS WITH CHRONIC LYMPHOCYTIC LEUKEMIA (CLL) WHO ARE INTOLERANT TO PRIOR BTK OR PI3K DELTA INHIBITOR THERAPY

A.R. Mato, S.J. Schuster, N. Lamanna, J.M. Pagel, I.W. Flinn, J. Barrientos, J.A. Reeves, B.D. Cheson, P.M. Barr, S. Kambhampati, F. Lansigan, J.J. Pu, A. Skarbnik, G. Fonseca, C. Dorsey, N.M. LaRatta, H. Weissbrot, J. Svoboda, E.T. Luning Prak, P. Tsao, A. Sitlinger, D. Paskalis, P. Sportelli, H.P. Miskin, M.S. Weiss, D.M. Brander ... See fewer authors

Adverse Events Leading to Prior KI

	1 1	1					
Intolerant AE on Prior TKI	Grade 2 (n)	Gra	de 3 (n)	Gra	de 4 (n)		Total # of events (n)
Rash	6		8				14
Arthralgia	3		5		1		9
Atrial Fibrillation	5		2		1		8
Bleeding	1		3				4
Fatigue Anorexia/Weight Loss	2		2				3
Intolerant AE on Prior TKI	Grade 2	(n)	Grade (n)	3	Grac (n	e 4 Total # of events	
Rash	6 8		8				14
Arthralgia	3		5		1		9
Atrial Fibrillation	5 2		2		1		8
Bleeding	1		3				4
Fatigue	2		2				4
Anorexia/Weight Loss	3						3
Colitis	1		2	2			3
Congestive Heart Failure	1		1		1		3
Pneumonitis	2		1		_		3
Thalamic Lesions			1		-		1
Transaminitis	1						1
TOTAL	39		28		6		73

Efficacy & Tolerability: Duration of Exposure


Umbralisib was well tolerated

- 4 patients had recurrence of an AE that led to prior KI intolerance
 - 3 were of lesser severity and did not lead to dose modification or d/c of umbralisib
 - 1 patient discontinued for recurrent rash (prior ibrutinib)
- 8 pts (16%) had dose reductions allowing them to continue umbralisib therapy
- 6 pts (12%) discontinued treatment due to an umbralisib AE (pneumonitis (2), pancreatitis, pneumonia, dermatitis, rash)

All Causality AEs in >10% of Patients (N=51)

	All Grades		Grad	Grade 3/4	
	N	%	Ν	%	
Diarrhea	32	63%	4	8%	
Nausea	27	53%			
Thrombocytopenia	13	25%	6	12%	
Fatigue	13	25%			
Insomnia	13	25%			
Neutropenia	12	24%	9	18%	
Headache	12	24%			
Dizziness	10	20%			
Peripheral Edema	9	18%			
Cough	8	16%			
Rash	8	16%			
Leukocytosis	7	14%	7	14%	
Pneumonia	7	14%	6	12%	
Anemia	7	14%	2	4%	
Pyrexia	7	14%	1	2%	
Arthralgia	7	14%			
Contusion	7	14%			
Decreased appetite	7	14%			
Myalgia	7	14%			
Upper respiratory tract infection	7	14%			
Vomiting	7	14%			
AST/ALT Increase	6	12%	3	6%	

Efficacy – Progression-Free Survival

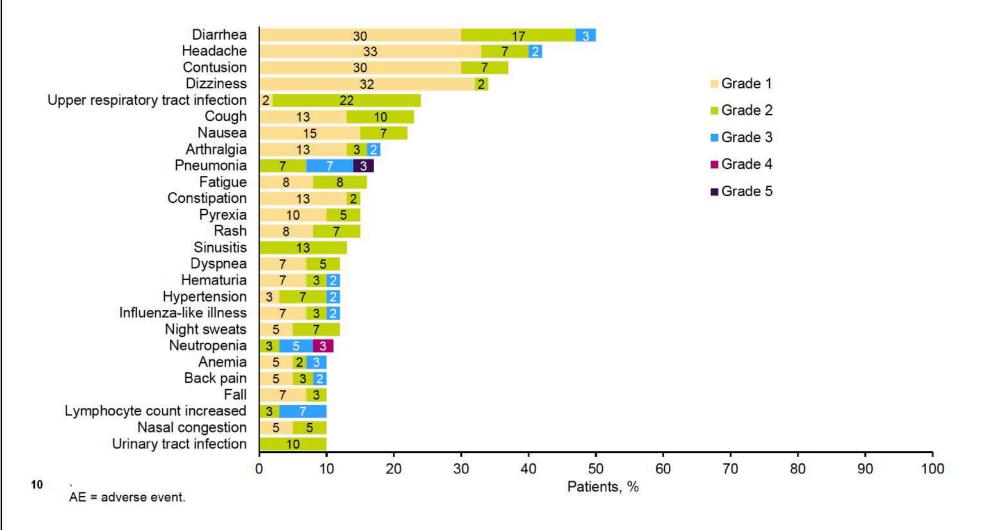


• With a median follow-up of 14 months, Median PFS: 23.5 months (95% CI 13.1 – NE) $_{29}$

Phase 2 Study of Acalabrutinib in Ibrutinib-Intolerant Patients With Relapsed/Refractory Chronic Lymphocytic Leukemia

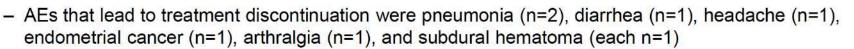
Kerry A. Rogers,¹ Philip A. Thompson,² John N. Allan,³ Morton Coleman,³ Jeff P. Sharman,⁴ Bruce D. Cheson,⁵ Raquel Izumi,⁶ Melanie M. Frigault,⁶ Cheng Quah,⁶ Rakesh K. Raman,⁶ Min Hui Wang,⁶ and Thomas J. Kipps⁷

¹The Ohio State University, Columbus, OH, USA; ²MD Anderson Cancer Center, Houston, TX, USA; ³Weill Cornell Medicine, New York, NY, USA; ⁴Willamette Valley Cancer Institute, Eugene, OR, USA; ⁵Georgetown University Hospital, Washington, DC, USA; ⁶Acerta Pharma, South San Francisco, CA, USA; and ⁷UC San Diego Moores Cancer Center, San Diego, CA, USA


Safety

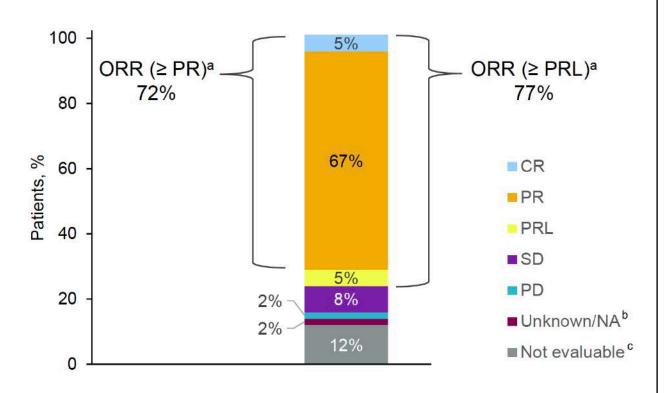
- The median duration of prior ibrutinib therapy was 6 months (range, <1 to 56)
- The median time from last dose of ibrutinib to starting acalabrutinib was 9.2 months (range, 0.8 to 31.1)

At a median follow-up of 23 months, 62% of patients remain on acalabrutinib


	N=60
Follow-up, median (range), mo	23 (<1-35)
On acalabrutinib, n (%)	37 (62)
On study, n (%)	48 (80)
Discontinued acalabrutinib, n (%)	23 (38)
Disease progression	9 (15)
Adverse event ^a	7 (12)
Patient withdrawal	3 (5)
Physician decision	2 (3)
Death ^b	1 (2)
Other ^c	1 (2)
Deaths on study, n (%) ^d	8 (13)

Most Commons AEs in ≥10% of Patients

Additional Safety Outcomes


- The most common Grade ≥3 AEs (≥5% of patients) were pneumonia (n=6 [10%]), neutropenia (n=5 [8%]), neutrophil count decreased (n=4 [7%]), lymphocyte count decreased (n=4 [7%]), lymphocytosis (n=4 [7%]), platelet count decreased (n=3 [5%]), and anemia (n=2 [3%])
- Bleeding events occurred in 37 patients (62%), 2 (3%) had major hemorrhage
- Hypertension occurred in 7 patients (12%), 1 (2%) grade 3
 - One patient (2%) experienced Grade 3 hypertension
- Grade 3/4 infections occurred in 10 patients (17%)
- · Seven patients (12%) discontinued acalabrutinib due to AEs

- There were 4 Grade 5 AEs, none of which were considered related to treatment:
 - Grade 5 AEs were pneumonia (n=2), bronchopulmonary aspergillosis (n=1), and ventricular fibrillation (n=1)

Response to Acalabrutinib

- Investigator-assessed ORR
 (≥ PR) was 72%, with a 5%
 complete response rate
 - ORR including PRL was 77%
- In the 17 patients with del(17p), ORR (≥ PR) was 71% (95% CI: 44%, 90%)

^a Assessed using IWCLL 2008 criteria.¹

^b One patient had a disease assessment performed by the investigator who reported the result as unknown/NA.

^c Seven patients (12%) terminated the study before the first disease assessment on Cycle 3 Day 28.

CR = complete response; IWCLL = International Workshop on Chronic Lymphocytic Leukemia;

12 NA = not applicable; ORR = overall response rate; PD = progressive disease; PR = partial response; PRL = PR with lymphocytosis; SD = stable disease. 1. Hallek M, et al. Blood. 2008;111(12):5446-5456.

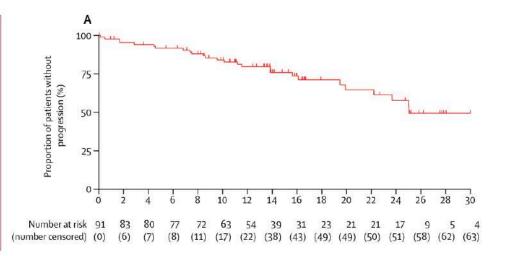
Duration of Response and Progression-Free Survival Progression-free survival **Duration of response** 1.0 1.0 − ≥PR - ≥PRL 0.8 0.8 DOR, % 0.6 0.6 % PFS, Median DOR (≥ PR): not reached 0.4 -0.4 21-mo DOR rate: 77.7% (95% CI: 58.7%, 88.8%) 0.2 -0.2 . Median PFS: not reached Median DOR (≥ PRL): not reached 18-mo PFS rate: 73.5% (95% CI: 59.2%, 83.4%) 21-mo DOR rate: 77.1% (95% CI: 59.1%, 87.9%) 0.0 0.0 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 0 2 4 Months Months Number At Risk Number At Risk 60 55 51 50 50 49 43 42 41 3 24 23 17 13 7 7 1 ≥PR 43 43 43 41 40 35 32 27 27 20 16 14 10 4 1 1 ≥PRL 46 46 46 43 42 37 34 29 29 21 17 15 11 4 1 1

13

DOR = duration of response; PR = partial response; PRL = PR with lymphocytosis.

Prospective data

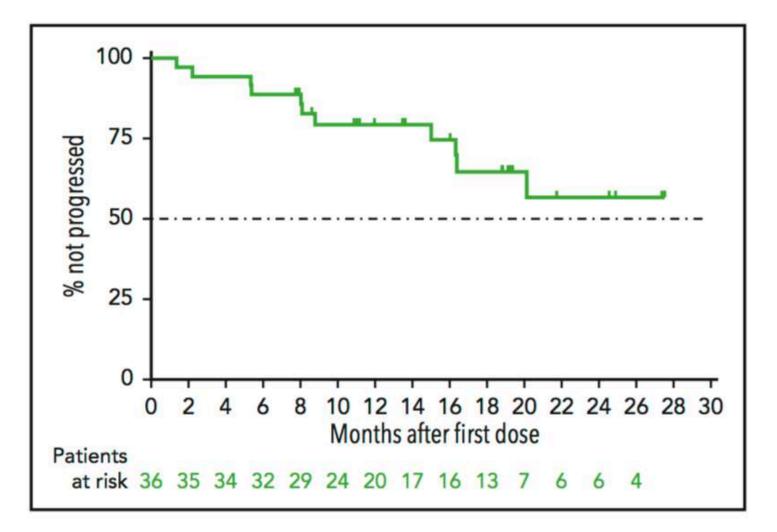
Ibr / Ide \rightarrow Alternate KI Ibr / Ide \rightarrow Venetoclax


Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: an interim analysis of a multicentre, open-label, phase 2 trial

Jeffrey A Jones, Anthony R Mato, William G Wierda, Matthew S Davids, Michael Choi, Bruce D Cheson, Richard R Furman, Nicole Lamanna, Paul M Barr, Lang Zhou, Brenda Chyla, Ahmed Hamed Salem, Maria Verdugo, Rod A Humerickhouse, Jalaja Potluri, Steven Coutre, Jennifer Woyach*, John C Byrd*

	Main cohort (n=43)	Expansion cohort (n=48)	All patients (n=91)
Overall response	30 (70%, 54-83)	29 (60%, 43-72)	59 (65%, 53-74)
Complete response or complete response with incomplete bone marrow recovery	4 (9%)	4 (8%)	8 (9%)
Nodular partial response	2 (5%)	1 (2%)	3 (3%)
Partial response	24 (56%)	24 (48%)	48 (52%)
Stable disease	8 (19%)	14 (29%)	22 (24%)
Disease progression	1* (2%)	4* (8%)	5 (5%)
Discontinued before response assessment	4 (9%)	2 (4%)	6 (7%)

Data are n (%) or n (%, 95% CI). *Patients who discontinued because of progression.


Table 2: Response with venetoclax monotherapy as assessed by the investigator

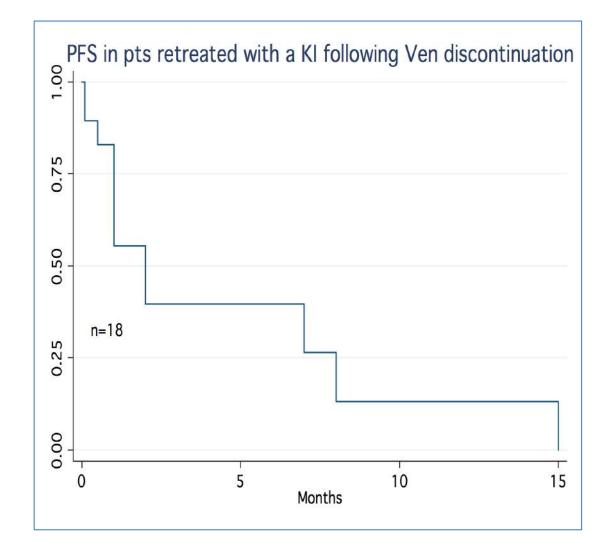
CLINICAL TRIALS AND OBSERVATIONS

Venetoclax for patients with chronic lymphocytic leukemia who progressed during or after idelalisib therapy

Steven Coutre,¹ Michael Choi,² Richard R. Furman,³ Herbert Eradat,⁴ Leonard Heffner,⁵ Jeffrey A. Jones,⁶ Brenda Chyla,⁷ Lang Zhou,⁷ Suresh Agarwal,⁷ Tina Waskiewicz,⁷ Maria Verdugo,⁷ Rod A. Humerickhouse,⁷ Jalaja Potluri,⁷ William G. Wierda,⁸ and Matthew S. Davids⁹

Ven → Ibr (KI naïve vs. resistant vs. intolerant)

Real-world outcomes and management strategies for venetoclax-treated chronic lymphocytic leukemia patients in the United States


Anthony R. Mato,¹ Meghan Thompson,² John N. Allan,³ Danielle M. Brander,⁴ John M. Pagel,⁵ Chaitra S. Ujjani,⁶ Brian T. Hill,⁷ Nicole Lamanna,⁸ Frederick Lansigan,⁹ Ryan Jacobs,¹⁰ Mazyar Shadman,¹¹ Alan P. Skarbnik,¹² Jeffrey J. Pu,¹³ Paul M. Barr,¹⁴ Alison R. Sehgal,¹⁵ Bruce D. Cheson,⁶ Clive S. Zent,¹⁴ Hande H. Tuncer,¹⁶ Stephen J. Schuster,² Peter V. Pickens,¹⁷ Nirav N. Shah,¹⁸ Andre Goy,¹² Allison M. Winter,⁷ Christine Garcia,¹⁵ Kaitlin Kennard,² Krista Isaac,¹⁹ Colleen Dorsey,² Lisa M. Gashonia,² Arun K. Singavi,¹⁸ Lindsey E. Roeker,¹ Andrew Zelenetz,¹ Annalynn Williams,¹⁴ Christina Howlett,¹² Hanna Weissbrot,⁸ Naveed Ali,¹⁷ Sirin Khajavian,¹¹ Andrea Sitlinger,⁴ Eve Tranchito,⁷ Joanna Rhodes,² Joshua Felsenfeld,³ Neil Bailey,⁵ Bhavisha Patel,²⁰ Timothy F. Burns,⁹ Melissa Yacur,¹³

Treatment	Number treated with agent (Percentage of 24 patients who received subsequent line of therapy)	Patient level responses (n)
Ibrutinib-based	5 (20.8%)	PR (1), SD (2), PD (2)
Idelalisib-based	2 (8.3%)	CR (1), No response assessment (1)
Rituximab monotherapy	3 (12.5%)	PR (2), PD (1)
CAR-T	2 (8.3%)	No response assessment (2)
Anthracycline-based (R-CHOP/R-EPOCH)	3 (12.5%)	PD (2), no response assessment (1)
Allogeneic SCT	3 (12.5%)	CR (2), no response assessment (1)
Other	6 (25%)	PR (1), SD (1), PD (2), no response assessment (2)

Table 4. First treatment following venetoclax discontinuation and treatment outcomes.

In BTK exposed patients, no clear effective treatment pattern identified

Venetoclax does not appear to re-sensitize CLL cells to covalent BTKi in previously BTK-exposed CLL pts

Mato et al , ASH 2018

LYMPHOID NEOPLASIA

Clinicopathological features and outcomes of progression of CLL on the BCL2 inhibitor venetoclax

Mary Ann Anderson,^{1-4,*} Constantine Tam,^{3-5,*} Thomas E. Lew,^{2,*} Surender Juneja,^{1,4} Manu Juneja,² David Westerman,^{4,5} Meaghan Wall,^{3,6,7} Stephen Lade,^{4,5} Alexandra Gorelik,⁸ David C. S. Huang,^{2,3} John F. Seymour,³⁻⁵ and Andrew W. Roberts¹⁻⁴

Case no.	Treatment	Treatment Response Later CLL PD (treatment)		Status	PPS (mo)	
RT-DLBCL						
1	R-CHOP	PD	2002	Dead	2.3	
2	No treatment			Dead	0.9	
3	Vin/Gem	PR	2007	Alive	32.3	
4	R-CHOP	SD	-	Dead	24.6	
5	HyperCVAD	PD		Dead	14.9	
6	R-CHOP	PD	-	Dead	5.6	
7	OFAR	PD		Dead	10.9	
8	CHOP + AlloSCT	PR		Dead	13	
9	R-ICE + AuSCT	CR	+ (Novel BTKI on trial)	Alive	36.9	
10	R-ICE + AuSCT	CR	+ (lbr)	Alive	45.0	
11	XRT + R-MVP	PR	+ (lbr)	Alive	40.5	
12	R-CHOP	SD		Dead	9.3	
13	R-CHOP	Death		Dead	1	
14	R-ICE	SD	<u> </u>	Dead	10.7	
RT-HL						
15	ABVD	CR	-	Alive	29.3	
16	R-CHOP + AlloSCT	CR		Alive	49.9	
17	CHEP + XRT	CR	+ (lbr)	Alive	30.2	
CLL progressio	n					
1	No treatment	<u> </u>		Dead	<1.0	
2	lbr	SD	+	Dead	11.4	
3	lbr	PR	_	Alive	6.2	
4	FCR	Unk		Dead	5.6	
5	lbr	PR		Dead (toxicity)	8.6	
6	Ibr	PR	<u></u>	Alive	15.7	
7	lbr	PR	_	Alive	13.2	
8	lbr	PR	<u>—</u>	Dead (toxicity)	8.3	

Table 4. Treatments and outcome for patients with PD

4/6 pts dead, 2/4 from AEs

EFFICACY AND SAFETY OF IBRUTINIB IN RELAPSED/REFRACTORY CHRONIC LYMPHOCYTIC LEUKEMIA PATIENTS PREVIOUSLY TREATED WITH VENETOCLAX IN THE MURANO STUDY PS1161

Greil, R.¹; Fraser, G.²; Leber, B.³; Marks, R.⁴; Quaresmini, G.⁵; Middeke, Moritz J.⁶; Semenzato, G.⁷; Schary, W.⁸; Boyer, M.⁹; Breuleux, M.¹⁰; Crompton, N.⁹; Humphrey, K.⁹; Marlton, P.¹¹

Patient	Number of treatments prior to Ven	Prior treatment (best response)	Baceline 17p status (pre-Ven)	VenR treatment duration (months)	VenR best response	Time after starting VenR to PD (months)	IBR best response	Time on IBR (months)
1	-1	FCR (PR)	Not deleted	11	PR	9	PR	4211 (ongoing)
2	1	FCR (PR)	Deleted	25*	PR	27	PR	19 [†] (ongoing
3	1	FCR (CR)	Not deleted	28*	nPR	36	PR	14 [†] (ongoing
4	1	FCR (CR)	Deleted	26*	CR	24	PR (nodal CR)	13 [†] (ongoing
5	1	FCR (PR)	Not deleted	26*	PR	32	PR	10 [†] (ongoing
6	4	CLB+P (PR) CLB (UE) CLB+R (PR) CLB (SD)	Not deleted	25*	CR	28	PR	15 [†] (ongoing
7	1	FCR (SD)	Deleted	19	PR	19	VGPR	311
8	1	FCR (CR)	Not deleted	25*	CR	25	PR	7 1
Median (range)	1 (1-4)			25 (11-28)		26 (9-36)		13.5 (3-42)

CLB, chlorambuoli; CR, complete response; FCR, fludarabine, cyclophosphamide, and rituximab; IBR, ibrutinib; nPR, nodular partial response P, prednisone PD, progressive disease; PR, partial response; R, rituximab; SD, stable disease; UE, unevaluable; Ven, venetoclax; VGPR, very good partial response; "Time on treatment was 2 years; durations shown include time when Ven dose was ramped up. "Censored at time of data analysis. "Patient had PD 40 months after starting IBR; still on IBR at time of last follow-up but due to be discontinued. "IBR discontinued due to PD; "Following allogeneic stem cell transplantation, pt restarted on IBR. HEMASPHE

8/8 pts responed to

BTKi post

ven which

appear

durable

HemaSphere

HEMASPHERE

Ibrutinib Resistance

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Resistance Mechanisms for the Bruton's Tyrosine Kinase Inhibitor Ibrutinib

Jennifer A. Woyach, M.D., Richard R. Furman, M.D., Ta-Ming Liu, M.S., Hatice Gulcin Ozer, Ph.D., Marc Zapatka, Ph.D., Amy S. Ruppert, M.A.S., Ling Xue, Ph.D., Daniel Hsieh-Hsin Li, Ph.D., Susanne M. Steggerda, Ph.D., Matthias Versele, Ph.D., Sandeep S. Dave, M.D., Jenny Zhang, B.S., Ayse Selen Yilmaz, M.S., Samatha M. Jaglowski, M.D., M.P.H., Kristie A. Blum, M.D., Arletta Lozanski, M.S., Gerard Lozanski, M.D., Danelle F. James, M.D., Jacqueline C. Barrientos, M.D., Peter Lichter, Ph.D., Stephan Stilgenbauer, M.D., Joseph J. Buggy, Ph.D., Betty Y. Chang, Ph.D., Amy J. Johnson, Ph.D., and John C. Byrd, M.D.

LYMPHOID NEOPLASIA

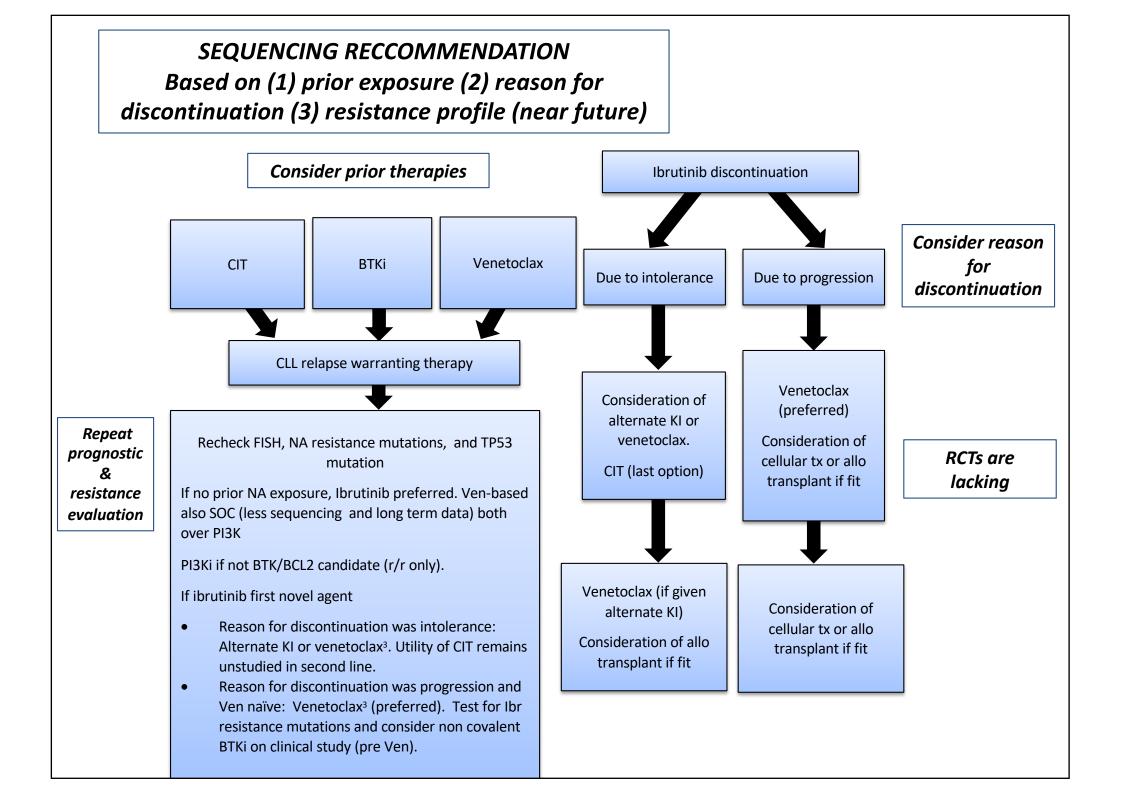
Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia

Inhye E. Ahn,^{1,*} Chingiz Underbayev,^{2,*} Adam Albitar,³ Sarah E. M. Herman,² Xin Tian,⁴ Irina Maric,⁵ Diane C. Arthur,⁶ Laura Wake,⁶ Stefania Pittaluga,⁶ Constance M. Yuan,⁶ Maryalice Stetler-Stevenson,⁶ Susan Soto,² Janet Valdez,² Pia Nierman,² Jennifer Lotter,² Ligiang Xi,⁶ Mark Raffeld,⁶ Mohammed Farooqui,² Maher Albitar,³ and Adrian Wiestner²

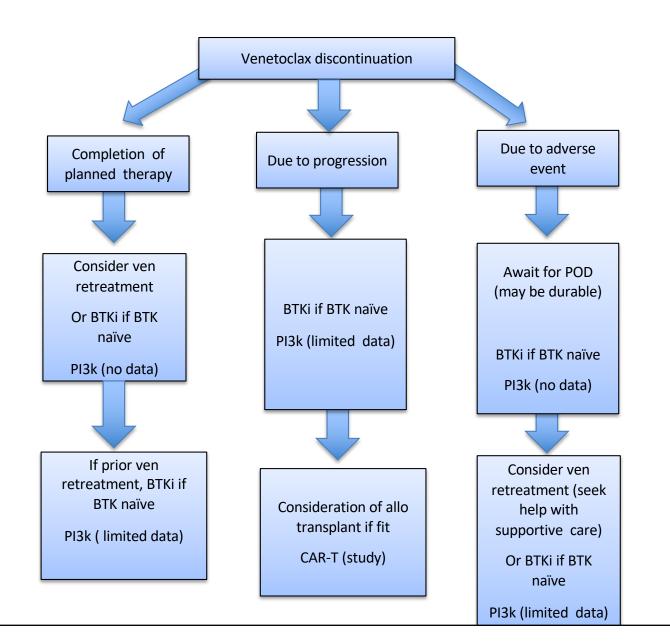
¹Medical Oncology Service, National Cancer institute, and ⁹Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; ³NeoGenomics Laboratories, Irvine, CA; and ⁴Office of Blostatistics Research, National Heart, Lung, and Blood Institute, ⁶Department of Laboratory Medicine, Clinical Center, and ⁶Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT


BTK^{C481S}-Mediated Resistance to Ibrutinib in Chronic Lymphocytic Leukemia

Jomifer A. Woyach Amy S. Ruppert, Daphne Guinn, Amy Lehman, James S. Blachly, Arletta Lozanski, Nyla A. Heerema, Weiqiang Zhao, Joshua Coleman, Duniel Jones, Lynne Ahruzo, Anhere Conden, Rose Mantel, Lisa L. Smith, Samaniha McWhorer, Melanie Davis, Tzyy-Jye Doong, Fan Ny, Margaret Lucas, Weiheng Chase, Jeffrey A. Jones, Joseph M. Flynn, Kami Maddocks, Kerry Rogers, Samantha Jaglowski, Lesile A. Andritoso, Farrukh T. Awan, Kristie A. Blum, Michael R. Chevere, Geard Lazanski, Amy J. Joinson, and Johnson, Te. Jlyrd In development


Non covalently binding BTK inhibitors to address BTK Cys481 mutant CLL:

- Vecabrutinib (SNS-062)
- LOXO 305
- ARC 531

If effective, this class of agents may affect how we consider treatment in the setting of discontinuation due to BTK resistant disease

SEQUENCING RECCOMMENDATION Based on (1) prior exposure (2) reason for discontinuation (3) resistance profile

