Stopping therapy with targeted therapies: will it be possible in the future?

Peter Hillmen peter.hillmen@nhs.net Leeds Institute of Medical Research at St James's, University of Leeds, Leeds

5th November 2019

Disclosures – Peter Hillmen

Advisor/consultant

- Abbvie
- Acerta
- Gilead
- Janssen
- Novartis/GSK
- Pharmacyclics
- Roche

Research/trial support

- Abbvie
- Gilead
- Janssen
- Novartis/GSK
- Pharmacyclics
- Roche

No share ownership, patents or board membership

Is continuous targeted therapy desirable?

Not ideal for all patients – tolerability, resistance and cost

If we are going to stop targeted therapy how should the duration of therapy be defined?

- Fixed duration of therapy for all patients
 Or
- Therapy tailored to response in individual patients

Minimal residual disease eradication predictive in both previously untreated and treated patients

Applying mathematical modelling to the treatment of CLL

Full double integral: probability of relapse for the whole population (cdf):

The resistant tumour is log-normally distributed, and not all tumours necessarily achieve CR (v is not always less than V_r). Let the probability of achieving CR be P_c . Then the probability, P, of relapse before a given time t for the whole population is:

$$P = \frac{\int_{V_0}^{V_r} \left(\frac{1}{\sigma_v \sqrt{2\pi}}\right) exp\left(-\frac{(\mu_v - v)^2}{2\sigma_v^2}\right) \int_{-\infty}^{U_t} \left(\frac{1}{\sigma_g \sqrt{2\pi}}\right) exp\left(-\frac{(\mu_g - g)^2}{2\sigma_g^2}\right) dg dv}{P_c}$$
(2)

where

$$P_{c} = \int_{-\infty}^{v_{r}} \left(\frac{1}{\sigma_{\nu}\sqrt{2\pi}}\right) exp\left(-\frac{(\mu_{\nu}-\nu)^{2}}{2{\sigma_{\nu}}^{2}}\right) d\nu$$
(3)

as described.

Hypothesised effect on the duration of 1st CR in AML of reductions in the log of resistant disease (1 log increments)

ADMIRE/ARCTIC Trial (FCR-Based Treatment): Sequential Benefit in PFS per Log Reduction in MRD

Progression-free Survival

FCR, fludarabine, cyclophosphamide, rituximab.

Rawstron AC, et al. XVI iwCLL Annual Meeting 2015.

Assumed regrowth rates of resistant disease time, t **CLINICALLY** V **DETECTABLE DISEASE** r LOG OF RESISTANT DISEASE MEAN LOG DOUBLING TIME, d +/- 2 SD'S ON MEAN LOG **DOUBLING TIME RESIDUAL DISEASE FOR AN INDIVIDUAL PATIENT** 'CURE' THRESHOLD **v**₀ TIME

Total 68 patients monitored, 31 persistent MRD <0.01%, 5 insufficient MRD+ timepoints.

Total 68 patients monitored, 31 persistent MRD <0.01%, 5 insufficient MRD+ timepoints.

Assuming Exponential Growth at the MRD Level → Linear Increase in PFS per Log Tumour Depletion

CR, complete remission; PR, partial remission.

MURANO trial establishes feasibility of time-limited venetoclax-rituximab combination therapy in relapsed/refractory chronic lymphocytic leukemia

John F Seymour,¹ Thomas J Kipps,² Barbara Eichhorst,³ Peter Hillmen,⁴ James D'Rozario,⁵ Sarit Assouline,⁶ Carolyn Owen,⁷ Tadeusz Robak,⁸ Javier de la Serna,⁹ Ulrich Jaeger,¹⁰ Guillaume Cartron,¹¹ Marco Montillo,¹² Nicole Lamanna,¹³ Maria Verdugo,¹⁴ Elizabeth A Punnoose,¹⁵ Yanwen Jiang,¹⁵ Jue Wang,¹⁵ Michelle Boyer,¹⁶ Kathryn Humphrey,¹⁶ Mehrdad Mobasher,¹⁵ Arnon P Kater¹⁷

¹Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and University of Melbourne, Melbourne, Australia; ²University of California School of Medicine, San Diego, CA, USA; ³University of Cologne, Cologne, Germany; ⁴St. James' University Hospital, Leeds, United Kingdom; ⁵The John Curtin School of Medical Research, Australian National University, Canberra, Australia; ⁶Segal Cancer Center, Lady Davis Institute, Jewish General Hospital, Montreal, Canada; ⁷University of Calgary, Calgary, Canada; ⁸Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland; ⁹Hospital Universitario 12 de Octubre, Madrid, Spain; ¹⁰Medical University of Vienna, Vienna, Austria; ¹¹University Hospital Montpellier, Montpellier, France; ¹²Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; ¹³Columbia University Medical Center, New York, NY, USA; ¹⁴AbbVie, North Chicago, IL, USA; ¹⁵Genentech Inc, South San Francisco, CA, USA; ¹⁶Roche Products Limited, Welwyn Garden City, United Kingdom; ¹⁷Amsterdam UMC, University of Amsterdam, Hovon CLL working group, The Netherlands

MURANO study: Venetoclax+rituximab in relapsed CLL

 Primary endpoint: investigator-assessed PFS; secondary endpoints include rate of undetectable MRD (uMRD)

- Clinical response and MRD in PB/BM during Ven single-agent and at follow-up visits were assessed every 3 mo for 3 yrs, then every 6 mo thereafter or until PD
- Primary analysis was pre-planned at 140 PFS events; this follow-up analysis was conducted 1 yr later

BM, bone marrow; C, cycle; D, day; PB, peripheral blood; R, randomized.

Seymour JF, et al. N Engl J Med 2018;378:1107–20.

"Protracted" treatment free interval & prolonged survival: Venetoclax (2 years) + rituximab in relapsed CLL (MURANO Trial)

• Median follow-up 36.0 mo (range 0.0–48.6); VenR 36.1 mo, BR 35.9 mo

Seymour J et al, ASH, 2018

Data cut-off date: May 8, 2018

MRD status over time in VenR arm: high uMRD rate is sustained

- Few low-MRD+ pts progressed
- Pts who did progress had mainly converted to high-MRD+ first

Data cut-off May 8, 2018; median follow-up: 36.0 months. Missing values also include pts who have not yet reached the time point

After cessation of Ven monotherapy at EOT most patients did not progress

GCLLSG CLL14 Trial:

Venetoclax+obinutuzumab vs Chlorambucil+obinutuzumab

12 month fixed duration of therapy in both arms

Ibrutinib Plus Venetoclax in Relapsed, Refractory CLL: Results of the Bloodwise TAP CLARITY Study

Peter Hillmen, Andy Rawstron, Kristian Brock, Samuel Muñoz-Vicente, Francesca Yates, Rebecca Bishop, Donald MacDonald, Christopher Fegan, Alison McCaig, Anna Schuh, Andrew Pettitt, John G. Gribben, Piers Patten, Stephen Devereux, Adrian Bloor, Christopher P. Fox, Francesco Forconi, Talha Munir

> Abstract: 182 Saturday, December 1, 2018: 2:15 PM

Stopping rules: Duration of therapy is double time to MRD4 negative 1) MRD negative (<0.01%) at M8 stop I+V at M14

- 2) MRD negative (<0.01%) at M14 or M26 stop I+V at M26
- 3) MRD positive (≥0.01%) at M26 continue ibrutinib monotherapy

Hillmen et al. ASH 2018; Abst 182

IWCLL Responses in rel/refr CLL Month 14 (12 months I+V)

	No.	CR	CRi	PR	ORR
All patients*	49	22 (44%)	5 (10%)	20 (40%)	47 (94%)
FCR/BR relapsed <36 months ¹	20	8 (40%)	2 (10%)	9 (45%)	19 (95%)
Prior idelalisib ²	9	3 (33%)	1 (11%)	4 (44%)	8 (89%)

¹ Percentages calculated over the total number of patients who had FCR/BR and relapsed <36 months and have been assessed for response ² Percentages calculated over the total number of patients who had Idelalisib before joining the study and have been assessed for response

Date of data lock: 05 November 2018

Hillmen et al. ASH 2018; Abst 182

Assumed distribution of resistant disease at the start of treatment for the whole patient population

The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy

NATURE COMMUNICATIONS [8: 1816 | DOI: 10.1038/s41467-017-01968-5 | www.nature.com/naturecommunications Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer

Jingsong Zhang¹, Jessica J. Cunningham², Joel S. Brown^{2,3} & Robert A. Gatenby^{2,4}

Evolution of resistance to therapy \rightarrow intra-tumoral Darwinian dynamics

Continuous therapy at maximal tolerated dose (MTD)

- Sensitive cells are rapidly eliminated and the resistant cells have a selective advantage leading to treatment failure

STATIC: Stopping Therapy to Avoid Treatmentresistance In CLL

STATIC: Stopping Therapy to Avoid Treatmentresistance In CLL

Patient eligibility

Previously untreated patients on ibrutinib in FLAIR (n=360) From IR, I or I+V arms; Will have been on ibrutinib for 6 years; MRD positive (can be MRD negative)

Previously treated or 17p deleted front-line (n=440) On ibrutinib (or alternative Btk inhibitor) for at least 2 years (no maximum) Normal lymphocyte count for at least 12 months; MRD positive (can be MRD negative)

Key exclusion criteria
Treatment break for toxicity/patient choice for >28 days in last 12 months

STATIC: Stopping Therapy to Avoid Treatmentresistance In CLL Treatment strategies:

Continuous treatment

Ibrutinib (oral) 420mg per day (or other BTK inhibitor at licenced dose) until disease progression (strategy failure) as per iwCLL criteria, death or withdrawal.

Intermittent treatment strategy

Initial stopping criteria (defined within the eligibility criteria; all to be met and maintained continuously for preceding 12 months): no palpable lymph nodes (<2cm), no palpable spleen, absolute lymphocyte count (ALC) < $5x10^{9}$ /L. Treatment restart criteria: Any one of palpable lymph nodes (≥2cm), palpable spleen, or ALC >5 x10⁹/L.

<u>Treatment stop criteria</u>: Received at least a further 12 months of ibrutinib, no palpable lymph nodes or spleen, and $<5 \times 10^9$ /L ALC for at least 6 months.

Conclusions: Stopping targeted therapy in CLL

- 1. It is desirable to stop targeted therapy in CLL to:
 - a) Reduce the impact of toxicity
 - b) Reduce the emergence of resistance
 - c) Define and limit cost
- 2. How should we stop targeted therapy?
 - a) Fixed duration for all patients \rightarrow some patients will not have achieved their maximal response
 - b) Fixed duration tailored to individual patient response \rightarrow attractive but requires sophisticated approach
 - c) In good MRD positive remission with planned re-treatment?