

LAL-B: basi molecolari e prospettive terapeutiche Sabina Chiaretti

Topics

• BCR/ABL positive ALL

• BCR/ABL-like

Novel subgroups

D-ALBA: OS and DFS

Chemo-free approach based on dasatinib followed by blinatumomab

CNAs with negative prognostic impact (II)

Pfeifer H, et al Blood 2018 131:1464-1475

The presence of additional deletions, particularly those involving *CDKN2A/B*, and the number od additonal deltions have a significant impact on all outcome analyses. Retains staistical significance on multivariate analysis

Cytogenetics/molecular biology. Changes over the years LYL1 Others (T-ALL) 1.4% TLX3 2% TLX1 ETP 2.3% TAL1 0.3% 2% 7% ETV6-RUNX1 Others (B-ALL) 22% 9% ERG 3% (Other) 5.5% BCR-ABL1-like 9% (CRLF2) Hyperdiploid 3.5% CRLF2 (>50 chromosomes) 4% 20% iAMP21 MLL Dicentric 2% rearrangements TCF3-PBX1 3% 6% Hypodiploid 4% (<44 chromosomes BCR-ABL1 2% 1%

First report in adult ALLs

Chiaretti et al, CCR 2005

Haferlach et al, Blood 2005

2005: first identification, by GEP, of a subset of adult B-lineage ALL clustering together with BCR/ABL1+ ALL cases

BCR/ABL1-like ALL in adults. Genetics

GIMEMA LAL1913. Outcome and BCR/ABL1-like status

	28/88 (31.8%) BCR/ABL1-like cases			
		BCR/ABL1-like	Non- <i>BCR/ABL1</i> -like	<i>p</i> -value
No		28	60	
CR (%)	No CR	7 (25.9)	5 (8.5)	0.044
	CR	20 (74.1)	54 (91.5)	
TP1_MRD (%)	TP1 MRD positive	14 (77.8)	19 (41.3)	0.012
TP2_MRD (%)	TP2 MRD positive	9 (52.9)	9 (20.5)	0.029
TP3_MRD (%)	TP3 MRD positive	5 (41.7)	5 (13.5)	0.05

Event-free survival at 24 months

Disease-free survival at 24 months

A BCR/ABL1-like status is characterized by a lower CR rate, MRD persistence and shorter survival also in a pediatricoriented and MRD-driven clinical trial.

The prognostic role of the *BCR/ABL1*like status is independent from the other clinico-biologic and genetic features

Chiarettti et al, under resubmission

Treating the target

Kinase	Tyrosine Kinase Inhibitor	Number of Gene Partners	Fusion Partner Genes
ABL1	Dasatinib	12	CENPC, ETV6, FOXP1, LSM14, NUP214, NUP153, RCSD1, RANBP2, SNX2, SFP0, SPTAN1, ZMIZ1
ABL2	Dasatinib	3	PAG1, RCSD1, ZC3HAV1
CSF1R	Dasatinib	3	SSBP2, MEF2D, TBL1XR1
PDGFRB	Dasatinib	7	ATF7IP, EBF1, ETV6, SSBP2, TNIP1, ZEB2, ZMYND8
PDGFRA	Dasatinib	1	FIP1L1
CRLF2	JAK2 inhibitor	2	IGH, P2RY8
JAK2	JAK2 inhibitor	19	ATF7IP, BCR, EBF1, ETV6, PAX5, PCM1, PPFIBP1, RFX3, SSBP2, STRN3, TERF2, TPR, USP25, ZNF274, GOLGA5, SMU1, HMB0X1, SNX29, ZNF340
EPOR	JAK2 inhibitor	4	IGH, IGK, LAIR1, THADA
TSLP	JAK2 inhibitor	1	IQGAP2
DGKH	Unknown	1	ZFAND3
IL2RB	JAK1/JAK3 inhibitor	1	MYH9
NTRK3	TRK inhibitor	1	ETV6
РТК2В	FAK inhibitor	3	KDM6A, STAG2, TMEM2
ТҮК2	TYK2 inhibitor	3	MYB, SMARCA4, ZNF340
FLT3	FLT3 inhibitor	1	ZMYM2
FGFR1	Sorafenib/dasatinib	1	BCR
BLNK	?SYK/MEKi	1	DNTT

Requires a deep knowledge of the genomic background of each case. Time and cost consuming. Feasible only in a few centers.

9 R/R pts have been treated. Median age 24 yrs (range 18-62).

8 pts treated on the ruxolitinib arm (7 pts *CRLF2*-high, 1 with a *JAK2* fusion (*HMBOX1-JAK2*). 1 pt on the dasatinib arm (*NUP214/ABL1*).

No DLT, but no reponse on ruxo or dasa.

Jain N et al, ASH 2017

Pui CH et al, Clin Lymp Myel Leuk, 2017

Wide-spectrum appraoch. Ponatinib

In vitro use of ponatinib on primary cells: effect on proliferation and apoptotic response similar in BCR/ABL1+ and BCR/ABL1like cases (2 EBF1/PDGFRBpositive, 1 JAK2-mutated and P2RY8/CRLF2-positive, 1 RCSD1/ABL1, 3 WT for JAK/STAT and RAS mutations)

Chiaretti S et al, BJH 2018

Gu et al, Nat comm 2019, 7:13331 Gu, et al, Nat Genet. 2019; 51: 296–307.

Conclusions

- The comprehension of the molecular bases of ALL has led to a dramatic improvement of the management of these patients:
 -BCR/ABL1+ ALL: identification of △IKZF1+→ poor prognosis with all approaches. Novel interventions required
 -BCR/ABL1-like ALL: design of *ad hoc* treatments, possibly upfront
- Genome-wide have led to the identification of 23 (26) subgroups whose prognostic significance is under investigation