

# Vascular Endothelial Syndromes to allo-HSCT

Sergio Siragusa

PROMISE, UniPa

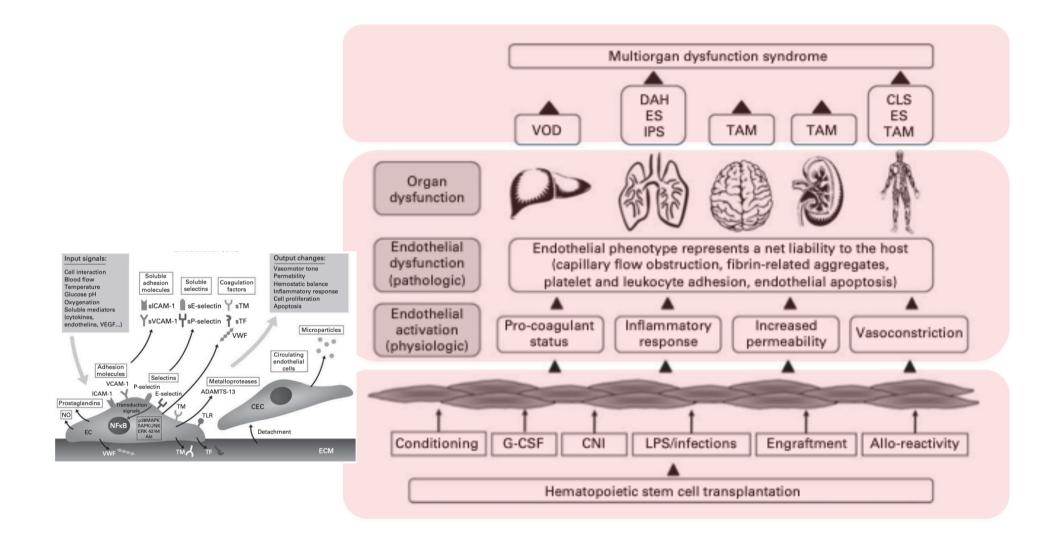


## Vascular Endothelial Syndrome (VESs) Early/Late allo-HSCT life-threatening complications

Group of complications without well-established origins, clinically characterized by thrombosis and/or bleeding and MOF

- Sinusoidal Obstruction Syndrome/VOD
- Capillary Leak Syndrome
- Engraftment Syndrome
- Transplant-Associated Microangiopathy (TAM)
- Diffuse Alveolar Haemorrhage (DAH)
- Idiopathic Pneumonia Syndrome

Early onset after HSCT, <u>overlapping clinical manifestations</u>, the absence of well-defined clinical criteria for diagnosis (and consequently an unknown true incidence), the absence of well-established treatments, and the tendency to evolve to an irreversible <u>multiorgan dysfunction</u> <u>syndrome</u>




## **Clinical Manifestation of VESs**

| Symptoms and signs          | VOD  | CLS  | ES    | DAH   | IPS   | TAM    |
|-----------------------------|------|------|-------|-------|-------|--------|
| Usually starting<br>on day: | 0–7  | 7–10 | 11–15 | 11–19 | 18-23 | 25-120 |
| Fever                       |      |      | -     |       | -     | -      |
| Jaundice                    | -    |      |       |       |       |        |
| Hepatomegaly                | -    |      |       |       |       |        |
| Weight gain                 | -    |      | -     |       |       |        |
| Oedemas                     | -    | -    |       |       |       |        |
| Ascites                     | -    | -    |       |       |       |        |
| Lung infiltrates            | -    | -    | -     |       | -     |        |
| Dyspnoea                    | -    | -    | -     |       | -     |        |
| Hypoxia                     | -    | -    | -     |       | -     |        |
| Diarrhoea                   |      |      | -     |       |       |        |
| Renal dysfunction           | -    | -    | -     |       |       |        |
| Neurological                |      |      | -     |       |       | -      |
| dysfunction                 |      |      |       |       |       |        |
| Evolution to MODS           | -    | -    | -     |       | -     | -      |
| Predominant in:             | allo | auto | auto  | allo  | allo  | allo   |



## **Pathogenesis of VESs after HSCT**





# Early/Late allo-HSCT life-threatening complications

Group of complications without well-established origins, clically characterized by thrombosis and/or bleeding and MOF

### Sinusoidal Obstruction Syndrome/VOD

- •Capillary Leak Syndrome
- •Engraftment Syndrome

#### •Transplant-Associated Microangiopathy (TAM)

- •Diffuse Alveolar Haemorrhage (DAH)
- Idiopathic Pneumonia Syndrome

Early onset after HSCT, overlapping clinical manifestations, the absence of well-defined clinical criteria for diagnosis (and consequently an unknown true incidence), the absence of well-established treatments, and the tendency to evolve to an irreversible multiorgan dysfunction syndrome



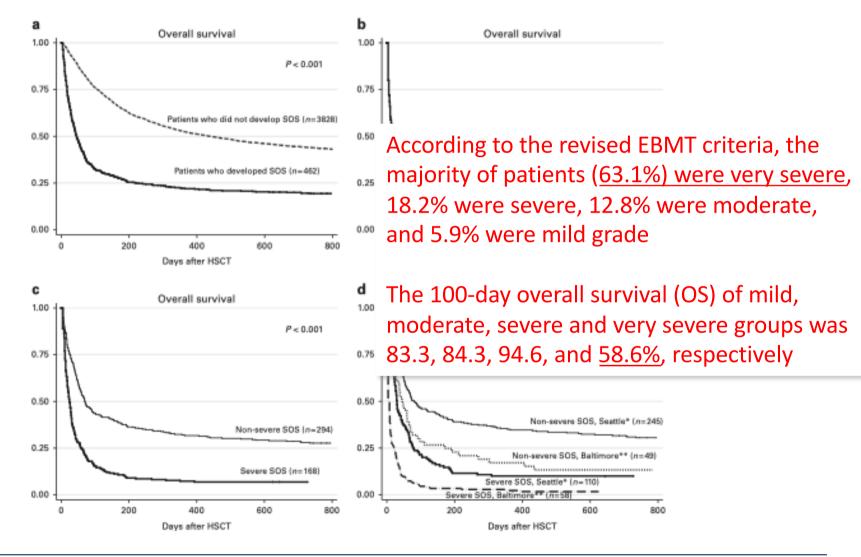
# Early/Late allo-HSCT life-threatening complications

Group of complications without well-established origins, clically characterized by thrombosis and/or bleeding and MOF

### Sinusoidal Obstruction Syndrome/VOD

- •Capillary Leak Syndrome
- •Engraftment Syndrome
- •Transplant-Associated Microangiopathy (TAM)
- •Diffuse Alveolar Haemorrhage (DAH)
- •Idiopathic Pneumonia Syndrome

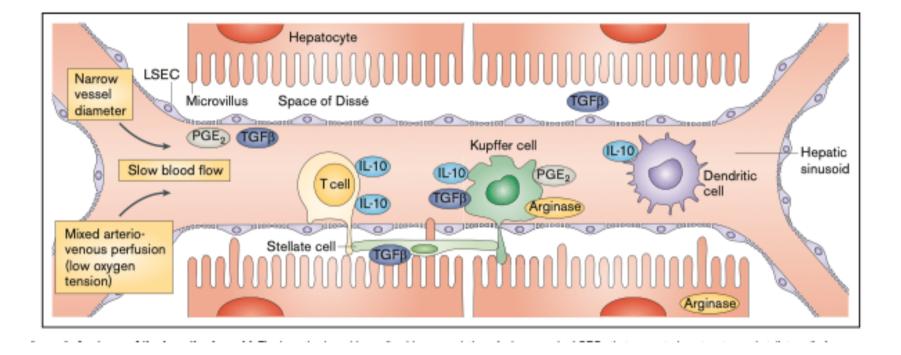
Early onset after HSCT, overlapping clinical manifestations, the absence of well-defined clinical criteria for diagnosis (and consequently an unknown true incidence), the absence of well-established treatments, and the tendency to evolve to an irreversible multiorgan dysfunction syndrome




## SOS/VOD

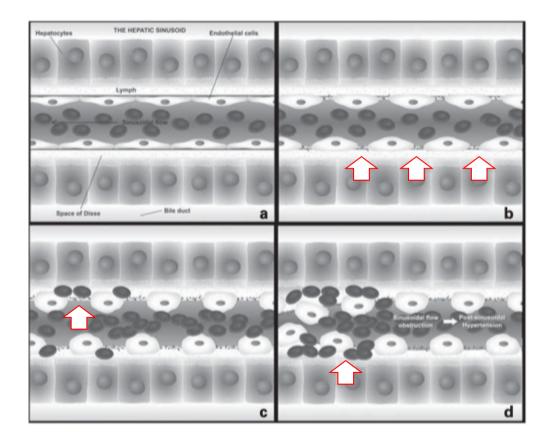
- Sinusoidal obstruction syndrome (SOS)(Veno Occlusive Disease (VOD) is a potentially lethal complication of HSCT
- Its reported incidence ranges from <u>5% to over 50%</u>. This variability in SOS incidence may result from the use of different diagnostic criteria (actual est. 10%)
- SOS usually occurs within the <u>first 3 weeks after allo-HSCT</u> as a result of endothelial and hepatic damage caused by the <u>conditioning regimen</u>
- Because SOS is associated with low <u>platelet count and ascites</u>, it is usually diagnosed by clinical manifestations rather than liver biopsy




# Overall survival in patients with SOS following HSCT



Yoon JH et a. Bone Marrow Transplant. 2019 Aug;54(8):1361-1368




## Anatomy of the hepatic sinusoid





## **SOS/VOD** pathogenesis



(1) Sinusoidal ECs damaged during conditioning round up favouring the appearance of <u>gaps in the</u> <u>sinusoidal barrier;</u>

(2) <u>RBC begin to penetrate</u> into the space of Disse detaching the endothelial lining;

(3) The sloughed sinusoidal lining cells embolize downstream and obstruct the sinusoidal flow
 (sinusoidal obstruction syndrome).



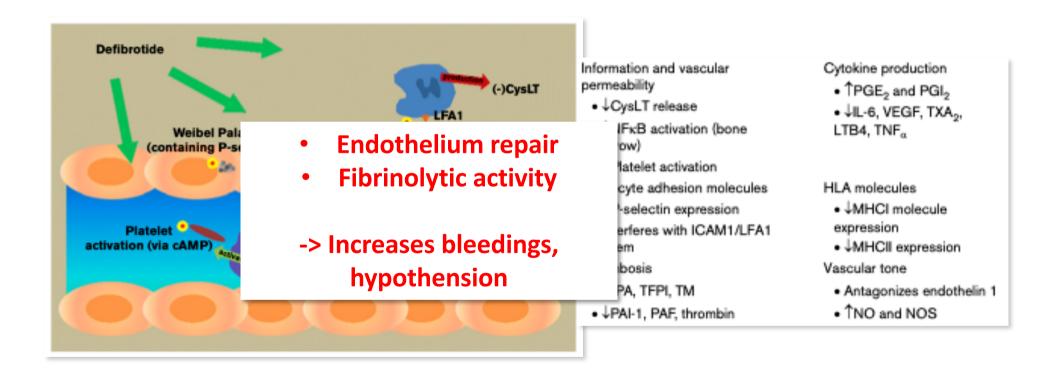
## **SOS/VOD rCriteria/Risk Factors**

| Adult Criteria                                                                                         |                                                                             |  |  |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| Classical VOD/SOS (Baltimore<br>Criteria)                                                              | Late-Onset VOD/SOS                                                          |  |  |
| <ul> <li>Onset in the first 21 days after<br/>HSCT</li> </ul>                                          | <ul> <li>Onset beyond day 21 post-<br/>HSCT</li> </ul>                      |  |  |
| <ul> <li>Bilirubin ≥2 mg/dL plus 2 or<br/>more of:</li> </ul>                                          | <ul> <li>Classical VOD/SOS (Baltimore<br/>criteria)</li> </ul>              |  |  |
| Painful hepatomegaly                                                                                   | OR                                                                          |  |  |
| • Weight gain >5%                                                                                      | <ul> <li>Histologically proven VOD/SOS</li> </ul>                           |  |  |
| Ascites                                                                                                | OR                                                                          |  |  |
|                                                                                                        | <ul> <li>Two or more of the following:</li> </ul>                           |  |  |
|                                                                                                        | <ul> <li>Bilirubin ≥2 mg/dL (or 34<br/>μmol/L)</li> </ul>                   |  |  |
|                                                                                                        | <ul> <li>Painful hepatomegaly</li> </ul>                                    |  |  |
|                                                                                                        | • Weight gain >5%                                                           |  |  |
|                                                                                                        | Ascites                                                                     |  |  |
|                                                                                                        | AND                                                                         |  |  |
|                                                                                                        | <ul> <li>Hemodynamic and/or ultra-<br/>sound evidence of VOD/SOS</li> </ul> |  |  |
| Pediatric Criteria                                                                                     |                                                                             |  |  |
| No limitation for time of onset of VOE                                                                 | /SOS                                                                        |  |  |
| <ul> <li>Presence of ≥2 of the following*:</li> </ul>                                                  |                                                                             |  |  |
| <ul> <li>Unexplained consumptive and trans<br/>thrombocytopenia<sup>†</sup></li> </ul>                 | sfusion-refractory                                                          |  |  |
| <ul> <li>Otherwise unexplained weight gain<br/>use of diuretics or a weight gain &gt;5% all</li> </ul> | , ,                                                                         |  |  |
| <ul> <li>Hepatomegaly<sup>‡</sup> (best if confirmed b</li> </ul>                                      | y imaging) above baseline value                                             |  |  |
| <ul> <li>Ascites<sup>1</sup> (best if confirmed by imaging)</li> </ul>                                 | ng) above baseline value                                                    |  |  |
| <ul> <li>Rising bilirubin from a baseline value<br/>bin ≥2 mg/dL within 72 h</li> </ul>                | ue on 3 consecutive days or biliru-                                         |  |  |

| Patient-Related Factors                   | OR      | Transplantation-Related Factors                                     | OR      |
|-------------------------------------------|---------|---------------------------------------------------------------------|---------|
| Young age [5,24]                          | 1.7-9.5 | Allogeneic HSCT [24]                                                | 2.8     |
| Preexisting hepatic condition             |         | Unrelated/HLA mismatch [24]                                         | 1.4     |
| Previous liver disease [24]               | 3.4     |                                                                     |         |
| Elevated AST/ALT pre-HCST [24]            | 2.4-4.6 |                                                                     |         |
| Hepatitis C-positive [26]                 | 2.2     |                                                                     |         |
| Underlying diagnosis                      |         | Previous HSCT [24]                                                  | 1.9     |
| Leukemia [24]                             | 2.2     |                                                                     |         |
| Previous treatment                        |         | High-intensity/MAC regimens                                         | 2.3-7.9 |
| Gemtuzumab ozogamicin [24]                | 19.8    | Busulfan plus cyclophosphamide [24]                                 | 3.9-5.  |
| Inotuzumab ozogamicin [6],*               | 22      | Fludarabine [24]                                                    | 4.0     |
|                                           |         | TBI-based [26]                                                      | 1.73    |
|                                           |         | Busulfan-based [26,30]                                              | 2.43    |
|                                           |         | Busulfan-thiotepa [36]                                              | 8.8     |
| Previous abdominal radiation [24]         | 2.9     | Total body irradiation [24]                                         |         |
|                                           |         | >12 Gy plus cyclophosphamide                                        | 2.8     |
| Impaired pulmonary function [24]          | 2.4     | GVHD prophylaxis [24]                                               |         |
| Genetic predisposition [24]               |         | Sirolimus + methotrexate + tacrolimus                               | ~3      |
| GSTM1 null genotype                       | 4.1     | Methotrexate + cyclosporine                                         | 3.3     |
| KPS score <90% [24]                       | 2.7     | Cyclosporine                                                        | 4.2     |
| Ferritin >1000 ng/mL pre-HSCT [24]        | 3.1     | Horse ATG [37]                                                      | 3.5     |
| Ferritin ≥950 ng/mL pre-HSCT [36]         | 8.8     |                                                                     |         |
| Sepsis post-HSCT [24]                     | 4.1     | Trough serum tacrolimus levels above target range (5-10 ng/mL) [21] | NR      |
| ECOG performance status 2-4 (vs 0-1) [26] | 1.9     | Early day of neutrophil engraftment [5]                             | 1.4     |
| Advanced disease status [26]              | 1.5-1.7 |                                                                     |         |
| Acute kidney injury [21]                  | NR      |                                                                     |         |
| Platelet refractoriness [21]              | NR      |                                                                     |         |
| High INR [21]                             | NR      |                                                                     |         |



## SOS/VOD biomarkers (proposed)


### Hematological markers highly aspecific!

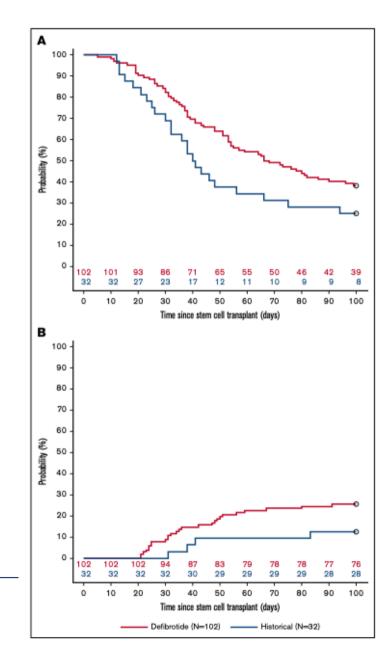
| _ |                                                                                                  |
|---|--------------------------------------------------------------------------------------------------|
| Ľ | Biomarker                                                                                        |
|   | Broad-spectrum/multiple mechanism                                                                |
|   | Panel of changes in tumorogenicity-2, angiopoieten-<br>2, L-ficolin, hyaluronic acid, and VCAM-1 |
|   | ↓ L-ficolin plasma level                                                                         |
| 1 | Genetic polymorphisms                                                                            |
|   | MTHFR C677T/A1298C                                                                               |
|   | Heparanase single nucleotide polymorphisms                                                       |
| 1 | Hematologic and endothelial                                                                      |
|   | ↓ Protein C levels                                                                               |
|   | ↓ Antithrombin III levels                                                                        |
|   | ↓ Type III procollagen and tPA                                                                   |
|   | ↑ PAI-1 antigen levels                                                                           |
|   | ↑ Extra-cellular endothelial vesicles CD144*                                                     |
|   | ↑ vWF, thrombomodulin, soluble IAM-1*                                                            |
|   | Hepatic/splenic                                                                                  |
|   | † Maximum total serum bilirubin/bilirubin increase<br>at any point in time                       |
|   | ↑ Total bilirubin, D-dimer                                                                       |
|   | † Hepatocyte growth factors/with/without IL-6                                                    |
|   | ↑ APRI                                                                                           |
|   | † Splenic volume                                                                                 |
| 1 | ↑ Panel of liver fibrosis indices: API, APRI, PSR, FIB-4 <sup>1</sup>                            |
|   | Inflammatory/immune response                                                                     |
|   | ↑ IL-6, IL-10, TNF-α plasma levels <sup>1</sup>                                                  |
| 1 | ↑ IL-6 plasma level at + day 7 post-HSCT                                                         |
| 1 | ⊥ IGF and IGFBP-3 plasma levels                                                                  |

*Corbacioglu S et al. Biol Blood Marrow Transplant 25 (2019)* 1271-1280



## SOS/VOD treatment (Defibrotide)




## **Defibrotide phase 3 study**

Primary end points of phase 3 study (not randomized) in defibrotide (6.25 mg/Kg every 6 hs, **25 mg/kg daily**) treated patients (n. 102) vs historical controls receiving supportive treatment.

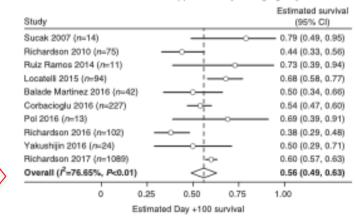
- (A) Kaplan-Meier estimates of overall survival distribution
- (B) Complete response (defined as total bilirubin < 2 mg/dL and resolution of MOD/MOF) <u>at day 100 following HSCT</u>







## **Defibrotide pooled analysis (I)**


#### Patients treated with any dose of defibrotide

| Study                                    | Estimated survival<br>(95% CI) |
|------------------------------------------|--------------------------------|
| Richardson 1998 (n=19)                   | 0.32 (0.13, 0.57)              |
| Chopra 2000 (n=40)                       | 0.57 (0.41, 0.73)              |
| Richardson 2002 (n=88)                   | 0.35 (0.25, 0.46)              |
| Corbacioglu 2004 (n=45)                  | 0.64 (0.49, 0.78)              |
| Bulley 2007 (n=14)                       | 0.79 (0.49, 0.95)              |
| Sucak 2007 (n=14)                        | 0.79 (0.49, 0.95)              |
| Richardson 2010 (n=149)                  | 0.42 (0.34, 0.50)              |
| Ruiz Ramos 2014 (n=11)                   | 0.73 (0.39, 0.94)              |
| Locatelli 2015 (n=98)                    | 0.68 (0.58, 0.77)              |
| Triplett 2015 (n=34)                     | 0.56 (0.38, 0.73)              |
| Balade Martinez 2016 (n=42)              | - 0.50 (0.34, 0.66)            |
| Corbacioglu 2016 (n=710) -or             | 0.51 (0.47, 0.55)              |
| Pol 2016 (n=13)                          | 0.69 (0.39, 0.91)              |
| Richardson 2016 (n=102)                  | 0.38 (0.29, 0.48)              |
| Strouse 2016 (n=41)                      | 0.39 (0.24, 0.55)              |
| Yakushijin 2016 (n=24)                   | 0.50 (0.29, 0.71)              |
| Richardson 2017 (n=1154) -O-             | 0.60 (0.57, 0.63)              |
| Overall (/ <sup>2</sup> =81.52%, P<0.01) | 0.54 (0.48, 0.59)              |
| 0 0.25 0.50                              | 0.75 1.00                      |
| Estimated Day +100 s                     | urvival                        |

Pooled analysis of the estimated **Day + 100 survival rates** of the overall patient populations treated with any defibrotide dose or ~ 25 mg/kg/day

#### b

#### Patients treated with approximately 25 mg/kg/day



Richardson P et al. Bone Marrow Transplant. 2019 Feb 25. doi: 10.1038/s41409-019-0474-8. [Epub ahead of print]



## **Defibrotide pooled analysis (II)**

| Patients with MOD treated with<br>Study  | any dose of defibrotide<br>Estimated survival<br>(95% CI) |
|------------------------------------------|-----------------------------------------------------------|
| Richardson 1998 (n=19)                   | 0.32 (0.13, 0.57)                                         |
| Chopra 2000 (n=26)                       | 0.50 (0.30, 0.70)                                         |
| Richardson 2002 (n=88)                   | 0.35 (0.25, 0.46)                                         |
| Richardson 2010 (n=149)                  | 0.42 (0.34, 0.50)                                         |
| Locatelli 2015 (n=17)O                   | 0.24 (0.07, 0.50)                                         |
| Balade Martinez 2016 (n=42)              | 0.50 (0.34, 0.66)                                         |
| Corbacioglu 2016 (n=261) -+              | 0.36 (0.31, 0.43)                                         |
| Richardson 2016 (n=102)                  | 0.38 (0.29, 0.48)                                         |
| Richardson 2017 (n=556) -C-              | 0.51 (0.47, 0.55)                                         |
| Overall (I <sup>2</sup> =72.66%, P<0.01) | 0.41 (0.35, 0.47)                                         |
| 0 0.25 0.50                              | 0.75 1.00                                                 |
| Estimated Day +10                        | 0 survival                                                |

#### Subgroup with MOD treated at ~25 mg/kg/day

| Study                       |                    |          | Estimated survival<br>(95% CI) |
|-----------------------------|--------------------|----------|--------------------------------|
| Richardson 2010 (n=75)      | ;                  |          | 0.44 (0.33, 0.56)              |
| Locatelli 2015 (n=17)       |                    |          | 0.24 (0.07, 0.50)              |
| Balade Martinez 2016 (n=42) | ) -+               | _        | 0.50 (0.34, 0.66)              |
| Richardson 2016 (n=102)     |                    |          | 0.38 (0.29, 0.48)              |
| Richardson 2017 (n=556)     | i                  |          | 0.51 (0.47, 0.55)              |
| Overall (12=68.49%, P=0.01) |                    |          | 0.44 (0.35, 0.52)              |
| 0                           | 0.25 0.50          | 0.75     | 1.00                           |
|                             | Estimated Day +100 | survival |                                |

#### С Patients without MOD treated with any dose of defibrotide Estimated survival Study (95% CI) Chopra 2000 (n=14) 0.71 (0.42, 0.92) Bulley 2007 (n=14) 0.79 (0.49, 0.95) Locatelli 2015 (n=77) 0.78 (0.67, 0.87 Corbacioglu 2016 (n=348) 0.62 (0.56, 0.67) Richardson 2017 (n=488) 0.70 (0.66, 0.74) Overall (P=66.44%, P=0.02) 0.70 (0.63, 0.77) 0.25 0.50 0.75 1.00 0

Estimated Day +100 survival



d

b

#### Subgroup without MOD treated at ~25 mg/kg/day

| Study                 |      |               |         |       | Estimated survival<br>(95% CI) |
|-----------------------|------|---------------|---------|-------|--------------------------------|
| Locatelli 2015 (n=77) |      |               | _       |       | 0.78 (0.67, 0.87)              |
| Richardson 2017 (n=   | 488) |               | -0      | _     | 0.70 (0.66, 0.74)              |
| Overall               |      |               | <       | >     | 0.71 (0.67, 0.75)              |
| 0                     | 0.   | 25 0.50       | (       | 0.75  | 1.00                           |
|                       | Es   | timated Day + | 100 sun | rival |                                |

#### Pooled analysis of the estimated Day + 100 survival for patients with MOD and without MOD

Richardson P et al. Bone Marrow Transplant. 2019 Feb 25. doi: 10.1038/s41409-019-0474-8. [Epub ahead of print]



## Can we prevent SOS/VOD?

#### The HARMONY Trial

Clinicaltrials.gov. NCT02851407: Study comparing efficacy and safety of **defibrotide vs best supportive care** in the prevention of hepatic veno-occlusive disease in adult and pediatric patients.

Available from: https://clinicaltrials.gov/ct2/show/NCT02851407.

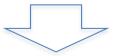


# Early/Late allo-HSCT life-threatening complications

Group of complications without well-established origins, clically characterized by thrombosis and/or bleeding and MOF

- Sinusoidal Obstruction Syndrome/VOD
- •Capillary Leak Syndrome
- •Engraftment Syndrome

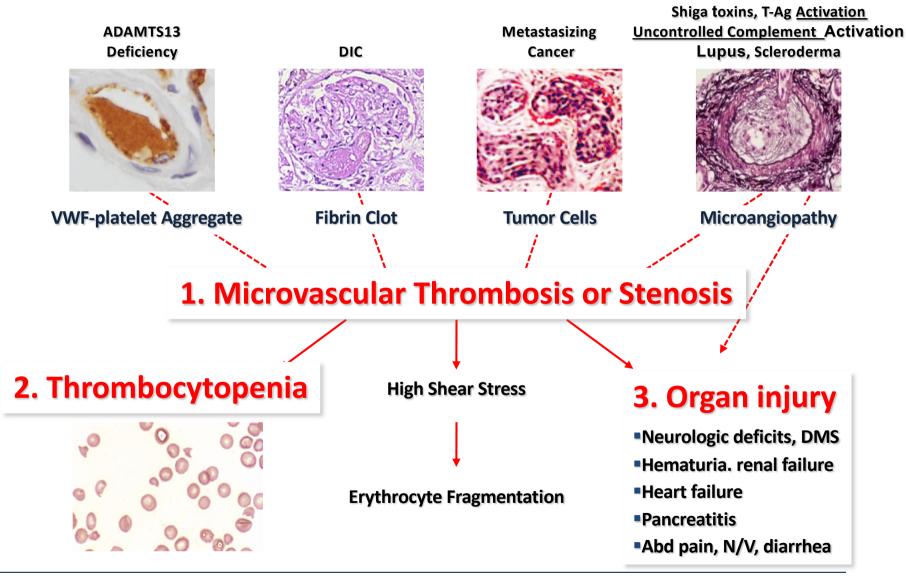
### •Transplant-Associated Microangiopathy (TAM)


- •Diffuse Alveolar Haemorrhage (DAH)
- •Idiopathic Pneumonia Syndrome

Early onset after HSCT, overlapping clinical manifestations, the absence of well-defined clinical criteria for diagnosis (and consequently an unknown true incidence), the absence of well-established treatments, and the tendency to evolve to an irreversible multiorgan dysfunction syndrome

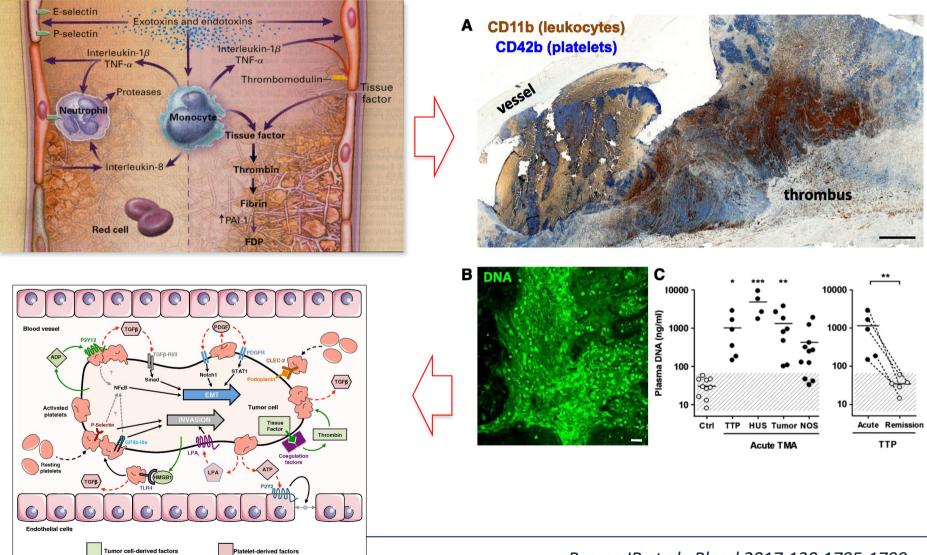


## **TMA: Clinical/Lab presentation**


- Q. Thrombotic occlusion of the microvasculature (often asy-oligosymptomatic), from different causes, leading to:
- Hemolytic anemia with elevation of LDH and negative direct Coomb's test
- Thrombocytopenia
- Fragmentation of red blood cells -> Schistocytes
- Normal baseline coagulation (lab)



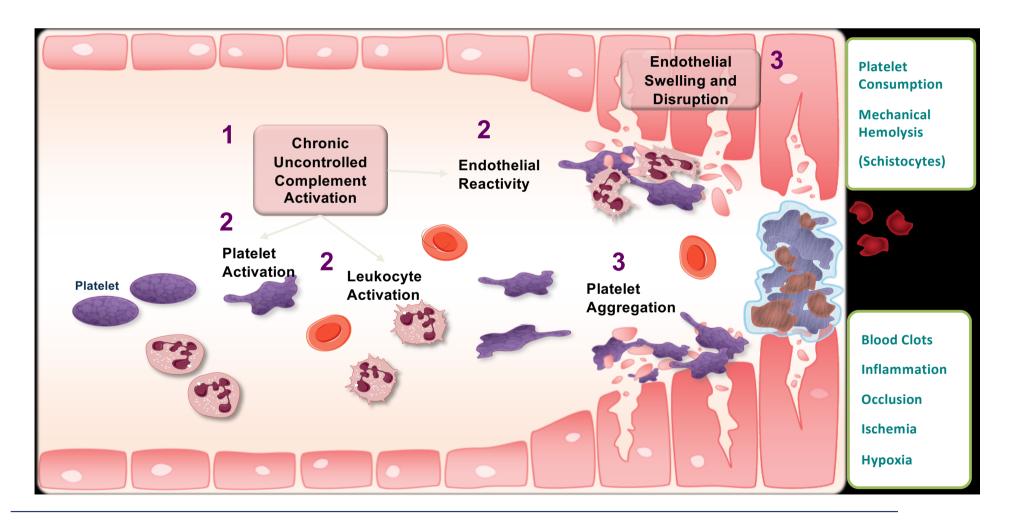
## **Thrombotic MicroAngiopathies (TMAs)**




## TMAs – Costellation of diseases for unique symptoms






## Interaction between coagulation factors, leukocytes & platelet in cancer/inflammation



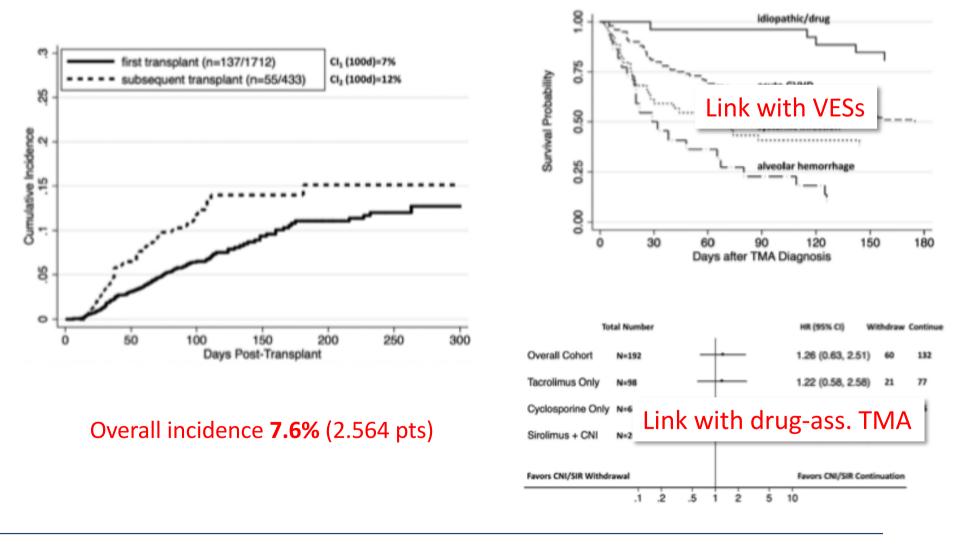
Byrnes JR et al. Blood 2017;130:1795-1799



### Link beteween Uncontrolled Complement, Platelet, Endothelial, and Leukocyte Activation Leading to TMA



Modified from Desch K et al. *JASN*. 2007;18:2457-2460. Modified from Licht C et al. *Blood*. 2009;114:4538-4545. Modified from Noris M et al. *NEJM*. 2009; 361:1676-1687. Modified from Stahl A et al. *Blood* 2008;111:5307-5315. Modified from Camous L et al. *Blood*. 2011;117:1340-1349.

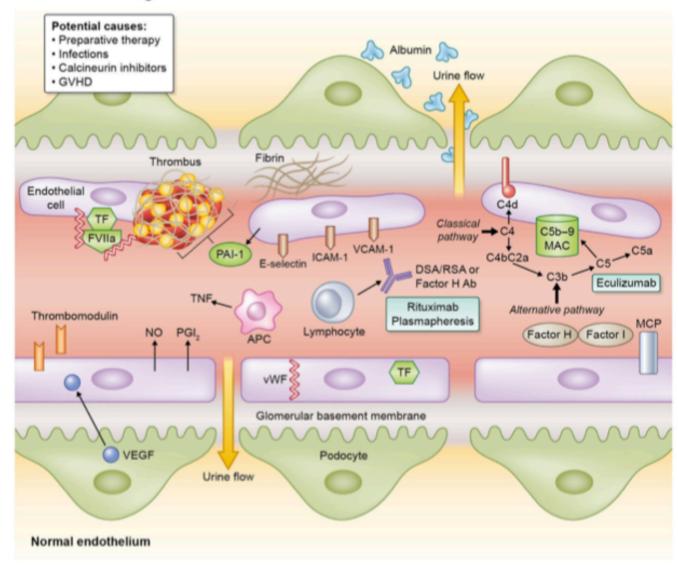



## TMAs other than TTP

| Disorder                                  | Pathophysiology                                                                                                                                                                                                                    |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TMA-Shiga toxin mediated                  | Direct endothelial damage with apoptosis due to effects o<br>Shiga toxin                                                                                                                                                           |
| TMA-complement mediated                   | Endothelial damage from unregulated complement<br>activation resulting from the development of anti-facto<br>H autoantibodies or mutations leading to abnormal<br>complement regulatory proteins or abnormal<br>complement factors |
| TMA-hematopoietic stem cell               | Endothelial damage due to infection, chemotherapy,                                                                                                                                                                                 |
| transplantation associated                | radiation therapy, or graft-versus-host disease due to<br>transplant. Of note, a significant percentage of affected                                                                                                                |
| All these 3 condit                        | tions are present in allo-HSCT                                                                                                                                                                                                     |
| Thin-drug associated                      | Mechanism varies depending on drug and includes direct<br>endothelial damage as well as the development of<br>ADAMTS13 autoantibodies                                                                                              |
| TMA-malignancy associated                 | Activation of coagulation by tumor tissue factor expression<br>Possible complement regulatory pathway mutations                                                                                                                    |
| TMA-Streptococcus pneumonia<br>associated | Exposure of normally hidden endothelial antigens by<br>bacterial neuramidase resulting in complement<br>mediated endothelial damage                                                                                                |
| TMA-coagulation mediated                  | Mutations in DGKE, plasminogen, and thrombomodulin<br>resulting in thrombosis and complement activation                                                                                                                            |
| HELLP syndrome                            | Mutations in alternate complement pathway regulatory<br>elements                                                                                                                                                                   |



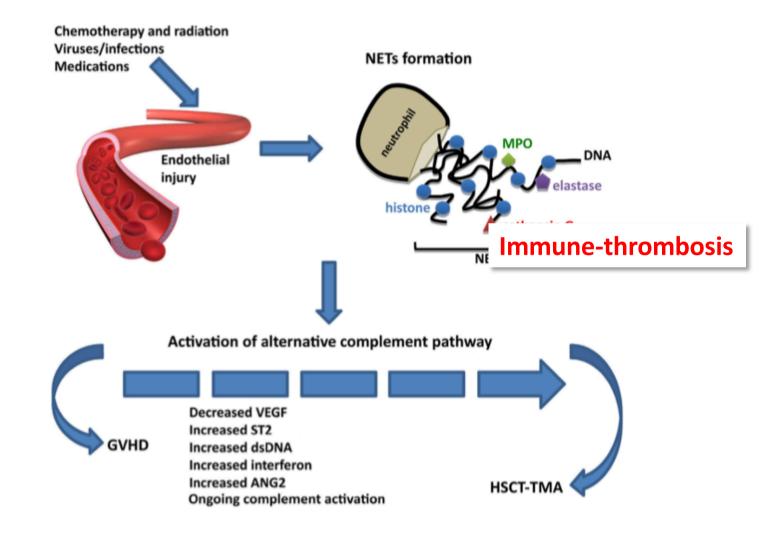
## **HSCT-related TMA**




Ang L et al. Biol Blood Marrow Transplant 2019;25:570-576



#### Activated and damaged endothelium in TA-TMA


## HSCTmediated TMAs (glomerular endothelium)

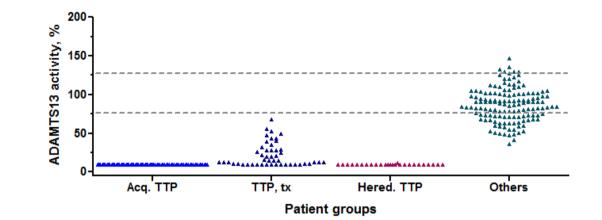


Wanchoo R et al. Am J Kidney Dis. 2018; 72(6):857-865



# Proposed mechanism of how GVHD could be linked with HSCT-TMA




Wanchoo R et al. Am J Kidney Dis. 2018; 72(6):857-865



## How to distinguish (lab/clinical) TMAs?

### Lab (no too much):

- > ADAMTS13 for ruling out TTP
- Coag. test for ruling out
   DIC in some cases
   (complement testing unusefull)



|                                               | Cancer-associated<br>thrombotic<br>microangiopathy     | Chemotherapy-associated<br>thrombotic<br>microangiopathy    |
|-----------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|
| Disseminated cancer                           | Yes                                                    | No                                                          |
| Renal involvement                             | Mild/absent                                            | Mild/severe                                                 |
| Disseminated<br>intravascular<br>coagulopathy | Present                                                | Absent                                                      |
| Circulating erythroblasts                     | Present                                                | Absent                                                      |
| Clinical presentation                         | Thrombotic<br>thrombocytopenic<br>purpura-like disease | Hemolytic-uremic<br>syndrome-like disease                   |
| Treatment                                     | Chemotherapy                                           | Stop chemotherapy<br>Supportive care<br>Specific treatments |

### Clinic (even less):

 - > some differences among cancer-related TMAs (but not others)

Grange S et al. Nephrologie & Therapeutique 13S (2017) S109–S113



## Can we prevent allo-HSCT-related TMA?

|                                                                                                     | Danaparoid<br>(n = 164)  | Dalteparin<br>(n = 59) | P-value <sup>a</sup>       |
|-----------------------------------------------------------------------------------------------------|--------------------------|------------------------|----------------------------|
| Age, years, median (range)<br>Gender: male/female, <i>n</i><br>Year of stem cell<br>transplantation | 48 (16–70)<br>107/57     | 36 (17–61)<br>36/23    | < 0.001<br>0.64<br>< 0.000 |
| January 2004–March 2008                                                                             | 0                        | 59                     |                            |
| April 2008–January 2013                                                                             | 164                      | 0                      |                            |
| Diagnosis, n (%)                                                                                    |                          |                        |                            |
| AML                                                                                                 | 76 (46.3)                | 22 (37.3)              | 0.28                       |
| ALL                                                                                                 | 27 (16.5)                | 19 (32.2)              | 0.01                       |
| CML                                                                                                 | 3 (1.8)                  | 3 (5.1)                | 0.19                       |
| MDS                                                                                                 | 22 (13.4)                | 5 (8.5)                | 0.36                       |
| ML                                                                                                  | 20 (12.2)                | 5 (8.5)                | 0.63                       |
| ATLL                                                                                                | 8 (4.9)                  | 2 (3.4)                | 1                          |
| MM<br>SAA                                                                                           | 1 (0.6)<br>7 (4.3)       | 0 (0)<br>3 (5.1)       | 1<br>0.73                  |
| Disease risk status at transplanta                                                                  | tion. n (%) <sup>b</sup> |                        |                            |
| Standard risk                                                                                       | 109 (66.5)               | 35 (59.3)              | 0.34                       |
| High risk                                                                                           | 55 (33.5)                | 24 (40.7)              |                            |
| Conditioning regimen, n (%)                                                                         |                          |                        |                            |
| MAC                                                                                                 | 77 (47.0)                | 51 (86.4)              | < 0.00                     |
| TBI-based                                                                                           | 66 (40.3)                | 44 (74.6)              | < 0.00                     |
| BU-based                                                                                            | 11 (6.7)                 | 7 (11.8)               | 0.26                       |
| RIC                                                                                                 | 87 (53.0)                | 8 (13.6)               | < 0.00                     |
| FLU+LPAM-based                                                                                      | 84 (51.2)                | 6 (10.2)               | < 0.00                     |
| FLU+Cy-based                                                                                        | 3 (1.8)                  | 2 (3.4)                | 0.61                       |
| Donor type, n (%)                                                                                   | 27 (22 6)                | 10 (22 2)              | 0.14                       |
| Matched related<br>Matched unrelated                                                                | 37 (22.6)                | 19 (32.2)              | 0.16                       |
| Matched unrelated<br>Mismatched related                                                             | 30 (18.3)<br>7 (4.3)     | 15 (25.4)<br>5 (8.5)   | 0.26<br>0.31               |
| Mismatched unrelated                                                                                | 90 (54.9)                | 20 (33.9)              | 0.006                      |
| ABO mismatched donor, n (%)                                                                         | 97(59.1)                 | 33(55.9)               | 0.76                       |
| Cell sourse, n (%)                                                                                  |                          |                        |                            |
| Bone marrow                                                                                         | 64 (39.0)                | 40 (67.8)              | 0.002                      |
| Peripheral blood                                                                                    | 36 (22.0)                | 13 (22.0)              | 1                          |
| Cord blood                                                                                          | 64 (39.0)                | 6 (10.2)               | < 0.00                     |
| Before allogeneic HCT, n (%)                                                                        | 20 (12.2)                | 4 (6.8)                | 0.33                       |
| GvHD prophylaxis, n (%)                                                                             |                          |                        | < 0.00                     |
| CSA+MTX                                                                                             | 37 (22.6)                | 31 (52.5)              |                            |
| Tacrolimus+MTX                                                                                      | 127 (77.4)               | 28 (47.5)              |                            |
| Acute GvHD, n (%)                                                                                   | 112 /20 0                | 25 /52 23              | 0.2                        |
| Grade 0–I                                                                                           | 113 (68.9)               | 35 (59.3)              |                            |
| Grade II–IV                                                                                         | 51 (31.1)                | 24 (40.7)              | 0.17                       |
| Cytomegalovirus viremia, n (%)                                                                      | 96 (58.5)                | 28 (47.5)              | 0.17                       |

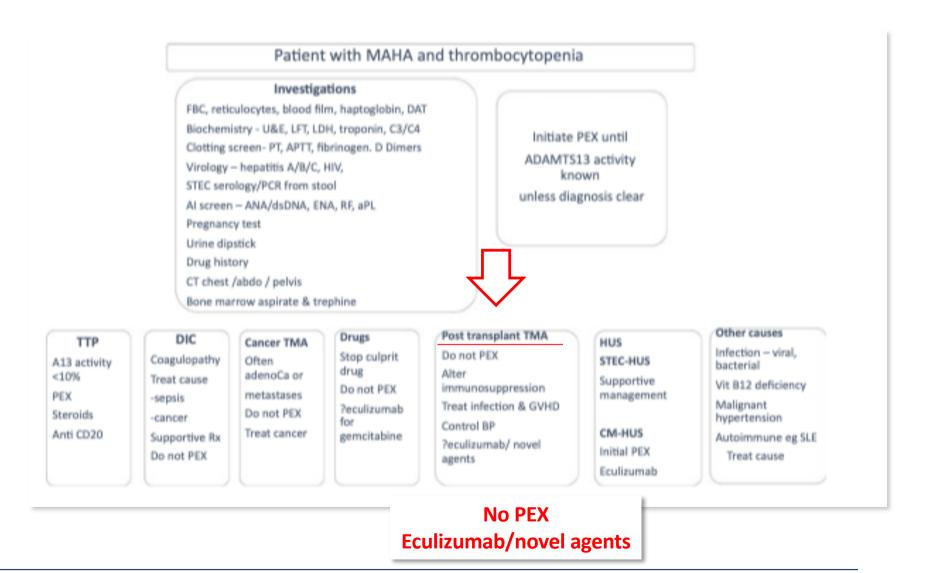
| Variables                         | Univariat        | e       | Multivariate <sup>a</sup> |        |  |
|-----------------------------------|------------------|---------|---------------------------|--------|--|
|                                   | HR (95% CI)      | P-value | HR (95% CI)               | P-valu |  |
| Danapaloid                        | 0.46 (0.23-0.94) | 0.03    | 0.34 (0.16-0.75)          | 0.007  |  |
| Age > 50 years                    | 0.68 (0.31-1.47) | 0.33    |                           |        |  |
| Female                            | 1.18 (0.57-2.44) | 0.65    |                           |        |  |
| Lymphoid<br>malignancy            | 2.42 (1.18–4.96) | 0.02    | 2.42 (1.14–4.78)          | 0.02   |  |
| High-risk disease<br>status       | 3.49 (1.67–7.28) | 0.0009  | 2.52 (1.21–5.23)          | 0.01   |  |
| Reduced intensity<br>conditioning | 0.77 (0.37–1.61) | 0.48    |                           |        |  |
| TBI-based                         | 1.39 (0.67-2.88) | 0.37    |                           |        |  |
| BU-based                          | 1.95 (0.65-5.81) | 0.23    |                           |        |  |
| Unrelated donor                   | 2.34 (0.91-6.05) | 0.08    | 2.46 (0.94-6.46)          | 0.07   |  |
| HLA mismatched<br>donor           | 1.54 (0.75–3.18) | 0.24    |                           |        |  |
| ABO mismatched<br>donor           | 1.24 (0.59–2.60) | 0.57    |                           |        |  |
| Cord blood                        | 1.53 (0.74-3.17) | 0.25    |                           |        |  |
| Before allogeneic<br>HCT          | 4.40 (1.99–9.71) | 0.0003  | 3.60 (1.51-8.60)          | 0.004  |  |
| Tacrolimus                        | 0.75(0.36-1.57)  | 0.44    |                           |        |  |
| Cytomegalovirus<br>viremia        | 0.58(0.28-1.19)  | 0.14    |                           |        |  |
| aGvHD:<br>Grade II–IV             | 0.97 (0.46-2.07) | 0.94    |                           |        |  |

**Danaparoid** 1.250 U b.i.d. vs LMWH 3.000 U/die 1 -> 28 days from allo-HSCT

Machida S et al. Bone Marrow Transplantation (2017) 307 – 309



## HSCT-related TMA: Can we satisfactory treat? (as well as novel therapies)


Table 1. Summary of Treatment Strategies Used and Being Studied for HSCT-TMA

| Treatment<br>Modality | No. of Patients in<br>Published Reports                                       | Mechanism                                  | Response<br>Rate |
|-----------------------|-------------------------------------------------------------------------------|--------------------------------------------|------------------|
| Plasmapheresis        | 162 (adults)                                                                  | Removal of potential inhibitor/antibody    | 59%-65%          |
| Daclizumab            | 13 (adults)                                                                   | Anti–IL-2                                  | 69%              |
| Rituximab             | 15 (8 adult, 7 pediatric)                                                     | Anti-CD20                                  | 80%              |
| Defibrotide           | 16 (11 adult, 5 pediatric)                                                    | Antifibrinolytic<br>and thrombotic         | 67%              |
| Vincristine           | 16 (13 adult, 3 pediatric)                                                    | Antimicrotubular<br>agent, immumomodulator | 69%              |
| Eculizumab            | 34 (24 pediatric, 1 adult, & 1<br>study w/ 9 cases w/ age<br>range of 2-61 y) | C5 inhibitor                               | 67%              |

Wanchoo R et al. Am J Kidney Dis. 2018; 72(6):857-865



## **Proposed approach in HSCT-related TMAs**



M Scully. 2019. Thrombosis and Hemostasis in Cancer, Cancer Treatment and Research 179, https://doi.org/10.1007/978-3-030-20315-3\_10



## **Lessons from VESs/TMAs**

# VESs/TMAs are variable entities in presentation and <u>course</u>:

- Distinction among TMAs is not clinically feasible
- Distinction among VESs is not clinically feasible
- Thrombocytopenia may not be profound in severe cases
- Organ dysfunction may result directly from vascular injury and increased permeability without thrombosis or vascular stenosis
- Absence of reliable biomarkers (except TTP)
- Treatment of TMAs <u>other than TTP</u> is still unsatisfactory
- Treatment of severe SOS/VOD (**Defibrotide**) should start asap (Baltimore criteria)



\_\_\_\_\_