Meccanismi di escape immunologico della recidiva post trapianto allogenico

Fabio CICERI

Hematology and Bone Marrow Transplantation Unit

San Raffaele Scientific Institute, Milano

Background: HSCT and Relapse

In allogeneic HSCT immune cells from the donor recognize and eliminate residual malignant cells ("Graft versus Leukemia effect")

Reappearance of disease after initial remission (relapse) represents the most frequent cause of post-transplantation mortality

Outline of the Talk

- 1. Genomic HLA loss (10 years later)
- 2. Novel modalities of relapse (not all in genomics...)

Molecular Mechanism and Immunological Consequences of HLA Loss

- Loss of the entire HLA complex (both class I and class II)
- Genomic mechanism (irreversible)
- Occurs only in leukemia cells, and rapidly becomes clonally prevalent
- Loss is counterbalanced by duplication of the other haplotype (expression level unchanged)
 Vago, N Engl J Med, 2009; Toffalo

Vago, N Engl J Med, 2009; Toffalori, Blood, 2012 Crucitti, Leukemia, 2015; Ahci and Toffalori, Blood, 2017

Confirmation/Epidemiology

Studies confirming HLA loss relapses in other HSCT settings and addressing the frequency of the event

> Villalobos, Blood, 2010 Waterhouse, Biol Blood Marrow Transplant, 2011 Toffalori, Blood, 2012 McCurdy, Leukemia, 2016

Crucitti, Leukemia, 2015

2019

2009

Routine Diagnosis

Development and industrial validation of fast and and reliable molecular assays amenable to routine laboratory practice

Ahci and Toffalori, Blood, 2018

2009

Routine Diagnosis

Development and industrial validation of fast and and reliable molecular assays amenable to routine laboratory practice

Ahci and Toffalori, Blood, 2018

Adaptation of an HLA NGS typing pipeline to the analysis of HLA loss in up to 48 samples in a single run

with DKMS

2019

The HLALOSS Transcan Project

NSCAN-2

ERA-NET: Aligning national/regional translational cancer research programmes and activities

Aim: addressing the frequency and risk factors of HLA loss in different HSCT settings

More than 20 centers from Europe, US, Japan

More than 1000 patient and donor samples (>600 relapses) characterized by an ad hoc optimized NGS pipeline

Patient and Transplant Characteristics

	Total (n=425)	Haplo (n=155)	MMUD (n=110)	MUD (n=111)	UCB (n=49)	Р
Male/Female Ratio	1.14	0.96	1.15	1.31	1.45	0.5
Median Age (range)	51 (16-77)	49 (16-72)	56 (17-77)	55 (22-75)	34 (16-67)	<0.001
Diagnosis						<0.001
AML	317	122	74	93	28	
ALL	47	9	12	5	21	
MDS or MPN	61	24	24	13	0	
Disease status						<0.001
CR	192	50	56	51	35	
Active Disease	233	105	54	60	14	
Cytogenetic risk						0.41
Favourable	16	4	7	5	0	
Intermediate	209	80	55	59	15	
Adverse	160	60	39	43	18	
Chemorefractory Disease						<0.001
Yes	164	85	24	30	25	
No	257	70	82	81	24	
Hyperleukocytosis at Diagnosis						0.057
Yes	74	36	14	12	12	
No	268	96	61	79	32	
Previous Allogeneic HSCT						<0.001
Yes	47	37	4	4	2	
No	378	118	106	107	47	
Stem Cell Source						0.008
PB	331	127	103	101	/	
BM	45	28	7	10	/	
Conditioning Intensity						0.005
MAC	259	75	70	74	40	
RIC	136	61	32	34	9	
ATG Use						<0.001
Yes	295	88	70	93	44	
No	117	65	31	17	4	
Median infused CD3+ (x10e5/Kg), range	2350 (3-9995)	2560 (20-9995)	2550 (3-7950)	2000 (21-6300)	53 (40-70)	0.09
Number of GvL mismatches						<0.001
1	71	5	27	38	1	
2	52	3	31	14	4	
3	38	9	22	0	7	
4	36	27	3	0	6	
5	69	55	3	0	11	
6	47	42	1	0	4	
>6	6	1	0	0	5	

Outline of the Talk

- 1. Genomic HLA loss (10 years later, becoming an evergreen?)
- 2. Novel modalities of relapse (it's not all in genomics...)

Seeking New Mechanisms of AML Immune Evasion

Mutational Landscape of Relapsed AML

UPN#15 UPN#14 UPN#11 0HN#6 UPN#5 UPN#3 UPN#7 UPN#13 UPN#4 UPN#2 UPN#12 UPN#1 0PN#9 NPN#8 tumor suppressor WT1 BRCA1 myeloid TFs CBFA2T3 other TFs or repressor GFI1B UBTF TRIM13 TRIM15 ZHX3 ZBTB42 FOXB1 **RAS pathway** KRAS RIT2 Ser-Thre kinase pathway CCND3 protein phosphatase PTPN9 ion channel or transporter **GRIN3B** STXBP1 SCN3A ubiquitin pathway UBE3B **RNA** splicing SUGP1

Average coverage for tumor sample: 120X

+ other 30 SNV unclassified

Zanotti, EBMT Presidential Symposium 2018 (ASH 2018 update)

Deregulation of Immune Processes after Allo-HSCT

%

PD-1 positive cells (0 0 0 0 0

Exhaustion of Early-Differentiate Bone Marrow Anti

In relapsing patients, T cell exhaustion encompasses not only effectors, but also early differentiated T_{SCM} and T_{CM}

Phenotypic features of T cells infiltrating the bone marrow of relapsing patients are unique

ie

fic T Cells in the

Downregulation of Molecules Involved in HLA class II Presentation

Cristopher, N Engl J Med, 2018

Deregulation of Cohinibitory Ligands and of HLA Class II Molecules: Therapeutic Implications

Upregulation of Inhibitory Ligands

(mostly IFN-regulated genes)

Worsened by inflammatory signals, bypassed through checkpoint blockade

Toffalori et al, Nat Medicine, 2019

Post-Transplantation Relapse Modalities: A Recap

Relapse therapy should be **personalized** and **guided by immunobiology**

Vago, Hematology Am Soc Hematol Educ Program, 2019

Acknowledgments

Cristina Toffalori Laura Zito Valentina Gambacorta Lucia Zanotti Gabriele Bucci Francesco Santaniello Sonia Todaro Antonella Antonelli Eleonora Draghi Mattia Di Bono Elena Riva Pier Edoardo Rovatti

Unit of Immunogenetics, Leukemia Genomics and Immunobiology

LUCA VAGO

Massimo Bernardi Jacopo Peccatori Hematology and BMT Unit

CHIARA BONINI

Experimental Hematology Unit

Davide Cittaro

Giovanni Tonon

Centre for Translational Genomics and Bioinformatics

Alessandro Rambaldi ASST Papa Giovanni XXIII Bergamo

Katharina Fleischhauer Universitatklinikum Essen

Acknowledgments

Alessandro Busca
Benedetto Bruno
A.O.U. Città della Salute e della Scienza, Torino
Alessandra Picardi
William Arcese
Tor Vergata University, Roma
Loredana Ruggeri
Antonio Pierini
Andrea Velardi
Perugia University, Perugia
Massimo Pini
Alessandria Hospital, Alessandria
Annalisa Imovilli
Luca Facchini
Arcispedale S.Maria Nuova, Reggio Emilia
Stefania Bramante
Luca Castagna
Humanitas Cancer Center, Rozzano
Ruoping Tang
Mohamad Mohty
Hôpital Saint Antoine, Paris

Rayner Devillier Didier Blaise Inst. Paoli-Calmettes, Marseille Friedrich Stolzel Martin Bornhäuser Uniklinikum Dresden, Dresden Myriam Ulman Arnon Nagler Chaim Sheba M.C., Tel Hashomer **Miguel Waterhouse** Rainer Claus Jurgen Finke Universitätsklinikum Freiburg, Freiburg Nicolaus Kroeger Universitätsklinikum Eppendorf, Hamburg Guido Kobbe Heinrich-Heine University, Dusseldorf Jaimie Sanz Jose Luis Pinana Guillermo Sanz Hospital Universitario La Fe, Valencia

Masahiro Onozawa Takanori Teshima Hokkaido University, Sapporo Ketty Gendzekhadze Monzr Al Malki City Of Hope Hospital C.C.C., Duarte Stefan Ciurea **MD** Anderson C.C., Houston Mi Kwon Carolina Martínez Laperche Hospital Gregorio Marañon, Madrid Ivana Gojo Leo Luznik Johns Hopkins University, Baltimore Max Jan R. Coleman Lindsley **Robert Soiffer** Benjamin L. Ebert Dana-Farber Cancer Institute, Boston